In an earlier paper, the second author generalized Eilenberg’s variety theory by establishing a basic correspondence between certain classes of monoid morphisms and families of regular languages. We extend this theory in several directions. First, we prove a version of Reiterman’s theorem concerning the definition of varieties by identities, and illustrate this result by describing the identities associated with languages of the form , where are distinct letters. Next, we generalize the notions of Mal’cev product, positive varieties, and polynomial closure. Our results not only extend those already known, but permit a unified approach of different cases that previously required separate treatment.
@article{ITA_2005__39_1_239_0, author = {Pin, Jean-\'Eric and Straubing, Howard}, title = {Some results on $\mathcal {C}$-varieties}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {239--262}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005014}, mrnumber = {2132590}, zbl = {1083.20059}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2005014/} }
TY - JOUR AU - Pin, Jean-Éric AU - Straubing, Howard TI - Some results on $\mathcal {C}$-varieties JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 239 EP - 262 VL - 39 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2005014/ DO - 10.1051/ita:2005014 LA - en ID - ITA_2005__39_1_239_0 ER -
%0 Journal Article %A Pin, Jean-Éric %A Straubing, Howard %T Some results on $\mathcal {C}$-varieties %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 239-262 %V 39 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2005014/ %R 10.1051/ita:2005014 %G en %F ITA_2005__39_1_239_0
Pin, Jean-Éric; Straubing, Howard. Some results on $\mathcal {C}$-varieties. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 239-262. doi : 10.1051/ita:2005014. http://www.numdam.org/articles/10.1051/ita:2005014/
[1] Regular languages in . J. Comput. Syst. Sci. 44 (1992) 478-499. | Zbl
, , and ,[2] Varieties of languages, in Semigroups, Algorithms, Automata and Languages, edited by G.M.S. Gomes, J.-É. Pin and P. Silva. World Scientific (2002) 91-132. | Zbl
,[3] Automata, languages, and machines. Vol. B. Academic Press, Harcourt Brace Jovanovich Publishers, New York, (1976). With two chapters (“Depth decomposition theorem” and “Complexity of semigroups and morphisms”) by Bret Tilson. Pure Appl. Math. 59. | Zbl
,[4] On pseudovarieties. Adv. Math. 19 (1976) 413-418. | Zbl
and ,[5] Equational description of pseudovarieties of homomorphisms. Theor. Inform. Appl. 37 (2003) 243-254. | Numdam | Zbl
,[6] Infinite Words. Pure and Applied Mathematics 141 2004. | Zbl
and ,[7] A variety theorem without complementation. Russian Math. (Izvestija vuzov. Matematika) 39 (1995) 80-90.
,[8] Syntactic semigroups, in Handbook of formal languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag 1 (1997) 679-746.
,[9] Algebraic tools for the concatenation product. Theoret. Comput. Sci. 292 (2003) 317-342. | Zbl
,[10] Some results on the generalized star-height problem. Inform. Comput. 101 (1992) 219-250. | Zbl
, and ,[11] Profinite semigroups, mal'cev products and identities. J. Algebra 182 (1996) 604-626. | Zbl
and ,[12] Polynomial closure and unambiguous product. Theory Comput. Syst. 30 (1997) 1-39. | Zbl
and ,[13] Semidirect products of ordered semigroups. Commun. Algebra 30 (2002) 149-169. | Zbl
and ,[14] The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | Zbl
,[15] Hierarchies of Events with Dot-Depth One. Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, Canada (1972).
,[16] Piecewise testable events, in Proc. 2nd GI Conf., edited by H. Brackage. Springer-Verlag, Berlin, Heidelberg, New York. Lect. Notes Comp. Sci. 33 (1975) 214-222. | Zbl
,[17] Finite automata, formal logic, and circuit complexity. Birkhäuser Boston Inc., Boston, MA (1994). | MR | Zbl
,[18] On logical descriptions of regular languages, in LATIN 2002. Springer, Berlin, Lect. Notes Comput. Sci. 2286 (2002) 528-538. | Zbl
,Cité par Sources :