We study the properties of the function which determines the number of representations of an integer as a sum of distinct Fibonacci numbers . We determine the maximum and mean values of for .
Mots clés : Fibonacci numbers, Zeckendorf representation
@article{ITA_2005__39_2_343_0, author = {Koc\'abov\'a, Petra and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita}, title = {Integers with a maximal number of {Fibonacci} representations}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {343--359}, publisher = {EDP-Sciences}, volume = {39}, number = {2}, year = {2005}, doi = {10.1051/ita:2005022}, mrnumber = {2142117}, zbl = {1074.11008}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2005022/} }
TY - JOUR AU - Kocábová, Petra AU - Masáková, Zuzana AU - Pelantová, Edita TI - Integers with a maximal number of Fibonacci representations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 343 EP - 359 VL - 39 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2005022/ DO - 10.1051/ita:2005022 LA - en ID - ITA_2005__39_2_343_0 ER -
%0 Journal Article %A Kocábová, Petra %A Masáková, Zuzana %A Pelantová, Edita %T Integers with a maximal number of Fibonacci representations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 343-359 %V 39 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2005022/ %R 10.1051/ita:2005022 %G en %F ITA_2005__39_2_343_0
Kocábová, Petra; Masáková, Zuzana; Pelantová, Edita. Integers with a maximal number of Fibonacci representations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 2, pp. 343-359. doi : 10.1051/ita:2005022. http://www.numdam.org/articles/10.1051/ita:2005022/
[1] An exercise on Fibonacci representations. RAIRO-Inf. Theor. Appl. 35 (2001) 491-498. | Numdam | Zbl
,[2] The smallest positive integer having representations as sums of distinct Fibonacci numbers, in Applications of Fibonacci numbers. Vol. 8, Kluwer Acad. Publ., Dordrecht (1999) 47-52. | Zbl
,[3] The number of representations of using distinct Fibonacci numbers, counted by recursive formulas. Fibonacci Quart. 37 (1999) 47-60. | Zbl
and ,[4] On representations of positive integers in the Fibonacci base. Preprint University of North Texas (2003). | MR
and ,Cité par Sources :