In this paper we investigate how it is possible to recover an automaton from a rational expression that has been computed from that automaton. The notion of derived term of an expression, introduced by Antimirov, appears to be instrumental in this problem. The second important ingredient is the co-minimization of an automaton, a dual and generalized Moore algorithm on non-deterministic automata. We show here that if an automaton is then sufficiently “decorated”, the combination of these two algorithms gives the desired result. Reducing the amount of “decoration” is still the object of ongoing investigation.
Mots clés : finite automata, regular expression, derivation of expressions, quotient of automata
@article{ITA_2005__39_1_217_0, author = {Lombardy, Sylvain and Sakarovitch, Jacques}, title = {How expressions can code for automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {217--237}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005013}, mrnumber = {2132589}, zbl = {1102.68070}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2005013/} }
TY - JOUR AU - Lombardy, Sylvain AU - Sakarovitch, Jacques TI - How expressions can code for automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 217 EP - 237 VL - 39 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2005013/ DO - 10.1051/ita:2005013 LA - en ID - ITA_2005__39_1_217_0 ER -
%0 Journal Article %A Lombardy, Sylvain %A Sakarovitch, Jacques %T How expressions can code for automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 217-237 %V 39 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2005013/ %R 10.1051/ita:2005013 %G en %F ITA_2005__39_1_217_0
Lombardy, Sylvain; Sakarovitch, Jacques. How expressions can code for automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 217-237. doi : 10.1051/ita:2005013. http://www.numdam.org/articles/10.1051/ita:2005013/
[1] Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155 (1996) 291-319. | Zbl
,[2] Systèmes de transitions finis et sémantique des processus communiquants. Masson (1992). English Trans.: Finite Transitions Systems, Prentice-Hall (1994). | Zbl
,[3] From regular expressions to deterministic automata. Theor. Comput. Sci. 48 (1986) 117-126. | Zbl
and ,[4] Local languages and the Berry-Sethi algorithm. Theor. Comput. Sci. 155 (1996) 439-446. | Zbl
and ,[5] Regular expressions into finite automata. Theor. Comput. Sci. 120 (1993) 197-213. | Zbl
,[6] Derivatives of regular expressions. J. Assoc. Comput. Mach. 11 (1964) 481-494. | Zbl
,[7] Characterization of Glushkov automata. Theor. Comput. Sci. 233 (2000) 75-90. | Zbl
and ,[8] New finite automaton constructions based on canonical derivatives, in Pre-Proceedings of CIAA'00, edited by M. Daley, M. Eramian and S. Yu, Univ. of Western Ontario (2000) 36-43. | Zbl
and ,[9] Canonical derivatives, partial derivatives and finite automaton constructions. Theor. Comput. Sci. 289 (2002) 137-163. | Zbl
and ,[10] Regular Algebra And Finite Machines. Chapman and Hall (1971). | Zbl
,[11] The abstract theory of automata. Russian Mathematical Surveys 16 (1961) 1-53. | Zbl
,[12] Derivatives of rational expressions with multiplicity. Theor. Comput. Sci., to appear. (Journal version of Proc. MFCS 02, Lect. Notes Comput. Sci. 2420 (2002) 471-482.) | Zbl
and ,[13] Regular Expressions And State Graphs For Automata. IRE Trans. electronic computers 9 (1960) 39-47. | Zbl
and ,[14] A construction on automata that has remained hidden. Theor. Comput. Sci. 204 (1998) 205-231. | Zbl
,[15] Éléments de théorie des automates. Vuibert (2003). English Trans.: Cambridge University Press, to appear.
,[16] Regular expression search algorithm. Comm. Assoc. Comput. Mach. 11 (1968) 419-422. | Zbl
,[17] Theory Of Computation. Wiley (1987). | MR | Zbl
,[18] Regular languages, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Elsevier 1 (1997) 41-111.
,Cité par Sources :