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TIME AND SPACE COMPLEXITY OF REVERSIBLE
PEBBLING ∗

Richard Královič
1

Abstract. This paper investigates one possible model of reversible
computations, an important paradigm in the context of quantum com-
puting. Introduced by Bennett, a reversible pebble game is an abstrac-
tion of reversible computation that allows to examine the space and
time complexity of various classes of problems. We present a technique
for proving lower and upper bounds on time and space complexity for
several types of graphs. Using this technique we show that the time
needed to achieve optimal space for chain topology is Ω(n lg n) for in-
finitely many n and we discuss time-space trade-offs for chain. Further
we show a tight optimal space bound for the binary tree of height h of
the form h + Θ(lg∗ h) and discuss space complexity for the butterfly.
These results give an evidence that reversible computations need more
resources than standard computations. We also show an upper bound
on time and space complexity of the reversible pebble game based on
the time and space complexity of the standard pebble game, regardless
of the topology of the graph.

Mathematics Subject Classification. 68Q10, 68Q25.

1. Introduction

The standard pebble game was introduced as a graph-theoretic model for ana-
lysing time-space complexity of deterministic computations. In this model, values
to be computed are represented by vertices of a directed acyclic graph. An edge
from a vertex b to a vertex a represents the fact that for computing the value a,
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the value b has to be already known. Computation is modelled by placing and
removing pebbles representing memory locations on/from the vertices. A pebble
placed on a certain vertex expresses the fact that the value of this vertex is already
computed and stored in the memory.

The pebble game is important for problems that can be represented by acyclic
graphs. Then, in order to get a time-efficient space-restricted computation it
is often useful to study the time-space complexity of the pebbling game on the
corresponding class of graphs.

Various modifications of the pebbling game have been studied in connection
with different models of computations (pebble game with black and white pebbles
for nondeterministic computations, pebble game of two players for alternating
computations, pebble game with red and blue pebbles for input-output complexity
analysis, pebble game with labels for database serializability testing, etc., see [8]).
The standard pebble game played on dynamic graphs was studied as a model of
incremental computations (see [9, 10]).

The model of reversible computations is interesting in connection with quantum
computing. Since the basic laws of quantum physics are reversible, the quantum
computation has to be reversible, too. That means that each state of the com-
putation has to uniquely define both the following and the preceding state of the
computation.

Another motivation for studying the model of reversible computation follows
from the fact that reversible operations are not known to require any heat dissi-
pation. With continuing miniaturization of computing devices, reduction of the
energy dissipation becomes very important. Both these reasons for studying re-
versible computations are mentioned in [2, 5, 6, 11].

Reversible pebble game is a modification of the standard pebble game for mod-
elling reversible computations that enables to analyse time and space complexity
and time-space trade-offs of reversible computations. It was introduced by Bennett
in [1] and further analysed e.g. in [4, 5, 12].

In this paper three basic classes of directed acyclic graphs (dags) are consid-
ered: the chain, the complete binary tree and the butterfly. These topologies
represent the structure of many important problems. For example simple sequen-
tial computation of maximum of an array can be described by the chain topology
and recursive “divide and conquer” algorithms (e.g. recursive mergesort) can be
described by the complete binary tree topology.

It is evident that minimal space complexity of the standard pebble game on
a chain of length n is O(1), minimal time complexity is O(n) and minimal space
and time complexities can both be achieved simultaneously. Concerning the re-
versible pebble game, it was proved in [5] that the minimal space complexity on the
chain topology is O(lg n) and the time complexity for optimal space complexity is
O(nlg 3).

We prove a lower bound on time complexity of computations using minimal
space, stating that the optimal time complexity in this case cannot be o(n lg n)
i.e. it has to be Ω(n lg n) for infinitely many n.
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As proven in [7], minimal space complexity for standard pebble game on a
complete binary tree of height h is h + 1. We show a tight space bound for
reversible pebble game on a complete binary tree of the form h + Θ(lg∗ h). These
results give an evidence that more resources are needed for reversible computation
in comparison with irreversible computation.

We also show an upper bound on the time and space complexity of the reversible
pebble game based on the complexity of the standard pebble game, regardless of
the topology: let time t and space p be sufficient for the standard pebble game on
an arbitrary graph G and let time t′ and space p′ be sufficient for the reversible
pebble game on a chain of length t. Then time t′ and space p · p′ are sufficient for
the reversible pebble game on G. This result is a generalization of results from [1]
about reversible simulation of irreversible computations, expressed in terms of the
reversible pebble game.

2. Preliminaries

The reversible pebble game is played on directed acyclic graphs. Let G be a dag.
A configuration on G is a set of vertices covered by pebbles. For a configuration
C, the formula C(v) = 1 denotes the fact that in C the vertex v is covered by
a pebble. Similarly, C(v) = 0 means the vertex v is uncovered. We denote the
number of pebbles used in a configuration C by #(C). An empty configuration on
G is denoted by E(G). Empty configuration is a configuration without pebbles.
The rules of the reversible pebble game are the following:

R1: a pebble can be placed on a vertex v if and only if all direct predecessors
of the vertex v are covered by pebbles;

R2: a pebble can be removed from a vertex v if and only if all direct prede-
cessors of the vertex v are covered by pebbles.

The reversible pebble game differs from the standard pebble game in the rule R2
– in the standard pebble game, pebbles can be removed from any vertex at any
time.

An ordered pair of configurations on a dag G such that the second one follows
from the first one by applying one of these rules is called a transition.

For our purposes a transition can be also a pair of two identical configurations.
Such a transition is called trivial. Configurations that form a nontrivial transition
always differ in a state of exactly one vertex.

An important property of a transition in a reversible pebble game is its sym-
metry. From the rules of the game it follows that if (C1, C2) forms a transition,
then also (C2, C1) forms a transition.

A computation on a graph G is a sequence of configurations on G such that
each successive pair forms a transition. Let K be a computation then K(i) denotes
the ith configuration in the computation K. A computation K is a complete
computation if and only if the first and the last configurations of K are empty (i.e.
#(K(1)) = #(K(n)) = 0 where n is the length of K) and for each vertex v there
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exists a configuration C in K such that v is covered in C. A complete computation
on G is an abstraction of a successful solution of the problem represented by G.

We are interested in space and time complexities of a computation K. Space of
K (denoted as S(K)) is the number of pebbles needed to perform the computation
– that is the maximum number of pebbles used over all configurations of K. Time
of a computation K (denoted as T (K)) is the number of nontrivial transitions in
K. Note that T (K) can be less than the length of K in case that K contains trivial
transitions. By removing all trivial transitions from K we obtain a computation
of length 1 + T (K).

The minimal space of the reversible pebble game on a dag G (denoted as
Smin(G)) is the minimum of S(K) over all complete computations K on G. The
time T (G, s) of the reversible pebble game on the dag G with at most s pebbles is
the minimum of T (K) over all complete computations K on G such that S(K) ≤ s.

Let G be a class of dags. Let {Gn | n ∈ N} be a system of subclasses of G, that
forms a partition of G. Then the minimal space function Smin(n) of a class G is the
maximum of Smin(G) over all dags in the subclass Gn. The time function T(n, s)
is the maximum of T(G, s) over all dags G in the subclass Gn.

2.1. Operations on computations

For proving upper and lower bounds on time and space complexities of the re-
versible pebble game it is useful to reason formally about reversible computations.
In order to do so we develop an algebraic model of computations. In this section
we introduce some operations for constructing and modifying computations.

For changing the state of a particular vertex in a configuration we use the
operation Put. Put(C, v, 1) denotes a configuration obtained from a configuration
C by pebbling a vertex v. Similarly Put(C, v, 0) denotes a configuration obtained
from C by unpebbling vertex v. See also Definition 6.1 in Appendix A.

An important property of reversible computations is the following one: let G
be a dag, G′ be a subgraph of G, and K be a computation on G. If we remove
all vertices not in G′ from all configurations of K we obtain a computation on G′.
The correctness of such construction is immediate – no rule of reversible pebble
game can be violated by removing a vertex from all configurations of a compu-
tation. Another important fact is that removing some configurations from the
beginning and the end of a reversible computation does not violate any property
of a reversible computation, either.

Hence, we can introduce an operator for a “restriction” of a computation:
Rst(K, i, j, V ′) denotes a computation obtained from K by discarding vertices other
than those in V ′ and configurations other than those numbered i to j. We use
Rst(K, i, j) when no vertices should be removed.

For an example of a restriction see Figure 1. A formal definition can be found
in Appendix A, Definition 6.2.

It follows from the symmetry of the rules of the reversible pebble game that
reversing a reversible computation does not violate the reversible computation
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Figure 1. An example of a restriction – Rst(K, 2, 5, {2, 3, 4}).

Figure 2. An example of a join.

Figure 3. An example of a merge.

property. We can therefore introduce an operator Rev(K) that reverses the order
of configurations in the computation K (see Def. 6.3).

Now we introduce operations that are in some sense inverse to restriction.
Let K1 and K2 be computations on a dag G such that the last configuration of

K1 and the first configuration of K2 form a transition. Then we can first execute
K1 and subsequently execute K2. In this way we obtain new computation K1+K2.
This computation will be called a join of computations K1 and K2 (see Def. 6.4
and Fig. 2).

The join of two computations is an inverse operation to restriction by removing
configurations. Now we introduce an inverse operation to the restriction performed
by removing vertices.

Let V1, V2 be disjoint sets of vertices of a dag G. Let C be a configuration on a
subgraph of G induced by V1 and let K be a computation on a subgraph induced
by V2. We construct a computation on a subgraph of G induced by V1 ∪ V2 by
adding C to each configuration in K. This computation will be denoted as C · K
– a merge of computation K with configuration C.

To ensure that the constructed computation is correct we enforce the following
constraint: if there is an edge in G from u ∈ V1 to v ∈ V2 the vertex u must be
pebbled in C.

For an example of merge, see Figure 3; see also Definition 6.5.
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Any computation on a graph G can be applied on any graph G′ that is isomor-
phic to G. We will denote a computation K applied to the graph G′ as K|G′. See
also Definition 6.6.

3. Chain topology

The simplest topology for a pebble game is a chain. A chain with n vertices
(denoted as Ch(n)) is a dag Ch(n) = (V, E) where V = {1 . . . n} and E = {(i −
1, i)|i ∈ {2 . . . n}}. This topology is an abstraction of a simple straightforward
computation where the result of the step n + 1 can be computed from the result
of the step n alone.

In this section we discuss the optimal space complexity of the reversible pebble
game on the chain topology – the minimal space function Smin(n) for Ch, where
the subclass Chn contains only a chain Ch(n). We will also discuss lower and
upper bounds for the optimal time complexity of the space optimal pebbling – the
time function T(n, Smin(n)) and an upper bound on the time-space tradeoff for
the chain topology.

3.1. Optimal space for the chain topology

For determining the space complexity of the reversible pebble game on the chain
topology we examine the maximum length of the chain that can be pebbled by
p pebbles. We denote this length by S−1(p). It holds that S−1(p) = max{m |
∃K ∈ CCh(m) : S(K) ≤ p} where CCh(m) is the set of all complete computations
on Ch(m).

The reversible pebble game on the chain topology was studied in connection
with reversible simulation of irreversible computations. Bennett suggested in [1]
a pebbling strategy whose special case has space complexity Θ(lg n). The space
optimality of this algorithm was proved in [4–6]. This result is cited in the following
theorem.

Theorem 3.1. It holds that S−1(p) = 2p−1. Therefore for minimal space function
of the chain topology Smin(n) it holds

Smin(n) = Θ(lg n).

3.2. Optimal time and space for the chain topology

To show that the optimal time and the optimal space complexity cannot be
achieved simultaneously we examine the following question: given the minimal
number of pebbles needed to perform the complete computation, what is the min-
imal time needed to perform it? This minimal time for space optimal reversible
computation is described by the function T(n, Smin(n)).

Upper bound on time for the space optimal reversible computation on a chain
topology follows from the results presented in [5]. As for lower bounds, we prove
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that for infinitely many n it holds T(n, Smin(n)) = Ω(n lg n). Hence the function
T(n, Smin(n)) must be larger than the optimal time T(n), and therefore it makes
sense to discuss tradeoffs between time and space complexity.

An important fact is that any time optimal computation must be symmetric.
The time of its subcomputation to the point where the vertex with the maximal
number is pebbled is half of the time of the whole computation.

Lemma 3.2. Let K be a complete computation of length l on Chn, S(K) =
Smin(n), T(K) = T(n, Smin(n)). Let i = min{i|i ∈ {1 . . . l} ∧ K(i)(n) = 1}. Then
it holds that

T(Rst(K, 1, i)) = T(Rst(K, i, l)) =
T(K)

2
·

This lemma obviously follows from the reversibility of K. A detailed proof is in
Appendix B.

We shall need another auxiliary lemma: consider a space optimal complete
computation on ChS−1(p+1) (note that it uses exactly p + 1 pebbles). For each
configuration in this computation consider the position of the first pebbled vertex.
Maximum among these values is S−1(p) + 1.

Lemma 3.3. Let n = S−1(p + 1). Let K be a complete computation on Chn of
length l such that S(K) = p + 1. It holds that

max{min{j|j ∈ {1 . . . n} ∧ K(i)(j) = 1}|i ∈ {1 . . . l}} = S−1(p) + 1.

This lemma follows from Corollary 3 of [4]. An alternative proof can be found in
Appendix B.

Now we prove a lower bound on time for the space optimal computation. We
consider only chains of length S−1(p). A chain has length S−1(p) for some p if and
only if it can be pebbled by p pebbles but each longer chain requires more than p
pebbles. We prove a recurrent inequality that gives a lower bound for T(S−1(p), p):

Theorem 3.4. T(S−1(p + 1), p + 1) ≥ 2S−1(p) + 2 + 2T(S−1(p), p).

Proof. Let K be a time optimal complete computation on ChS−1(p+1) such that
S(K) = p + 1. Clearly T(K) = T(S−1(p + 1), p + 1). We prove that T(K) ≥
2S−1(p) + 2 + 2T(S−1(p), p).

Let l be the length of K and n = S−1(p). According to Theorem 3.1 it holds
S−1(p + 1) = 2n + 1. We define i as follows:

i = min{i|i ∈ {1 . . . l} ∧ K(i)(2n + 1) = 1}·

By Lemma 3.2 it holds T(Rst(K, 1, i)) = 1
2T(K). We prove that the time needed

for the first half of K is at least n + 1 + T(n, p). The main idea of the proof is to
partition the computation into parts such that each transition in the computation
occurs in at most one part. The time of the computation then has to be at least
the sum of the times of the parts.

From Lemma 3.3 it follows that in K(k) at least one of the first n + 1 vertices
is pebbled for each k and that there exists j such that in K(j) the first pebbled
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Figure 4. Computations K, K1, K2 and K3. Gray circles are
vertices with unknown state.

vertex is the vertex number n+1. We can assume w.l.o.g. that j ≤ i (otherwise we
can replace K by Rev(K)). Let k be a configuration such that K(k− 1)(n+1) = 0
and (∀q : k ≤ q ≤ j)K(q)(n + 1) = 1. Clearly K(k − 1)(n) = K(k)(n) = 1.

Let K1 = Rst(K, 1, k, {1 . . . n}), K2 = Rst(K, k, j, {1 . . . n}) and K3 = Rst(K, 1,
i, {n + 2 . . . 2n + 1}). See Figure 4.

It holds T(Rst(K, 1, i)) = T(Rst(K, 1, i, {1 . . . n})) + T(Rst(K, 1, i, {n + 1})) +
T(K3), because each nontrivial transition has to occur in exactly one of the three
parts of K. Analogically it holds that T(Rst(K, 1, i, {1 . . . n}) = T(K1) + T(K2) +
T(Rst(K, j, i, {1 . . . n})). Therefore

T(Rst(K, 1, i)) ≥ T(K1) + T(K2) + T(K3) + T(Rst(K, 1, i, {n + 1})).

Trivially, T(Rst(K, 1, i, {n + 1})) ≥ 1 and T(K1) ≥ n.
Rev(K2) + K2 is a complete computation on Chn. Since (∀q : k ≤ q ≤ j)

K(q)(n + 1) = 1, it holds that S(Rev(K2) + K2) = p. Therefore

2T(K2) = T(Rev(K2) + K2) ≥ T(n, p).

Similarly, K3 +Rev(K3) is a complete computation on a graph isomorphic to Chn.
Due to Lemma 3.3, S(K3 + Rev(K3)) = p. Hence we have

2T(K3) = T(K3 + Rev(K3)) ≥ T(n, p).

Putting everything together yields

T(Rst(K, 1, i, {1 . . . n}) ≥ 1 + n + T(n, p).

Thus, T(K) ≥ 2S−1(p) + 2 + 2T(S−1(p), p). �
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Corollary 3.5. T(n, Smin(n)) = O(nlog2 3), T(n, Smin(n)) �= o(n lg n).

Proof. The upper bound was presented in [5]. By solving the recurrence proved
in the preceding theorem we obtain that T (n, Smin(n)) = Ω(n lg n) for n = 2p − 1.
Since this function is a restriction of T (n, Smin(n)), the function T (n, Smin(n))
cannot be1 o(n lg n). �

3.3. Upper bound on time-space tradeoff for chain topology

In the previous section the time complexity of a reversible pebbling for space
optimal computations was analysed. Now we discuss the time complexity for
computations that are not space optimal.

Bennett’s pebbling strategy introduced in [1] can be used to derive upper bounds
on time-space tradeoff for chain topology. This strategy pebbles chain of length
mlk in time m(2l− 1)k using m + k(l− 1) pebbles. Choosing m = 1 and k = lgl n
for a fixed l we obtain a tradeoff in the following form: space O(lg n) versus time

O(n
lg(2l−1)

lg l ). Choosing m = 1 and l = k
√

n for a fixed k we obtain a tradeoff in
the form: space O( k

√
n) versus time O(n). See also [3] where these results are

formulated in terms of reversible simulation of irreversible computation with the
emphasis on expressing constant factors of the asymptotic terms.

As an example of our proof technique we present an alternative proof of the
second tradeoff.

It is obvious that for any complete computation K on Chn it holds T(K) ≥ 2n,
because each vertex has to be pebbled at least once and unpebbled at least once. So
it is easy to see that the space of a complete computation K such that T(K) = 2n
is exactly n.

Now we will analyse the space complexity of complete computations on Chn

that are running in time at most c · n. We denote S−1(c, p) the maximal length
of a chain, that can be pebbled by p pebbles in time at most c times its length.
Formally, S−1(c, p) = max{n|∃K ∈ CCh(n), S(K) ≤ p ∧ T(K) ≤ cn} where CCh(n)

is the set of all complete computations on Chn.

Theorem 3.6. It holds that S−1(2k, p) ≥ (
p
k

)
.

Proof. We prove the statement by induction on p. The base case S−1(2k, 1) ≥ (
1
k

)
holds trivially.

For k = 1 the inequality S−1(21, p) ≥ (
p
1

)
holds. (It is easy to make a complete

computation K on Chp satisfying S(K) = p and T(K) = 2p.)
Let p > 1 and k > 1. Let us assume by induction that S−1(2k−1, p−1) ≥ (

p−1
k−1

)
and S−1(2k, p − 1) ≥ (

p−1
k

)
. We prove that S−1(2k, p) ≥ (

p
k

)
.

We construct a complete computation K on a chain of length S−1(2k−1, p −
1) + 1 + S−1(2k, p − 1) as follows: pebble S−1(2k−1, p − 1) vertices using p − 1
pebbles in time 2k−1S−1(2k−1, p−1) and put the pth pebble on the vertex number

1Note that the function T (n, Smin(n)) is not monotonic, therefore we cannot formulate the
result in a form T (n,Smin(n)) = Ω(n lg n). We can only state that T (n,Smin(n)) = Ω(n lg n)
holds for infinitely many n.
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Figure 5. A computation K, where n = S−1(2k−1, p−1)+1 and
m = S−1(2k−1, p − 1) + 1 + S−1(2k, p − 1).

S−1(2k−1, p − 1) + 1. Then pebble next S−1(2k, p − 1) vertices using p pebbles in
time 2kS−1(2k, p− 1). Finally, unpebble first S−1(2k−1, p− 1) and remove the pth
pebble.

To formally describe this computation, let K1 be a complete computation on
ChS−1(2k−1,p−1) such that S(K1) ≤ p − 1 and T(K1) ≤ 2k−1S−1(2k−1, p − 1). Let
us denote the length of K1 by l1. Let i be such that K1(i)(S−1(2k−1, p − 1)) = 1.
Let K2 be a complete computation on ChS−1(2k,p−1) such that S(K2) ≤ p− 1 and
T(K2) ≤ 2kS−1(2k, p − 1).

Let G1 be a graph ({S−1(2k−1, p−1)+1}, ∅). Let G2 be a graph obtained from
ChS−1(2k,p−1) by renaming its vertices to S−1(2k−1, p − 1) + 2, . . . , S−1(2k−1, p −
1) + 1 + S−1(2k, p − 1).

The computation K can be defined as follows (see also Fig. 5):

K = Rst(K1, 1, i) · E(G1) · E(G2)

+ Rst(K1, i, l1) · Put(E(G1), S−1(2k−1, p − 1) + 1, 1) · E(G2)

+ (K2|G2) · E(ChS−1(2k−1,p−1)) · Put(E(G1), S−1(2k−1, p − 1) + 1, 1)

+ Rev(Rst(K1, i, l1)) · Put(E(G1), S−1(2k−1, p − 1) + 1, 1) · E(G2)

+ Rev(Rst(K1, 1, i)) · E(G1) · E(G2).
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Clearly K is a complete computation on ChS−1(2k−1,p−1)+1+S−1(2k,p−1), S(K) ≤ p

and T(K) ≤ 2T(K1) + 2 + T(K2) ≤ 2kS−1(2k−1, p − 1) + 2 + 2kS−1(2k, p − 1) ≤
2k(S−1(2k−1, p − 1) + 1 + S−1(2k, p − 1)). Therefore S−1(2k, p) ≥ S−1(2k−1, p −
1) + 1 + S−1(2k, p − 1).

By applying the induction hypothesis we have S−1(2k, p) ≥ (
p−1
k−1

)
+

(
p−1

k

)
=(

p
k

)
. �

Corollary 3.7. Let k be fixed. O( k
√

n) pebbles are sufficient for a complete time
O(n) computation on Chn.

4. Binary tree topology

In this section we shall discuss the space complexity of the reversible pebble
game on complete binary trees. A complete binary tree of height 1 (denoted by
Bt(1)) is a graph containing one vertex and no edges. A complete binary tree of
height h > 1 (denoted as Bt(h)) consists of a root vertex and two subtrees, that
are complete binary trees of height h − 1.

This topology represents a class of problems, where the result can be computed
from two different subproblems.

Let T be a complete binary tree. We denote the root vertex of T as R(T ), the
left subtree of T as Lt(T ) and the right subtree of T as Rt(T ).

As mentioned in Section 2, we denote the minimal number of pebbles needed
to perform a complete computation on Bt(h) by Smin(h). To simplify some of
the proofs we also consider the minimal number of pebbles needed to perform a
computation from the empty configuration to a configuration where only the root
is pebbled.

Definition 4.1. Let K be a computation of length l on Bt(h). Let K(1) =
E(Bt(h)) and K(l) = Put(E(Bt(h)), R(Bt(h)), 1). Then K is called a semicomplete
computation.

The minimal number of pebbles needed to perform a semicomplete computation
on Bt(h) (i.e. min{S(K)}, where K is a semicomplete computation) will be denoted
as S′

min(h).
We shall use the following inequalities between Smin(h) and S′

min(h). These
inequalities show that the difference between the number of pebbles needed to
perform a complete and a semicomplete computation is small. Therefore, we
can estimate the space complexity of the binary tree topology by estimating the
number of pebbles needed to perform a semicomplete computation.

Lemma 4.2. Smin(h) + 1 ≥ S′
min(h) ≥ Smin(h).

By performing a complete computation without removing a pebble from the
root vertex we can obtain a semicomplete computation with space Smin(h) + 1,
hence Smin(h) + 1 ≥ S′

min(h). By joining a semicomplete computation with its
reverse we obtain a semicomplete computation, hence S′

min(h) ≥ Smin(h). The
formal proof can be found in Appendix B.
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Lemma 4.3. S′
min(h + 1) = Smin(h) + 2.

Proof. At first we prove that Smin(h) + 2 ≥ S′
min(h + 1). By the previous lemma,

Smin(h)+1 ≥ S′
min(h). Let K1 be a semicomplete computation on Bt(h) that uses

no more than Smin(h) + 1 pebbles. Let K2 be a complete computation on Bt(h)
of length l that uses no more than Smin(h) pebbles.

Using the computations K1 and K2 we construct a semicomplete computation
K3 on Bt(h + 1) that uses at most Smin(h) + 2 pebbles.

Let i be the minimal number such that K2(i)(R(Bt(h))) = 1. We define the
computation K3 as follows (see also Fig. 6a):

K3 =
(K1|Lt(Bt(h + 1))

) · E(
Rt(Bt(h + 1)) ∪ R(Bt(h + 1))

)

+
(
Rst(K2, 1, i)|Rt(Bt(h + 1))

)

· Put
(
E

(
Lt(Bt(h + 1)) ∪ R(Bt(h + 1))

)
, R

(
Lt(Bt(h + 1))

)
, 1

)

+
(
Rst(K2, i, l)|Rt(Bt(h + 1))

)

· Put
(
E

(
Lt(Bt(h + 1))

)
, R

(
Lt(Bt(h + 1))

)
, 1

)

· Put
(
E

(
R(Bt(h + 1))

)
, R(Bt(h + 1)), 1

)

+
(
Rst

(K2, 1, i, Bt(h) \ R(Bt(h))
) | Lt(Bt(h + 1)) \ R

(
Lt(Bt(h + 1))

))

· Put
(
E

(
R(Lt(Bt(h + 1)))

)
, R

(
Lt(Bt(h + 1))

)
, 1

)

· Put
(
E

(
R(Bt(h + 1)) ∪ Rt(Bt(h + 1))

)
, R(Bt(h + 1)), 1

)

+
(
Rst(K2, i, l)|Lt(Bt(h + 1))

)

· Put
(
E

(
R(Bt(h + 1)) ∪ Rt(Bt(h + 1))

)
, R(Bt(h + 1)), 1

)
.

Clearly, K3 is a semicomplete computation on Bt(h + 1) and it holds that

S(K3) ≤ max(S(K1), S(K2) + 2) ≤ Smin(h) + 2.

Therefore the first inequality holds.
Now we prove that Smin(h) + 2 ≤ S′

min(h + 1) holds. Let K be a semicomplete
computation of length l on Bt(h + 1), such that S(K) = S′

min(h + 1).
We show that a complete computation on Bt(h) that uses at most S′

min(h+1)−2
pebbles can be obtained by an appropriate restriction of K.

Let i be the minimal number such that (∀k : i ≤ k ≤ l)K(k)(R(Bt(h+1))) = 1.
Let j be the minimal number such that i ≤ j ≤ l and it holds:

#
(
Rst

(K, j, j, Lt(Bt(h + 1))
))

= 0 ∨ #
(
Rst

(K, j, j, Rt(Bt(h + 1))
))

= 0.
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Figure 6. (a) The proof of Smin(h) + 2 ≥ S′
min(h + 1) – the

construction of the computation K3. (b) The proof of Smin(h) +
2 ≤ S′

min(h + 1) – the computation K2.

We may assume without loss of generality that #(Rst(K, j, j, Lt(Bt(h + 1)))) = 0.
Let us consider the following computation K2 (see also Fig. 6b):

K2 = Rst
(K, i, j, Lt(Bt(h + 1))

)
.

K2 is a computation on a graph Rt(Bt(h+1)) which is isomorphic to Bt(h). Since
the last configuration of K2 is empty and in the first configuration of K2 the root
vertex is pebbled, it holds that Rev(K2) + K2 is a complete computation on the
tree of height h.

In all configurations K(k) for i ≤ k ≤ j the root R(Bt(h)) is pebbled. Also, there
is at least one vertex pebbled in Rt(Bt(h)). Hence, the space of the computation
K2 can not exceed S(K) − 2. Therefore Smin(h) ≤ S(K2) ≤ S′

min(h + 1) − 2. �

As a corollary to the preceding lemmas we obtain the following useful facts:

Corollary 4.4. S′
min(h) equals to h plus the number of different numbers i such

that i < h and S′
min(i) = Smin(i). Furthermore, for h1 ≥ h2 it holds that S′

min(h1)−
S′

min(h2) ≥ h1 − h2.

4.1. Tight space bound for binary tree topology

In the following considerations we use a function S′−1
min. The value h = S′−1

min(p)
denotes the maximal height of a binary tree that can be pebbled by a semicomplete



150 R. KRÁLOVIČ

computation that uses at most h + p pebbles. Formally

S′−1
min(p) = max{h|∃K ∈ Sch ∧ S(K) = h + p}

where Sch is the set of all semicomplete computations on Bt(h).
From the definition of S′−1

min(p) and Corollary 4.4 we easily obtain the following
lemma:

Lemma 4.5. For each h, p such that S′
min(h) = h + p it holds that S′−1

min(p− 1) <

h ≤ S′−1
min(p).

Furthermore let f(p) be a nondecreasing function such that S′−1
min(p) ≤ f(p).

Then it holds that S′
min(h) ≥ h + f−1(h) for each h.

Similarly, let g(p) be a nondecreasing function such that S′−1
min(p) ≥ g(p). Then

it holds that S′
min(h) ≤ h + g−1(h) + 1 for each h.

Now we prove the upper (lower) bound on S′−1
min(p). From this lemma we obtain

a lower (upper) bound on S′
min(h) and therefore also a lower (upper) bound on

Smin(h).

Lemma 4.6. Let h1 = S′−1
min(p), h2 = S′−1

min(p + 1). Then the following inequality
holds:

h2 − h1 ≤ 2h1+p+1.

Proof. A configuration on a binary tree is called open if there exists a path from the
root to some leaf of the tree such that no pebble is placed on this path. Otherwise,
the configuration is called closed.

From the assumption h2 = S′−1
min(p + 1) it follows that there exists some semi-

complete computation K of length l on Bt(h2) such that S(K) = h2 + p + 1 (see
Fig. 7a). Let i be the first configuration of K such that the root vertex is pebbled
in K(j) for all j ≥ i (i.e. i = min{i′|(∀j ≥ i′)K(j)(R(Bt(h2))) = 1}).

Since K is a reversible computation, it holds that

K(i)
(
R

(
Lt(Bt(h2))

))
= K(i)

(
R

(
Rt(Bt(h2))

))
= 1.

Therefore, the configuration obtained from K(i) by unpebbling the root vertex
(denoted as Put

(K(i), R(Bt(h2)), 0
)
) is a closed configuration. Since Put

(K(l),
R(Bt(h2)), 0

)
is an empty configuration, it is also an open configuration. Let j be

the minimal number such that j ≥ i and Put(K(j), R(Bt(h2)), 0) is open.
Since Put(K(j), R(Bt(h2)), 0) is open and Put(K(j − 1), R(Bt(h)), 0) is closed

and K is a reversible computation, there exists exactly one path in K(j) from
the root to a leaf such that no pebble is placed on it. We can assume without
loss of generality that this path is R(Bt(h2)), R(Rt(Bt(h2))), R(Rt2(Bt(h2))), . . . ,
R(Rth2−1(Bt(h2))). We call this set of vertices the right path.

Now we prove that for each k such that h2 ≥ k ≥ h1 + 2 and for each r such
that i ≤ r < j it holds #(K(r)(Lt(Rth2−k(Bt(h2))))) > 0. This part of the proof
is illustrated by Figure 7b. We need this fact to “bind” h2 − h1 − 1 pebbles so
that they can not be used on the vertices of the right path.
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Assume, that this conjecture is false and let k be the maximal number violating
it. Let r be a maximal number such that i ≤ r < j and

#
(
K(r)

(
Lt(Rth2−k(Bt(h2)))

))
= 0 ∨ #

(
K(r)

(
Rt(Rth2−k(Bt(h2)))

))
= 0.

Our assumption ensures that such r exists. Note that only one clause of the
disjunction can be satisfied because K is a reversible computation. Without loss of
generality let #

(
K(r)

(
Lt(Rth2−k(Bt(h2)))

))
= 0. Since Put

(K(r), R(Bt(h2)), 0
)

is closed, at least one vertex from R(Rt(Bt(h2))), R(Rt2(Bt(h2))), . . . , R(Rth2−k

(Bt(h2))) is pebbled in the configuration K(r). All these vertices are unpebbled
in the configuration K(j). Let q be the minimal number such that q > r and
all above mentioned vertices are unpebbled in K(q). Clearly q ≤ j. Since K is a
reversible computation it holds that

K(q − 1)
(
R

(
Rth2−k(Bt(h2))

))
= 1

K(q)
(
R

(
Rth2−k(Bt(h2))

))
= 0

K(q − 1)
(
R

(
Lt(Rth2−k(Bt(h2)))

))
= K(q)

(
R

(
Lt(Rth2−k(Bt(h2)))

))
= 1.

Now consider the computation K′ = Rst(K, r, q − 1, Lt(Rth2−k(Bt(h2)))). Com-
putation K′ + Rev(K′) is a complete computation on Lt(Rth2−k(Bt(h2))) (this
graph is isomorphic to Bt(k − 1)). Let us consider the space of this computa-
tion. For each z ∈ {r . . . q − 1} in K(z) the root vertex of Bt(h2) is pebbled.
By the choice of k, there is at least one vertex pebbled in each of the following
subgraphs: Lt(Bt(h2)), Lt(Rt(Bt(h2))), . . . , Lt(Rth2−k−1(Bt(h2))). By the choice
of q, at least one vertex is pebbled in the upper part of right path – at least one of
the following vertices is pebbled: R(Rt(Bt(h2))), . . . , R(Rth2−k(Bt(h2))). By the
choice of r, there is at least one vertex pebbled in Rth2−k+1(Bt(h2)). Hence it
holds S(K′ + Rev(K′)) = S(K′) ≤ S(K) − (3 + h2 − k) = k + p − 2.

From our assumption it follows that the space of any semicomplete computation
on Bt(k − 1) is at least k + p. From Lemma 4.2 it follows that the space of any
complete computation on Bt(k − 1) is at least k + p− 1, which is a contradiction.

Now consider the computation K2 (see Fig. 7a):

K2 = Rst(K, i, j, R(Rt(Bt(h2))) ∪ R(Rt2(Bt(h2))) ∪ . . . ∪ R(Rth2−h1−1(Bt(h2)))).

It is a computation on an upper part of the right path, which is graph isomorphic
to Ch(h2−h1−1). Vertex R(Rt(Bt(h2))) is pebbled in the first configuration of K2

and no vertex is pebbled in the last configuration of K2. Therefore Rev(K2) + K2

is a complete computation on a graph isomorphic to Ch(h2 − h1 − 1).
Since for each h2 ≥ k ≥ h1 + 2 and for each i ≤ r ≤ j it holds that

#(K(r)(Lt(Rth2−k(Bt(h2))))) > 0 and K(r)(R(Bt(h))) = 1, we can estimate up-
per bound for the space of K2 to be: S(K2) ≤ (h2 + p + 1) − (1 + h2 − h1 − 1) =
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Figure 7. (a) The main framework of the proof of Lemma 4.6.
(b) The proof of the auxiliary property by contradiction.

h1 + p + 1. Using the upper bound on space of the chain topology (Th. 3.1) we
have h2 − h1 − 1 ≤ 2h1+p+1 − 1. �

We have proven an upper bound on S′−1
min(p). Now we prove the lower bound:

Lemma 4.7. Let h1 = S′−1
min(p), h2 = S′−1

min(p + 1). Then the following inequality
holds:

h2 − h1 ≥ 2h1+p−2.

Proof. We prove by induction that for each k ∈ {h1 + 1, . . . , h1 + 2h1+p−2} there
exists a semicomplete computation K on Bt(k) such that S(K) ≤ k + p + 1. This
implies that h2 ≥ h1 + 2h1+p−2.

The base case is k = h1 + 1. By assumption there exists a semicomplete
computation K′ on Bt(h1) such that S(K′) = h1+p. After applying K′ to Lt(Bt(k))
and Rt(Bt(k)), pebbling R(Bt(k)) and applying reversed K′ to Lt(Bt(k)) and
Rt(Bt(k)) we obtain a semicomplete computation on Bt(k) that uses at most
h1 + p + 2 = k + p + 1 pebbles.

Let us assume that the induction hypothesis holds for each h ∈ {h1 +1, . . . , k−
1}. We construct a computation K on Bt(k) as follows: at first we sequen-
tially apply a space optimal semicomplete computation on subgraphs Lt(Bt(k)),
Lt(Rt(Bt(k))), Lt(Rt2(Bt(k))), . . . , Lt(Rtk−h1−2(Bt(k))), Lt(Rtk−h1−1(Bt(k)))
and Rtk−h1(Bt(k)). By the induction hypothesis, the space of a semicomplete
computation on Lt(Rti(Bt(k))) is at most (k− i−1)+p+1 for i ≤ k−h1−2. By
the assumption, the space of a semicomplete computation on Lt(Rtk−h1−1(Bt(k)))
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and Rtk−h1(Bt(k)) is at most h1 + p. Therefore the space of this part of K is at
most k + p.

In the second part of K, we perform a space optimal complete computation
on a chain consisting of the vertices R(Bt(k)), R(Rt(Bt(k))), R(Rt2(Bt(k))), . . . ,
R(Rtk−h1−1(Bt(k))). Due to the Theorem 3.1, the space of this part is less than
�log2(k−h1+1)
+k−h1+1 ≤ �log2(k−h1)
+k−h1+2. Since k ≤ h1 +2h1+p−2,
it holds that �log2(k − h1)
 + k − h1 + 2 ≤ k + p.

The third part of the computation K is the reversed first part.
Hence K is a complete computation on Bt(k) and S(K) ≤ k + p and therefore

Smin(k) ≤ k + p. Using Lemma 4.2, S′
min(k) ≤ k + p + 1. Therefore there exists a

semicomplete computation on Bt(k) with space less than k + p + 1. �

Now we make some approximations and by putting everything together we
obtain an asymptotically tight bound for Smin(h):

Lemma 4.8. For p ≥ 2 it holds that 2S′−1
min(p) ≤ S′−1

min(p + 1) ≤ 23 S′−1
min(p).

Proof. Let h1 = S′−1
min(p), h2 = S′−1

min(p+1). From Lemma 4.6 it follows h2−h1 ≤
2h′+p+1, which is equivalent to S′−1

min(p + 1) ≤ 2S′−1
min(p)+p+1 + S′−1

min(p).
From the definition of S′−1

min and from Corollary 4.4 it follows that S′−1
min(p) ≥

p + 1. Therefore 2S′−1
min(p)+p+1 + S′−1

min(p) ≤ 23 S′−1
min(p) for p ≥ 1. Hence, the second

inequality holds.
From Lemma 4.7 it follows h2 − h1 ≥ 2h1+p−2, which is equivalent to S′−1

min(p +
1) ≥ 2S′−1

min(p)+p−2 + S′−1
min(p). Therefore for p ≥ 2 it holds S′−1

min(p + 1) ≥ 2S′−1
min(p).

�

Theorem 4.9. For the minimal space function of the complete binary tree topology
Smin(h) it holds that Smin(h) = h + Θ(lg∗(h)), where the function lg∗(x) is defined
as follows: lg∗(x) = 0 for x ≤ 0, lg∗(x) = 1 + lg∗(lg(x)) otherwise.

Proof. From the previous lemma it follows, that S′−1
min(p) ≤

p︷︸︸︷
88···8

and S′−1
min(p) ≥

p︷︸︸︷
22···2

. Applying Lemma 4.5 we obtain S′
min(h) = h + Ω(lg∗(h)) and S′

min(h) =
h + O(lg∗(h)). Hence, S′

min(h) = h + Θ(lg∗(h)) holds. From Lemma 4.2 it follows,
that Smin(h) = h + Θ(lg∗(h)). �

4.2. Extension to butterflies

The butterfly graphs are an important class of graphs to study, as they poses
the superconcentrator property and form an inherent structure of some important
problems in numerical computations, such as the discrete FFT.

The butterfly graph of order d (denoted by Bf(d)) is the graph G = (V, E),
which V = {1 . . . d}×{0 . . .2d−1−1} and E =

{(
(i, j), (i+1, j)

)
,
(
(i, j), (i+1, j⊕

2i−1)
)|1 ≤ i < d, 0 ≤ j ≤ 2d−1 − 1

}
, where ⊕ denotes bitwise exclusive or. For an

example of a butterfly graph, see Figure 8a. This graph can be decomposed into
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Figure 8. (a) The butterfly graph of order 3. (b) The decom-
position of the butterfly graph of order 3 into 4 complete binary
trees of height 3.

2d−1 complete binary trees of height d. The root of the ith tree is the vertex (1, i)
and this tree contains all vertices, that can be reached from the root (see Fig. 8b).
Note that these trees are not disjoint. We denote these trees as T0, . . . T2d−1−1.

The decomposition property implies, that the minimal space complexity of a
complete computation on the butterfly graph of order d cannot be lower than the
minimal space complexity on the complete binary tree of height d:

Lemma 4.10. It holds that S(Bf(d)) ≥ S(Bt(d)).

Proof. Let us assume the contrary. Let K be a complete computation of length l
on Bf(d) such that S(K) < S(Bt(d)). By restricting this computation to any binary
tree from the decomposition (for example to T1) we obtain a complete computation
on Bt(d) with space complexity less than S(Bt(d)). Formally, S(Rst(K, 1, l, T1)) <
S(Bt(d)), which is a contradiction. �

On the other side, by sequentially applying complete computations to all binary
trees obtained by the decomposition of the butterfly graph, we obtain a complete
computation on it. Hence, we can construct a complete computation on the butter-
fly graph of order d with space complexity equal to the minimal space complexity
of the binary tree of height d:

Lemma 4.11. It holds that S(Bf(d)) ≤ S(Bt(d)).

Proof. Let K be a complete computation on Bt(d) such that S(K) = S(Bt(d)).
Consider the computation K′ defined as follows:

K′ = K|T0 + K|T1 + . . . + K|T2d−1−1.

Computation K′ is a complete computation on Bf(h) such that S(K′) = S(K) =
S(Bt(d)). �

Therefore the minimal space complexity of the butterfly topology equals to the
minimal space complexity of the binary tree topology:
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Theorem 4.12. For the minimal space for the butterfly graph of order d it holds
that Smin(d) = d + Θ(lg∗(d)).

Proof. This theorem is an immediate consequence of Lemmas 4.10 and 4.11 and
Theorem 4.9. �

5. Reversible simulation of irreversible computation

In previous sections we have discussed complexity aspects of the reversible peb-
ble game on various topologies. Now we shall bound the time and space complexity
of the reversible pebble game by the time and space complexity of the standard
irreversible pebble game, regardless of the topology.

This result expresses the idea of the reversible simulation of irreversible com-
putations, which was introduced by [1], in a pebbling abstraction.

Theorem 5.1. Let G be an arbitrary dag. Let G can be pebbled by standard
(irreversible) computation with p pebbles in time t. Let K be a complete reversible
computation on the chain Cht. Then G can be pebbled by a reversible computation
with p · S(K) pebbles in time at most T(K).

Proof. By assumption there exists some irreversible computation Ks on the graph
G, such that T(Ks) = t and S(Ks) = p. Without loss of generality we can assume
that the length of K is T(K)+1. We construct a complete reversible computation
K′ on the graph G = (V, E) of length T(K) + 1 as follows:

(∀i : 1 ≤ i ≤ T(K) + 1
)(∀v ∈ V

)

K′(i)(v) = 1 ⇔ (∃j : 1 ≤ j ≤ T(Ks)
)(K(i)(j) = 1 ∧ Ks(j)(v) = 1

)
.

Hence, we define K′(i) as a “superposition” of all configurations in Ks that are
“marked” in K(i) (see also Fig. 9).

Now we prove that K′ is a reversible computation. At first we prove that two
successive configurations can not differ in two vertices.

Assume that the conjecture does not hold: K′(i − 1)(a) �= K′(i)(a) and K′(i −
1)(b) �= K′(i)(b) for some i and some a �= b. Clearly there exists at most one j such
that K(i − 1)(j) �= K(i)(j). From the definition of K′ it follows that Ks(j)(a) =
Ks(j)(b) = 1 (otherwise K′(i − 1)(a) = K′(i)(a) or K′(i − 1)(b) = K′(i)(b)). Since
Ks(1) is an empty configuration, j �= 1. Hence, it holds that Ks(j − 1)(a) = 1 ∨
Ks(j−1)(b) = 1, otherwise Ks is not an (irreversible) computation. Without loss of
generalityKs(j−1)(a) = 1. Because K is a reversible computation, K(i−1)(j−1) =
K(i)(j − 1) = 1. Therefore K′(i − 1)(a) = K′(i)(a) = 1, which is a contradiction.

Next we prove, that if two successive configurations in K′ differ in a vertex a,
then all direct predecessors of a are pebbled in these configurations.

Again, let us assume that the conjecture does not hold. Hence there exist
a, b ∈ V and i such that (b, a) ∈ E, K′(i − 1)(a) �= K′(i)(a) and K′(i)(b) = 0
(note that we have already proven that K′(i − 1)(b) = K′(i)(b)). As was already
stated, there exists at most one j such that K(i − 1)(j) �= K(i)(j). It also holds
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Figure 9. Reversible simulation of irreversible computation.

that Ks(j)(a) = 1, j �= 1 and K(i − 1)(j − 1) = K(i)(j − 1) = 1. This implies that
Ks(j − 1)(a) = 0. Since Ks is an (irreversible) computation, Ks(j − 1)(b) = 1.
Therefore K′(i − 1)(b) = K′(i)(b) = 1 which is a contradiction.

We have proven that K′ is a reversible computation. Since K(1) = K(T(K)+1)
are empty configurations, K′(1) = K′(T(K) + 1) are empty configurations, too.
For each vertex v ∈ V there exists j such that Ks(j)(v) = 1. For this j there
exists some i such that K(i)(j) = 1. Therefore K′(i)(v) = 1. This implies that K′

is a complete computation.
In each configuration of K′ there can be at most p·S(K) vertices pebbled. There-

fore G can be pebbled by the reversible computation using S(K′) ≤ S(Ks) ·S(K) =
p · S(K) pebbles.

Since K′ is a computation of length T(K) + 1, time of K′ is at most T(K). �

Applying various pebbling strategies for chain topology to Theorem 5.1, we
obtain various upper bounds on time and space complexity of the reversible pebble
game.

Corollary 5.2. Let G be arbitrary an dag. Let G can be pebbled by the standard
computation using p pebbles in time t. Then G can be pebbled by the reversible
computation in time O(tlog2 3) using p · O(log2 t) = O(p2) pebbles.
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Proof. This result can be obtained by applying the results from Theorem 3.1 and
Corollary 3.5 to Theorem 5.1. It does not make sense to consider computations
using p pebbles of length over 2p. We can thus assume log2 t ≤ p.

This result is a pebbling formulation of the results from [1] about reversible
simulation of irreversible computations. �

6. Conclusion

In this paper we have defined an abstract model for reversible computations –
the reversible pebble game. We have described a technique for proving time and
space complexity bounds for this game and presented a lower bound on time for
optimal space for the chain topology (valid for infinitely many n) and a tight opti-
mal space bound for the binary tree topology. These results imply that reversible
computations require more resources than standard irreversible computations, e.g.
for a space complexity of the chain of length n it is Θ(1) vs. Θ(lg n) and for a
space complexity of the binary tree of height h it is h + Θ(log∗(h)) vs. h + Θ(1).

We have also presented an upper bound on time and space complexity of the
reversible pebble game based on the time and space complexity of the standard
pebble game.

For further research it would be interesting to examine the time complexity of
the reversible pebble game for the tree and the butterfly topology and to consider
other important topologies, for example the pyramids.

Acknowledgements. I would like to thank Peter Ružička for introducing me into the area
of reversible pebbling and for his valuable advice and consultations.

Appendix A – Formal definitions

This appendix contains formal definitions of operations on computations are
presented.

Definition 6.1. Let G = (V, E) be a dag and let C be a configuration on G. Let
u, v ∈ V and h ∈ {0, 1}. Then Put(C, v, h) is a configuration on G defined as
follows:

• Put(C, v, h)(u) = C(u), if u �= v;
• Put(C, v, h)(u) = h, if u = v.

Definition 6.2. Let G = (V, E) be a dag, V ′ ⊆ V . Let K be a computation of
length n on G. A Restriction K′ = Rst(K, i, j, V ′) of the computation K to an
interval {i . . . j} (1 ≤ i ≤ j ≤ n) and to a subgraph G′ = (V ′, E ∩ (V ′ × V ′)) is a
computation K′ of length j − i + 1 on G′ defined as follows:

(∀k ∈ {1 . . . j − i + 1})(∀v ∈ V ′)K′(k)(v) = K(i + k − 1)(v).
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We use the notation Rst(K, i, j) when no vertices are removed (e.g., Rst(K, i,
j) = Rst(K, i, j, V ) for the graph G = (V, E)).

For an example of a restriction, see Figure 1.

Definition 6.3. Let K be a computation on G of length n. Then the reverse of
the computation K (denoted as Rev(K)) is a computation on G defined as follows:

Rev(K)(i) = K(n + 1 − i).

Definition 6.4. Let K1 and K2 be computations on a dag G and let K1 and K2

have length n1 and n2 respectively. Let K1(n1) and K2(1) form a transition. Then
the join of computations C1 and C2 (denoted by K1 +K2) is a computation on G
of length n1 + n2 defined as follows:

• (K1 + K2)(i) = K1(i), if i ≤ n1;
• (K1 + K2)(i) = K2(i − n1), if i > n1.

It is clear that this definition is correct. Configurations (K1 + K2)(n1) and
(K1 +K2)(n1 + 1) form a transition by the assumption. All other successive pairs
of configurations form transitions because K1 and K2 are computations.

Let C be a configuration on a dag G. Then we can consider the configuration
C to be a computation of length 1, so that K(1) = C. Therefore we can also join
a computation with a configuration and vice versa.

For an example of a join, see Figure 2.

Definition 6.5. Let G = (V, E) be a dag, V1 ⊆ V , V2 ⊆ V , V1 ∩ V2 = ∅. Let
C be a configuration on the graph (V2, E ∩ (V2 × V2)). Let {(w, v)|v ∈ V1 ∧
w ∈ V2 ∧C(w) = 0∧ (w, v) ∈ E} = ∅. Let K be a computation of length n on the
graph (V1, E ∩ (V1 × V1)). The computation K merged with the configuration C
(denoted by K·C) is a computation on the graph (V1∪V2, E∩((V1∪V2)×(V1∪V2)))
of length n defined as follows:

• (K · C)(i)(v) = K(i)(v), if v ∈ V1;
• (K · C)(i)(v) = C(v), if v ∈ V2.

This definition is clearly correct. By adding the same configuration to all con-
figurations of some computation K, there is only one way to violate the rules of
the reversible pebble game: if some among the added direct predecessors of a ver-
tex, which the pebble is laid on or removed from, are not pebbled. But this is
prohibited by the assumption of the definition.

For an example of a merge, see Figure 3.

Definition 6.6. Let K be a computation of length n on a dag G and G′ be a dag
isomorphic to G. Let ϕ is the isomorphism between G and G′. Then a computation
K applied to the graph G′ (denoted as K|G′) is a computation on G′ of length n
such that (K|G′)(i)(v) = K(i)(ϕ(v)) for all 1 ≤ i ≤ n and for all vertices v of G.
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Figure 10. Proof of Lemma 3.2.

Appendix B – Formal proofs

In this appendix formal proofs of some lemmas and theorems are presented.

Proof of Lemma 3.2. Assume that the first equality does not hold. W.l.o.g. we
can assume that T(Rst(K, 1, i)) < T(Rst(K, i, l)). Otherwise we can consider
Rev(K) instead of K. Now let us consider the computation K′ = Rst(K, 1, i) +
Rev(Rst(K, 1, i)) (see Fig. 10). K′ is a complete computation on Chn. Clearly
S(K′) ≤ S(K) and T(K′) < T(K). But this contradicts to T(K) = T(n, Smin(n)).

We have proven that T(Rst(K, 1, i)) = T(Rst(K, i, l)). Clearly, T(K) = T(Rst
(K, 1, i)) + T(Rst(K, i, l)), so the second equality is obvious. �

Proof of Lemma 3.3. Let x = max{min{j|j ∈ {1 . . . n}∧K(i)(j) = 1}|i ∈ {1 . . . l}}.
Theorem 3.1 states that n = S−1(p + 1) = 2S−1(p) + 1. At first we show by con-
tradiction that x ≤ S−1(p) + 1.

Assume that x > S−1(p) + 1. Hence there exists some complete computation
K on Chn of length l and some i (1 ≤ i ≤ n) such that K(i)(x) = 1 and (∀y : 1 ≤
y < x) K(i)(y) = 0.

Let j be minimal number such that (∀k : j ≤ k ≤ i) K(k)(x) = 1. Clearly
j > 1, therefore K(j − 1)(x) = 0. Since K is a reversible computation, it holds:
(see Fig. 11)

K(j − 1)(x − 1) = K(j)(x − 1) = 1.

Now consider the computation K1:

K1 = Rev(Rst(K, j, i, {1 . . . x − 1})) + Rst(K, j, i, {1 . . . x − 1}).

K1 is a complete computation on the chain of length x − 1. Hence S(K1) < S(K),
because vertex x is pebbled in K in configurations j . . . i. That means that K1 is
a complete computation on a chain longer than S−1(p) with space complexity at
most p, which is a contradiction.

Now we prove that x ≥ S−1(p) + 1. Assume that x < S−1(p) + 1. Hence
there exists some complete computation K on Chn of length l such that in each
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Figure 11. Computation K. Gray circles are vertices with
unknown state.

Figure 12. Computation K. Gray circles are vertices with
unknown state.

its configuration there is at least one vertex with number less than S−1(p) + 1
pebbled. (See Fig. 12.)

Consider K2 = Rst(K, 1, l, {S−1(p) + 1, . . . , n}). It holds that S(K2) < S(K).
But clearly K2 is a complete computation on graph isomorphic to the chain of
length S−1(p)+1. Again, we have a complete computation with space complexity
at most p on a chain longer than S−1(p).

By proving both inequalities we proved x = S−1(p) + 1. �

Proof of Lemma 4.2. Let K be a semicomplete computation on Bt(h) such that
S(K) = S′

min(h). It holds that K + Rev(K) is a complete computation on Bt(h)
and S(K + Rev(K)) = S(K) ≥ Smin(h). Therefore S′

min(h) ≥ Smin(h).
Now we prove the first inequality. Let K be a complete computation on Bt(h),

such that S(K) = Smin(h). Let l be the length of K, let K(i)(R(Bt(h))) = 1. Now
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consider a computation

K2 = Rst(K, 1, i)+Rst(K, i, l, Lt(Bt(h))∪Rt(Bt(h))) ·Put(R(Bt(h)), R(Bt(h)), 1).

Clearly, K2 is a semicomplete computation on Bt(h) and S(K2) ≤ S(K)+1. There-
fore it holds

Smin(h) + 1 = S(K) + 1 ≥ S(K2) ≥ S′
min(h).

�
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[4] M. Li, J. Tromp and P.M.B. Vitányi, Reversible simulation of irreversible computation.
Physica D 120 (1998) 168-176.
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