
RAIRO-Inf. Theor. Appl. 41 (2007) 103–121

DOI: 10.1051/ita:2007004

MULTIPLE-PRECISION CORRECTLY ROUNDED
NEWTON-COTES QUADRATURE

Laurent Fousse
1

Abstract. Numerical integration is an important operation for sci-
entific computations. Although the different quadrature methods have
been well studied from a mathematical point of view, the analysis of
the actual error when performing the quadrature on a computer is often
neglected. This step is however required for certified arithmetics.

We study the Newton-Cotes quadrature scheme in the context of
multiple-precision arithmetic and give enough details on the algorithms
and the error bounds to enable software developers to write a Newton-
Cotes quadrature with bounded error.

Mathematics Subject Classification. 65D30, 65D32, 65G50.

1. Introduction

Numerical integration is an operation that is common in mathematical software
(intnum in Pari/GP [2], quadrature in MuPAD [7], evalf(Int(...)) in Maple
for example). At first glance this is a topic that seems well studied: several
quadrature schemes with different convergence properties are known as well as
strategies to use them (e.g. adaptive error analysis) or to combine them. When
compared to the basic four operations (addition, subtraction, multiplication and
division) one notices however the lack of correct rounding, which means the result
is not always the floating-point number (see Def. 3.7) closest to the real value in
the chosen direction.

Keywords and phrases. numerical integration, correct rounding, multiple-precision, Newton-
Cotes.

1 Univ. Nancy I/LORIA, 615 rue du Jardin Botanique, 54602 Villers-lès-Nancy Cedex,
France; laurent@komite.net

c© EDP Sciences 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2007004

http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2007004

104 L. FOUSSE

Let us illustrate the problem by an example, and compare the values returned
respectively by Pari/GP and Maple for I =

∫ 106+π

106 (sin(cos(t))− cos(sin(t))) dt.
On the one hand Pari/GP gives:

? \p19

? intnum(t = 10^6, 10^6+Pi, sin(cos(t)) - cos(sin(t)))

%1 = -1.810600390080270954

while Maple returns:

> Digits:=19: evalf(Int(sin(cos(t)) - cos(sin(t)), t=10^6..10^6 + Pi));

-1.810600390080269775

so clearly one software at least is wrong here.
The definition and normalization of rounding modes was a major advance in

floating-point arithmetic with respect to the portability and reproducibility of
computations. It is a challenging goal to extend this notion of correct rounding to
more complex operations like numerical integration.

The error analysis of quadrature methods however is often limited to the math-
ematical error. In the context of correct rounding this is sadly not sufficient,
because a precise bound on the total error is needed to be able to decide of the
actual accuracy of the result. Previous works in the field include the study of the
adaptive quadrature function of MuPAD [8] and dynamic error control of simple
or multiple integrals [1, 6]. What differentiates our work is the careful study of
the error term. It is often the case that the roundoff error is merely estimated or
sometimes even dismissed by computing with a precision that is “good enough”.
Instead, our goal is to give a rigorous formula bounding the total error made in
the computation (both the mathematical and roundoff error) in order to be able
to guarantee the final result. The use of multiple-precision arithmetic renews the
questions that arise for the Newton-Cotes method; in particular higher orders are
still up for consideration in this context. If the integral is not exactly representable
then we can indeed provide a correctly rounded result, otherwise we can merely
compute the value with an absolute error as small as desired.

In this paper f : [a, b] → R is the C∞ function we want to integrate on a
finite domain [a, b], and n is the number of evaluation points in the Newton-Cotes
method. Let

I =
∫ b

a

f(x)dx

be the exact value of the integral.
The Newton-Cotes method uses equally-spaced evaluation points in the inte-

gration domain, commonly refered to as “abscissas” x0, x1, . . . xn−1:

for 0 ≤ i < n, xi = a + ih where h =
b− a

n− 1
is the step.

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 105

Since x0 = a and xn−1 = b, the bounds are used as abscissas and the method is
said to be closed. The principle of the method is to approximate the function with
the Lagrange interpolating polynomial with respect to the abscissas. The formulas
below follow directly from this statement.

For i ∈ {0, . . . , n− 1}, let li(x) =
∏

j �=i
(x−xj)
(xi−xj)

and wi = 1
h

∫ b

a
li(x)dx. The

approximated integral is then

In = h

n−1∑
i=0

wif(xi).

The mathematical error En = I − In is of the form En = cnhn+1f (n)(ζ) for n
even and En = cnhn+2f (n+1)(ζ) for n odd for some ζ ∈]a, b[(see [3], this will be
detailed afterwards).

Firstly we describe the algorithms used in our implementation of the Newton-
Cotes quadrature scheme. Then we establish some facts about the error due to the
method as well as a few useful lemmas relevant to floating-point arithmetic. These
results allow us to proceed to a thorough study of the error made when using the
Newton-Cotes quadrature scheme on a computer using floating-point arithmetic.
Then we state our main theorem (Th. 3.12). We conclude with some experiments
and remarks about the quadrature scheme studied.

2. Algorithm for the computation of the Newton-Cotes

coefficients

In the Newton-Cotes method we distinguish the computation of the coefficients
from the quadrature itself, since the coefficients can be precomputed, and reused
for several quadratures using the same number of points. For example the compo-
sition technique splits the initial integration interval in several parts and applies
the same method on each part.

We describe here the algorithm for the computation of the coefficients. The full
quadrature algorithm is explained in Section 3.5 together with a discussion about
the error.

First we show that the coefficients do not depend on the integration interval.
This is true for every linear quadrature scheme, even with non-equally spaced
abscissas simply because of the linearity of the integral. We include however the
proof only for the Newton-Cotes case because we want to derive the formula for
the coefficients.

Proposition 2.1. The coefficients of the Newton-Cotes methods do not depend
on the integration interval, and are symmetric with respect to the middle of the
interval.

106 L. FOUSSE

Proof. We transform the expression of wi from Section 1:

wi =
1
h

∫ b

a

li(x)dx

=
∫ n−1

0

li(a + xh)dx

=
∫ n−1

0

∏
j �=i

(a + xh− xj)
(xi − xj)

dx

=
∫ n−1

0

∏
j �=i

(a + xh− (a + jh))
h(i− j)

dx

=
∫ n−1

0

∏
j �=i

(x− j)
(i− j)

dx

=
(−1)n−1−i

i!(n− 1− i)!

∫ n−1

0

∏
j �=i

(x − j)dx.

The variable change x �→ n− 1− x shows that wn−1−i = wi. �

Let l�i (x) =
∏

j �=i(x − j) and Li the antiderivative of l�i such that Li(0) = 0.

Let ui = (−1)n−1−i

i!(n−1−i)! = (−1)n−1−i (n−1
i)

(n−1)! ·
Then we compute the weights as

wi = uiLi(n− 1). (1)

From the formula one can notice the weights are rational. They can thus be
computed exactly as wi = ni

d by Algorithm 1 below. Note that with the δ factor
in l�0 we ensure at each step that Li is an integer because in the polynomial
integration only division by integers from 2 to n− 1 occur. Timings were done on

Algorithm 1 Newton-Cotes coefficients

1: δ ← lcm(2, 3, . . . , n)
2: l�0 ← (x− 1)(x− 2) . . . (x− (n− 1))δ
3: for i← 0 to n− 1 do
4: Li ←

∫ n−1

0
l�i (x)dx

5: l�i+1 ← x−i
x−(i+1) l

�
i � update is done in place

6: ni ← (−1)n−1−i
(
n−1

i

)
Li

7: end for
8: return (n0, n1, . . . , n�n/2�, d = δ · (n− 1)!)

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 107

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(m
s)

n

Computation time

Figure 1. Coefficients computation time for small n.

a Pentium-4 computer with MPFR [9] version 2.1.1 and are shown in Figure 1.
We estimate the binary complexity of the algorithm as such:

line 1: the size of δ is O(n) [5] and it can be computed naively as n steps of
Euclide’s algorithm between the current least common multiple (lcm) of
size O(n) and the current integer of size O(log(n)). The total complexity
is thus O(n2 log n).

line 2: we build the polynomial product step by step where the coefficient of
the current polynomial are of size O(n log n). The complexity is
O(n3 log2 n).

line 4 and 5: those lines are executed n times and consist of O(n) multipli-
cations or divisions of integer of size O(n log n) by O(log n), thus a total
complexity of O(n3 log2 n).

line 6: the size of Li is O(n log2 n), and the size of
(
n−1

i

)
is O(n), so this

step costs O(n2 log2 n). We don’t compute
(
n−1

i

)
at each step, instead

we update from the value of the previous step (the cost of the update is
negligible).

We get a final time complexity for Algorithm 1 of O(n3 log2 n).

3. Error bounds

When performing a numerical integration by means of a Newton-Cotes method,
there are two sources of errors to consider: the mathematical error that comes from
the method itself, and the roundoff error in the computation which depends on
the way we implement the algorithm.

108 L. FOUSSE

We first give bounds on the mathematical error with elementary proofs. The-
orems 3.1 and 3.2 are standard and are included here for the convenience of the
reader. A proof of Theorem 3.2 can be found e.g. in [3], pp. 286–287.

3.1. Bounds on the mathematical error

Theorem 3.1. For n odd, the Newton-Cotes integration method on [a, b] with n
points is exact for polynomials of degree ≤ n. For n even, it is exact for polynomials
of degree ≤ n− 1.

Proof. For any n, the method is exact for polynomials of degree up to n−1 because
in that case the Lagrange interpolating polynomial is f exactly.

Let now n be odd. The choice of the evaluation points for the method gives
xi + xn−1−i = a + b. Let g(x) = (x − x0)(x − x1) . . . (x− xn−1).

g

(
a + b

2
− x

)
=

n−1∏
i=0

(
a + b

2
− x− xi

)

=
n−1∏
i=0

(
a + b

2
− x− (a + b− xn−1−i)

)

=
n−1∏
i=0

(
−a + b

2
− x + xn−1−i

)

= (−1)n
n−1∏
i=0

(
a + b

2
+ x− xn−1−i

)
= −g

(
a + b

2
+ x

)
and then

∫ b

a
g(x)dx = 0 =

∑n−1
i=0 wig(xi) since g(xi) = 0. The Newton-Cotes

method is exact for polynomials of degree n − 1 at most, and for g, which has
degree n, hence by linearity is exact for all polynomials of degree at most n. �

3.2. Peano theorem

In this section we establish the expression of the mathematical error given in
Section 1. For this the formalism of the Peano kernel of an integration method is
a powerful tool.

For a quadrature method I : Cν+1([a, b]) → R the error E : f �→ ∫ b

a f(x)dx −
I(f) can be seen as a linear function Cν+1([a, b]) → R. We have the following
result:

Theorem 3.2. Define

Kν(t) =
1
ν!

E[x �→ (x− t)ν
+]

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 109

Table 1. Newton-Cotes integration formulas for small n. To
simplify the notations we define fi = f(xi).

n Name Formula cn

2 trapezoidal rule I2 = h f0+f1
2 − 1

12

3 Simpson’s rule I3 = h
3 (f0 + 4f1 + f2) − 1

90

4 Simpon’s 3
8 rule I4 = 3h

8 (f0 + 3f1 + 3f2 + f3) − 3
80

5 Boole’s rule I5 = 2
45h(7f0 + 32f1 + 12f2 + 32f3 + 7f4) − 8

945

and

(x− t)ν
+ =

{
(x− t)ν if x > t

0 otherwise.

If E[p] = 0 for all polynomials p of degree at most ν then for f ∈ Cν+1([a, b]),

E[f] =
∫ b

a

f (ν+1)(t)Kν(t)dt.

Kν is called the Peano kernel of order ν of E.

Proof. Writing the Taylor series associated with f at origin a:

f(x) = pν(x) +
∫ x

a

1
ν!

(x− t)νf (ν+1)(t)dt

= pν(x) +
∫ b

a

1
ν!

(x− t)ν
+f (ν+1)(t)dt,

E[f] = E

[∫ b

a

1
ν!

(x− t)ν
+f (ν+1)(t)dt

]

=
∫ b

a

E

[
1
ν!

(x − t)ν
+

]
f (ν+1)(t)dt.

This theorem links the mathematical error with the maximal degree of the poly-
nomial the method integrates exactly (its maximal order). In Theorem 3.1 we
proved that the order of an n-points Newton-Cotes method is at least n− 1 for n
even and n for n odd. If we accept that for those orders the corresponding Peano
kernel of the Newton-Cotes method does not change sign on [a, b] (see [3], p. 289),
then we have a method to compute the coefficient cn given in Table 1. With the
mean value theorem there exists ζ ∈]a, b[such that:

E[f] = f (ν+1)(ζ)
∫ b

a

Kν(t)dt (2)

110 L. FOUSSE

and we obtain

cn :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

hn+1

∫ b

a

Kn−1(t)dt if n is even,

1
hn+2

∫ b

a

Kn(t)dt if n is odd.

For example for the 3-points method known as Simpson’s rule, we get

E[f] =
∫ b

a

f(x)dx − b− a

6

[(
f(a) + 4f

(
a + b

2

)
+ f(b)

)]
,

K3(t) =
1
6
E[x �→ (x− t)3+],

6K3(t) =
∫ b

a

(x− t)3+dx − b − a

6

[
(a− t)3+ + 4

(
a + b

2
− t

)3

+

+ (b− t)3+

]

=
∫ b

t

(x− t)3dx− b− a

6

[
4
(

a + b

2
− t

)3

+

+ (b − t)3
]

=

⎧⎨⎩
(b−t)4

4 − b−a
6

[
4(a+b

2 − t)3 + (b− t)3
]

if t < a+b
2

(b−t)4

4 − b−a
6 (b − t)3 if t ≥ a+b

2

,

∫ b

a

K3(t)dt =
∫ b

a

(b− t)4

24
− b− a

36
(b− t)3dt−

∫ a+b
2

a

(b − a)
9

(
a + b

2
− t

)3

dt

=
(b − a)5

120
− (b− a)5

144
− (b− a)5

576
= − 1

90

(
b− a

2

)5

and we find the value c3 = − 1
90 given in the third row of Table 1. �

3.3. Upper bound for the cn coefficients

In order to be able to give an absolute bound on the mathematical error we
need to bound the cn coefficients. We detail here the bound and the proof for n
even, and give only the result for n odd. Recall that for n even, the Newton-Cotes
method is exact for all polynomials up to degree n− 1.

Take for f a monic degree-n polynomial p in equation (2) to get:

En[p] = p(n)(ζ)
∫ b

a

Kn−1(t)dt

and then cn = En[p]
n!hn+1 since p(n)(ζ) = n!.

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 111

In particular for p(x) = (x − x0)(x − x1) . . . (x− xn−1), we have

En[p] =
∫ b

a

p(x)dx −
n−1∑
i=0

wip(xi) =
∫ b

a

p(x)dx

so it is enough to bound
∣∣∣∫ b

a
p(x)dx

∣∣∣ in order to bound cn. We will use repeatedly
the following simple lemma:

Lemma 3.3. For (u, x, v) ∈ R
3 such that u ≤ x ≤ v, |x− u||x− v| ≤ (v−u)2

4 ·
Proof.

|x− u||x− v| = (x− u)(v − x)

=
(

x− u + v

2
+

v − u

2

)(
v − u

2
−
(

x− u + v

2

))
=
(

v − u

2

)2

−
(

x− u + v

v

)2

≤
(

v − u

2

)2

· �

Proposition 3.4.

∀x ∈ [a, b], |p(x)| ≤ hn(n− 1)!
4

·
Proof. Let x ∈ [a, b] such that p(x) �= 0. Then there is i0 ∈ {0, . . . , n − 2} such
that x ∈]xi0 , xi0+1[, and thus

|x− xi0 ||x− xi0+1| ≤ h2

4
· (Lem. 3.3)

Then

|p(x)| ≤
n−1∏
i=0

|x− xi|

≤ h2

4

∏
i�={i0,i0+1}

|x− xi|

≤ h2

4

[∏
i>i0+1

(i− i0)h

] [∏
i<i0

(i0 + 1− i)h

]
,[∏

i>i0+1

(i− i0)h

][∏
i<i0

(i0 + 1− i)h

]
≤ (n− 1− i0)!(i0 − 1)!hn−2

≤ (n− 1)!hn−2,

|p(x)| ≤ hn(n− 1)!
4

· �

112 L. FOUSSE

On the other hand we have b− a = (n− 1)h, which yields

|En[p]| =
∣∣∣∣∣
∫ b

a

p(x)dx

∣∣∣∣∣ ≤
∫ b

a

|p(x)|dx ≤ hn+1(n− 1)!(n− 1)
4

·

With En[p] = cnhn+1n! we get

|cn| ≤ n− 1
4n

≤ 1
4
·

For n odd we take p(x) = (x − x0)(x − x1)...(x − xn−1)(x − a+b
2); we have the

evaluation points and the middle of the interval as zeroes of p.
Similar computations give:

|p(x)| ≤ hn+1(n− 1)!(n− 1)
8

then ∣∣∣∣∣
∫ b

a

p(x)dx

∣∣∣∣∣ ≤ hn+2(n− 1)!(n− 1)2

8

and with En = cnhn+2p(n+1) we get

|cn| ≤ (n− 1)2

8n(n + 1)
≤ 1

8
·

3.4. Ulp calculus

For the error analysis of Algorithm 2, we need a few useful lemmas concerning
the “ulp1 calculus”, as well as some definitions. The floating-point numbers are
represented with radix 2 (this could be generalized for any radix but radix 2 is
simpler and is natural on computers). For this section, p is the working precision,
and we assume that the exponent range is unbounded, which ensures that no
underflow or overflow occur.

Definition 3.5 (exponent). For a non-zero real number x we define E(x) :=
1 + 	log2 |x|
, such that 2E(x)−1 ≤ |x| < 2E(x).

Definition 3.6 (ulp). For a non-zero real number x we define ulp(x) := 2E(x)−p.

Definition 3.7 (floating-point number). A real number x is a floating-point num-
ber with precision p if it can be written x = m · 2e where m, e are integers and
|m| < 2p.

For a real x �= 0 and a working precision p we always have 2p−1ulp(x) ≤ |x| <
2pulp(x). If x is a floating-point number, then ulp(x) is the weight of the least
significant bit — zero or not — in the p-bit mantissa of x. For all real x, ulp(x) is
always greater than zero by definition.

1Unit in the last place.

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 113

Lemma 3.8. If c �= 0 and x �= 0 then c · ulp(x) < 2 · ulp(cx).

Proof. If c < 0 it is void. By definition of ulp(x) we have for all c > 0:

2p−1ulp(x) ≤ |x|

and
|cx| < 2pulp(cx)

so
c · 2p−1ulp(x) ≤ |cx| < 2pulp(cx). �

Lemma 3.9. Assuming no underflow (flush to zero) occurs then in all round-
ing modes for a non zero real x we have: ulp(x) ≤ ulp(◦(x)), where ◦(x) is the
rounding of x in the chosen mode with an unbounded exponent range.

Proof. We have 2E(x)−1 ≤ |x| < 2E(x) and ulp(x) = 2E(x)−p. After rounding we
get 2E(x)−1 ≤ | ◦ (x)| ≤ 2E(x) since 2E(x) and 2E(x)−1 are exactly representable,
therefore ulp(◦(x)) ≥ 2E(x)−p ≥ ulp(x). �

Lemma 3.10. Let x be a non-zero real and ◦(x) its rounding to nearest on p bits.
Then |x| ≤ (1 + 2−p)| ◦ (x)|.
Proof. By definition of rounding to nearest we have

|x− ◦(x)| ≤ 1
2
ulp(◦(x)) ≤ 1

2
21−p| ◦ (x)|,

|x| ≤ | ◦ (x)| + 2−p| ◦ (x)|. �

Lemma 3.11. Let a and b be two non-zero floating-point numbers of the same
sign and precision p then in all rounding modes

ulp(a) + ulp(b) ≤ 3
2
ulp(◦(a + b)).

Proof. It suffices to consider the case where a and b are positive. The definition
of ulp gives:

2p−1ulp(a) ≤ a < 2pulp(a),

2p−1ulp(b) ≤ b < 2pulp(b)
thus

2p−1[ulp(a) + ulp(b)] ≤ a + b < 2p[ulp(a) + ulp(b)].
If ulp(a) = ulp(b) we get

2pulp(a) ≤ a + b < 2p+1ulp(a)

and therefore ulp(◦(a + b)) ≥ ulp(a + b) ≥ 2ulp(a) = ulp(a) + ulp(b) (Lem. 3.9)
and the lemma holds.

114 L. FOUSSE

Otherwise we can assume without loss of generality that ulp(a) > ulp(b), that
is ulp(a) ≥ 2 · ulp(b). We deduce:

ulp(a) + ulp(b) ≤ 3
2
ulp(a),

and together with ulp(◦(a + b)) ≥ ulp(a + b) ≥ ulp(a) (Lem. 3.9) this concludes
the proof. �
Example. Let p = 4 and choose rounding to nearest: a = 1.010, b = 0.1001 in
binary notation.

a + b = 1.1101, ◦(a + b) = 1.110,

ulp(a) + ulp(b) = 2−3 + 2−4 =
3
2
2−3 =

3
2
ulp(◦(a + b)).

3.5. Roundoff errors

Algorithm 2 Newton-Cotes integration

Input: â, b̂, f, n, {ni} , d.
Output: Î.

1: for i← 0 to n− 1 do
2: t̂← ◦(â ∗ (n− i− 1))
3: û← ◦(̂b ∗ i)
4: v̂ ← ◦(t̂ + û)
5: x̂i ← ◦(v̂/(n− 1))
6: ẑ ← ◦(f(x̂i))
7: ŷi ← ◦(ẑ ∗ ni)
8: end for
9: Ŝ ← sum(ŷi, i = 0 . . . n− 1) � with Demmel and Hida algorithm [4]

10: Û ← ◦(Ŝ/d(n− 1))
11: D̂ ← ◦(̂b− â)
12: return ◦(D̂Û)

In order to provide an error bound on the numerical result given by the Newton-
Cotes method, we need to have a step-by-step look into Algorithm 2.

This step is often neglected when doing numerical integration, where error anal-
ysis stops right after stating the well known bound for the mathematical error. In
fact, the experiment illustrated in Figure 2 shows that much remains to be done to
control the error on the result. For this section we denote by x̂ the value actually
computed (i.e. with all roundoff errors) for a given “exact” value x that would be
computed with an infinite precision from the beginning of the algorithm.

In Algorithm 2, we set p as the working precision expressed in the number of
bits of the mantissa, the parameters â and b̂ are assumed to be the rounded to
nearest p-bit floating-point numbers of their exact counterpart a and b. For the

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 115

-1200

-1000

-800

-600

-400

-200

 0

 200

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

er
ro

r)

n

Method error
Measured error

Figure 2. An example of error measurement for the Newton-
Cotes method for f : x �→ ex, [a, b] = [0, 9]. Computations were
done with the default double precision of 53 bits, n the number
of points is displayed on the abscissa, and in ordinates the base-2
logarithm of the error.

error bound computation the algorithm needs additional parameters given by the
user: an upper bound M of |f (n)| on [a, b] if n is even, or an upper bound of
|f (n+1)| if n is odd; m an upper bound of |f ′| on [a, b].

In the rest of this section we will prove our main theorem:

Theorem 3.12. Let δŷi
= 6|ni| ·m ·ulp(x̂i)+ 3

2ulp(ŷi) where x̂i and ŷi are defined
in Algorithm 2. When computing the numerical quadrature of f using Algorithm 2
with a and b of the same sign the total error on the result is bounded by:

Etot =
(

45
2

+ 21 · 2−p

)
ulp(Î) +

1
2
|Û |
(
ulp(D̂) + ulp(â) + ulp(̂b)

)

+3
(1 + 2−p)n · D̂

d(n− 1)
max(δŷi

) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
8

(
b− a

n− 1

)n+2

M if n is odd,

1
4

(
b− a

n− 1

)n+1

M otherwise.

The algorithm can be analyzed in several steps:
(1) The computation of the weights wi, i ∈ [0, n − 1] of the method. For

Newton-Cotes, those weights are rational and computed exactly : wi = ni

d
where ni, d ∈ Z, so no rounding error occurs at this step.

116 L. FOUSSE

(2) The computation of xi. This is done at line 5 of Algorithm 2:

x̂i = ◦
(
◦(◦((n− 1− i) · â) + ◦(i · b̂))

n− 1

)
·

In order to simplify the notations we write t = (n− i− 1)a, u = i · b and
their inexact counterparts t̂ = ◦((n− i− 1)â), û = ◦(i b̂). If b = 0 or i = 0
the error on û is zero. Otherwise the error estimation yields:

| ◦ (i · b̂)− ib| ≤ 1
2
ulp(◦(îb)) +

i

2
ulp(̂b)

≤ 3
2
ulp(◦(îb)) =

3
2
ulp(û). (Lems. 3.8 and 3.9)

Similarly if a = 0 or n− i− 1 = 0 the error on t̂ is zero, and otherwise we
get |t̂− t| ≤ 3

2ulp(t̂).
Since a and b have the same sign, t̂ and û also have the same sign and

we can use Lemma 3.11. This assumption is not restrictive in practice as
we can split the integration interval at 0, and apply our error bound on
each part to get the consolidated error bound on [a, b]. Moreover assume
without loss of generality that 0 ≤ a < b, which gives 0 ≤ â ≤ b̂; then:

|v̂ − v| ≤ 1
2
ulp(v̂) +

3
2
(ulp(t̂) + ulp(û))

≤ 11
4

ulp(v̂). (Lem. 3.11)

Taking into account the error coming from the division by n− 1 we get:

δx̂i
= |xi − x̂i| ≤ 1

2
ulp(x̂i) +

11
4(n− 1)

ulp(v̂)

≤ 1
2
ulp(x̂i) +

11
2

ulp(x̂i) (Lems. 3.8 and 3.9)

≤ 6 · ulp(x̂i).

(3) The computation of f(xi). We assume we have an implementation of f
with correct rounding, and we call the function f requesting the rounding
to nearest of the exact value with precision p. Such correctly rounded
implementations of mathematical functions with arbitrary precision on
the result can be found for example in MPFR [9] for non-trivial functions
like exp, sin, arctan and numerous others.

With the already estimated error on x̂i we have:

|f(x̂i)− f(xi)| = |f ′(θi)(x̂i − xi)|, θi ∈ [min(xi, x̂i), max(xi, x̂i)]

and with an upper bound on f ′ we can bound this error absolutely. Let
f̂i = ◦(f(x̂i)) be the floating-point number computed. At this step we

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 117

now have:

|f̂i − f(xi)| ≤ |f ′(θi)(x̂i − xi)|+ 1
2
ulp(f̂i)

≤ 6m · ulp(x̂i) +
1
2
ulp(f̂i).

(4) The computation of the yi = f(xi) · ni. The accumulated error so far is:

|ŷi − yi| ≤ |ni| · |f̂i − fi|+ 1
2
ulp(ŷi)

≤ 6|ni| ·m · ulp(x̂i) +
|ni|
2

ulp(f̂i) +
1
2
ulp(ŷi)

≤ 6|ni| ·m · ulp(x̂i) +
3
2
ulp(ŷi) = δŷi

. (Lems. 3.8 and 3.9)

Remark. When bounding the error on x̂i, f̂i as well as ŷi, the term with
ulp(x̂i) vanishes if the error on x̂i is zero. One can easily show that with
our assumption that no underflow occurs, if x̂i = 0 then the error on x̂i

is zero (i.e. xi = 0) and the ill-defined quantity ulp(x̂i) vanishes. For the
error bound we keep track of only max(δŷi

).

(5) Summation of the yi’s: this is done with Demmel and Hida summation
algorithm [4], which guarantees an error of at most 1.5 ulp on the final
result. This algorithm uses a larger working precision p′ ≈ p + log2(n).
Let S =

∑n−1
i=0 yi.

|Ŝ − S| ≤ 3
2
ulp(Ŝ) + n ·max(δŷi

).

(6) Division of S by d(n − 1): U = S
d(n−1) . The computation of d(n − 1) is

done with integer arithmetic and is exact. The error at this step is thus:

|Û − U | ≤ 1
2
ulp(Û) +

3
2d(n− 1)

ulp(Ŝ) +
n

d(n− 1)
max(δŷi

)

≤ 7
2
ulp(Û) +

n

d(n− 1)
max(δŷi

). (Lems. 3.8 and 3.9)

(7) Multiplication by b−a: I = (b−a)U . We note D = b−a and D̂ = ◦(̂b− â).

|D̂ −D| ≤ 1
2

[
ulp(D̂) + ulp(â) + ulp(̂b)

]
.

We have by hypothesis

b̂ ≥ b− 1
2
ulp(̂b),

â ≤ a +
1
2
ulp(â)

118 L. FOUSSE

where ulp(0) = 0 by convention and therefore

b̂− â ≥ b− a− 1
2

(
ulp(â) + ulp(̂b)

)
≥ b− a− ulp(̂b).

On the other hand we know b̂ ≥ â and we further discard the case â = b̂
because it is of no pratical interest: in this case the current precision p is
not even sufficient to decide if a = b. We can however still compute an
error bound with the knowledge of m, â and one call to f(â).

So we may assume b̂ > â and we have b̂−â ≥ max(1
2ulp(̂b), b−a−ulp(̂b))

which gives ulp(̂b) ≤ 2(̂b− â); then

D ≤ b̂− â + ulp(̂b) ≤ 3(̂b− â) ≤ 3(1 + 2−p)D̂ (Lem. 3.10). (3)

If we put all the results and bounds gathered so far, we can reach the
following final error on Î = ◦(D̂Û):

|Î − I| ≤ 1
2
ulp(Î) + |D̂Û −D · U |

≤ 1
2
ulp(Î) + |Û | · |D̂ −D|+ |D| · |Û − U |

≤ 1
2
ulp(Î) + |Û | · |D̂ −D|+ 3(1 + 2−p)|D̂| · |Û − U | [Inequality (3)]

≤ 1
2
ulp(Î) + |Û | · |D̂ −D|

+ 3(1 + 2−p)|D̂|
(

7
2
ulp(Û) +

n

d(n− 1)
max(δŷi

)
)

≤
(

43
2

+ 21 · 2−p

)
ulp(Î) + |Û | · |D̂ −D|

+ 3
(1 + 2−p)n · D̂

d(n− 1)
max(δŷi

) (Lems. 3.8 and 3.9)

≤
(

45
2

+ 21 · 2−p

)
ulp(Î) +

1
2
|Û |
(
ulp(â) + ulp(̂b)

)
+ 3

(1 + 2−p)n · D̂
d(n− 1)

max(δŷi
) (Lems. 3.8 and 3.9).

This bound for the error is satisfactory for use in the algorithm, because it is made
of quantities that we can compute before the algorithm is started (p, n), or which
are naturally computed in the flow of the algorithm (Î, Û , b̂, â, D̂, d, δŷi

).

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 119

-120

-100

-80

-60

-40

-20

 0

 20

 0 5 10 15 20 25 30 35

lo
g(

er
ro

r)

n

roundoff
method
total
measured

Figure 3. The different errors while computing
∫ 3

0 exdx with 113
bits of precision.

For the final error bound we need to add a bound on the mathematical error:

Emath ≤

⎧⎪⎪⎨⎪⎪⎩
1
8

(
b− a

n− 1

)n+2

M if n is odd,

1
4

(
b− a

n− 1

)n+1

M otherwise
(4)

which is easily computed as well. While computing the error bound we carefully
choose for every operation the directed rounding mode which ensures that the
computed bound is larger than the theoretical error bound.

4. Experiments

Algorithm 2 was implemented using the MPFR library [9]. In addition to the
result of the integration, the program gives an error bound on the computed result
split in two terms:

(1) the mathematical error, whose expression is given in equation (4);
(2) the “roundoffs” error Eroundoff = Etot − Emath.

For our experiments we choose a function and an integration domain where the
exact value is known, so that we can measure precisely the actual error of the
computation (denoted by Emeas). Figure 3 shows the different errors when com-
puting the integral I =

∫ 3

0 exdx with 113 bits of working precision, the number of
evaluation points varying from 2 to 30.

120 L. FOUSSE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

n

precision

Best n

Figure 4. Optimal values of the number n of points for several
working precisions (experimental data gathered with

∫ 3

0
exdx).

The mathematical error decreases rapidly but it appears clearly that it is well
compensated by the roundoff errors as soon as more than about 15 evaluation
points are used, for the considered function and parameters. The theoretical gain
of increasing the order of the method is lost. Figure 4 gives the smallest value of
the number of points for which the mathematical error is inferior to the roundoff
errors, for different working precisions chosen. This is commonly interpreted as
the optimal value of n in the following sense: for higher values of n the benefit of
an higher order method is lost in the noise of the roundoff error, and for smaller
values the accuracy on the evaluation of the function is not exploited to its fullest.
Although the coefficients generating algorithm is slow for high values of n, no
particular attempts were made to optimize it yet; this is motivated partly by the
slow growth in Figure 4 (the other reasons being the numerical instability discussed
below as well as the possibility to use composition).

The bound on the total error as given by the algorithm is somehow close to the
measured error. In the experimental data we observe a maximal ratio of about
46 000 – which seems to be huge, but with a logarithmic scale it means we lost a
mere 16 bits of precision by our estimation. In particular this means our algorithm
is not too grossly pessimistic.

The numerical instability of the method when n grows is not surprising, and
not new either. The fact that negative coefficients appear in the formula as soon
as n ≥ 8 partly explains this fact which is demonstrated here. Considering the
smoothness of the function chosen for the experiment, the instability is to be
attributed to the method. If you read Figure 4 from the other point of view, the

MULTIPLE-PRECISION CORRECTLY ROUNDED QUADRATURE 121

required working precision for higher orders increases rapidly. Small values of n
are therefore recommended for the Newton-Cotes quadrature method.

5. Conclusion and future work

The Newton-Cotes quadrature scheme is the simplest numerical quadrature
method, which made it the natural candidate for a detailed study. We were able
to provide a rigorous analysis of the method that is self-contained and covers
every aspect that is relevant to an implementation, that is, the description of the
algorithms and the establishment of proven error bounds.

However the Newton-Cotes family of quadrature methods were not a goal per se
but rather a proof of concept that such a study of the error is feasible and indeed
desirable. It is planned to perform the same kind of work with other quadrature
schemes, notably the Gauss-Legendre methods (which have order 2n for n points
and are numerically more stable). These analyses might serve as a mathematical
foundation of a correctly rounded quadrature library.

Acknowledgements. I would like to thank my advisor Paul Zimmermann for suggesting
the problem and for the fruitful discussion we had on this subject.

References

[1] D.H. Bailey and X.S. Li, A comparison of three high-precision quadrature schemes, in Pro-
ceedings of the RNC’5 conference (Real Numbers and Computers) (September 2003) 81–95.
http://www.ens-lyon.fr/LIP/Arenaire/RNC5.

[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User’s Guide to PARI/GP
(2000). ftp://megrez.math.u-bordeaux.fr/pub/pari/manuals/users.pdf.

[3] P.J. Davis and P. Rabinowitz, Methods of numerical integration. Academic Press, New York,
2nd edition (1984).

[4] J. Demmel and Y. Hida, Accurate floating point summation. http://www.cs.berkeley.edu/
~demmel/AccurateSummation.ps (May 2002).

[5] W.J. Ellison and M. Mendès-France, Les nombres premiers. Actualités Scientifiques et In-
dustrielles 1366 (1975).

[6] J.-M. Chesneaux F. Jezequel and M. Charikhi, Dynamical control of computations of multiple
integrals. SCAN2002 conference, Paris (France) (23–27 September 2002).

[7] B. Fuchssteiner, K. Drescher, A. Kemper, O. Kluge, K. Morisse, H. Naundorf, G. Oevel, F.
Postel, T. Schulze, G. Siek, A. Sorgatz, W. Wiwianka and P. Zimmermann, MuPAD User’s
Manual. Wiley Ltd. (1996).

[8] W. Oevel, Numerical computations in MuPAD 1.4. mathPAD 8 (1998) 58–67.
[9] The Spaces project. The MPFR library, version 2.0.1. http://www.mpfr.org/ (2002).

