
RAIRO-Inf. Theor. Appl. 38 (2004) 117-136

DOI: 10.1051/ita:2004007

FINITE COMPLETION OF COMMA-FREE CODES
PART 2

Nguyen Huong Lam1

Abstract. This paper is a sequel to an earlier paper of the present
author, in which it was proved that every finite comma-free code is
embedded into a so-called (finite) canonical comma-free code. In this
paper, it is proved that every (finite) canonical comma-free code is
embedded into a finite maximal comma-free code, which thus achieves
the conclusion that every finite comma-free code has finite completions.

Mathematics Subject Classification. 68R15, 68S05.

1. Introduction

This paper continues the previous one of the present author [8]. Taken as a
whole, they represent a solution to the problem of finite completion of comma-free
codes.

The problem of completing a code of some class within this class is among
problems in general theory of codes [1] that have some attention of researchers
in recent years. For (finite) prefix codes the problem is easy (positive answer),
but for finite codes in general, he answer is negative and the argument is more
sophisticated (see Markov [10] or Restivo [11] or Berstel and Perrin [1]). The
situation is same for finite bifix codes: there exist finite bifix codes which are not
included in any finite maximal bifix code [1]. More on the positive side we can
mention finite infix codes [6] and we can also prove that every finite outfix code is
included in a finite maximal outfix code (a set X is an outfix code provided uv,
uxv ∈ X implies x = 1 for any words u, v, x).

As for comma-free codes, in [8] we proved that every finite comma-free code
is included in a so-called (finite) canonical comma-free code and in this paper we

Keywords and phrases. Comma-free code, completion, finite maximal comma-free code.

1 Hanoi Institute of Mathematics, 18 Hoang Quoc Viet Road, 10 307 Hanoi, Vietnam;

e-mail: nhlam@math.ac.vn
c© EDP Sciences 2004

118 N.H. LAM

shall prove further that every finite canonical code is included in a finite maximal
comma-free code. Thus we add one more class of codes having a positive answer
to the finite completion problem.

This paper is organized as follows: in the next two sections we review some
background and prove several simple technical statements which are almost folklore
and will be used in later constructions. After that we prove an instrumental
proposition, which enable us to make a ramification respective to the set of so-
called i-words. If this set is finite (in Sect. 4) the completion is straightforward.
Else, if infinite, this set contains a “short” special word with rich properties and
starting from this word we construct maximal comma-free codes, more or less
explicit, that all contain the original comma-free code (in Sect. 5).

2. Notions and notation

We briefly specify our vocabulary which is standard and state some prerequi-
sites.

Let A be a finite alphabet. Then A∗ denotes the set of words on A including the
empty word 1 and as usual A+ denotes the set of non-empty words. For subsets
of words we use interchangeably the plus and minus signs to denote the union and
difference of them, beside the ordinary notation.

The set of words is equipped with the concatenation as product: the product
of two words u and v is the concatenation uv and u1 = 1u = u for all words u.
For subsets X and X ′ of A∗ we denote

XX ′ = {xx′ : x ∈ X, x′ ∈ X ′}
X0 = {1}

X i+1 = X iX, i = 0, 1, 2, . . .

X∗ = ∪i≥0X
i.

For w ∈ A∗ we denote by |w| the length of the word w. Note that |uv| = |u| + |v|
for every u, v ∈ A∗ and |1| = 0.

Let u and v be two words of A∗. The word u is a factor of v if v = xuy, a right
factor if v = xu and left factor if v = uy for some words x, y ∈ A∗. A factor u is
proper if it is not 1 or the whole word v. We denote by F (X) the set of factors of
the words in X .

A subset of words is an infix code (prefix code, suffix code, bifix code) if no word
of it is a factor (left factor, right factor, both left and right factor, resp.) of another.
Of course an infix code is a prefix code, suffix code and bifix code, simultaneously.
Our subject-matter is comma-free codes which are defined as follows [12].

Definition 2.1. A subset X ⊆ A+ is said to be a comma-free code if X2 ∩
A+XA+ = ∅.

A comma-free code is of course a code in the general sense of [1], moreover,
it is an infix code, hence, a prefix, suffix and bifix code, which is easily verified

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 119

by the definition. One useful criterion for testing comma-freeness is that X is
comma-free iff (S ∩ P)P ∩ X = ∅ iff S(S ∩ P) ∩ X = ∅, where P and S are the
sets of proper left and right factors, respectively. A comma-free code is called
maximal if it is a proper subset of any other comma-free code. A completion of a
comma-free is a maximal comma-free code containing it. In view of Zorn’s lemma,
every comma-free code always has completions.

Two words u and v are conjugates, or, in other words, u is a conjugate of v,
and vice versa, if u = xy and v = yx for some words x, y ∈ A∗. A non-empty
word is called primitive if it is not a power of another word, namely, the equality
u = vn for any word v and integer n > 0 implies v = u, or, n = 1. A conjugate of
a primitive word is also a primitive word. Every non-empty word is a power of a
unique primitive word, which we called the primitive root of it. Primitive words
have a “synchronizing” property expressed in the following

Example 2.2. Every primitive word constitutes a comma-free code. This means
that for a primitive word p, p2 = upv implies u = 1 or v = 1.

We shall use frequently the following result of Fine and Wilf [2]: let u and v
be two words such that u{u, v}∗ and v{u, v}∗ have a common left factor of length
longer than or equal to |u| + |v| − gcd(|u|, |v|) then u and v are powers of a same
word (copowers). As a matter of fact, we use a weaker, but equally effective in
practice, form of this result: if u{u, v}∗ and v{u, v}∗ have a common left factor of
length at least |u| + |v|, in particular, if uv = vu, then u and v are copowers.

Comma-free codes are closely connected with the notion of overlap. We say
that two words u and v, not necessarily distinct, overlap if

u = tw, v = ws

for some non-empty words s, t ∈ A+ and w ∈ A+, or equivalently,

us = tv

for some non-empty words s, t such that |t| < |u| and |s| < |v|. We call w an
overlap, s a right border and t a left border of the two overlapping words u, v.
We say also that u self-overlaps if u and u overlap, that is, u overlaps itself. A
right (left) border of a set X is a right (left, resp.) border of any two overlapping
words of X . We denote the sets of right and left borders of X by R(X) and L(X),
respectively.

With each comma-free code X we associate the following set, which plays a
central role in our treatment

E(X) = A+ − R(X)A∗ − A∗L(X)− A∗XA∗

which consists of the words not containing any left factor in R(X), any right factor
in L(X) and any factor in X .

We recall the principal object of this paper, which has been defined in the
previous paper [8]. Let N be a positive integer.

120 N.H. LAM

Definition 2.3. A comma-free code X is called N -canonical if for any word
w ∈ E(X) and any factorization w = xuy with x, y, u ∈ A∗ and |u| ≥ N , there
exist factorizations u = pp′ = ss′ such that xp ∈ E(X) and s′y ∈ E(X), or just
the same, xp /∈ A∗L(X) and s′y /∈ R(X)A∗. A comma-free code is canonical if it
is N -canonical for some N .

Equivalently, a comma-free code X is N -canonical if and only if for any word
w ∈ E(X) and for any integer n, 0 < n ≤ |w|, there is a left factor p and a right
factor s of w such that n ≤ |p|, |s| < n + N and p, s ∈ E(X), or just the same,
p /∈ A∗L(X) and s /∈ R(X)A∗.

Example 2.4. Let A = {a, b}. The set {ababb, babbabb} is a comma-free code,
for which R = {abb, abbabb}, L = {a, abab, bab}, but not maximal since a+b+ −
abb+ ⊆ E.

Example 2.5. The set {a3b, a2b2, ab3} is a 4-canonical comma-free code with
R = {b, b2}, L = {a, a2}.

In the previous paper [8], it is proved that every finite comma-free code is
included in a finite N -canonical comma-free code, for some N . Our aim now is to
prove further that we can complete every finite N -canonical comma-free code to
a finite maximal comma-free code.

Surely, we have to make a completion out of those words u outside X , for which
X+u is still a comma-free code. We term such words good words for X . Explicitly,
which words are good ones? First, it contains no factors in X . Second, it is not
a factor of X2. Third, there are no two words x and y of X , for which {x, y, u}
is not a comma-free code by the equality ux = vy or xu = yv with v ∈ A∗ and
|v| < |u|. Fourth, there is no word x of X , for which {x, u}, is not a comma-free
set by the equality uu = vxw for some v, w ∈ A∗ with |w| < |u| and |v| < |u|.
Fifth, there is no word x of X for which is not a comma-free code by the equality
vuw = ux with 0 < |v| < |u| or vuw = xu with 0 < |w| < |u| for some v, w ∈ A∗.
Finally, sixth, it is a primitive word (we denote the set of primitive words by Q).
These wordy description obviously corresponds to the following formal conditions:

(1) u /∈ A∗XA∗;
(2) u /∈ F (X2);
(3) u /∈ A∗L(X) + R(X)A∗;
(4) u ∈ I(X) = {u : u2 /∈ A∗XA∗};
(5) A+u ∩ uP (X) = ∅ and uA+ ∩ S(X)u = ∅;
(6) u ∈ Q.

Let u be an arbitrary word. We call u an e-word if u ∈ E(X); we call an e-word
u i-word if, in addition, u2 ∈ E(X). It is easy to see that the e-word u is an
i-word if u ∈ I(X)−F (X). Let u be an e-word. Consider the following conditions
concerning u:

(r) uv avoids X (i.e. u has no factors in X) for every e-word v:

uE(X) ∩ A∗XA∗ = ∅;

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 121

(l) vu avoids X for every e-word v:

E(X)u ∩ A∗XA∗ = ∅.

We call the words satisfying the conditions (r) and (l) r-words and l-words respec-
tively.

The good word u is called r-good if it is a good word and an r-word at the same
time. Similarly, u is l-good provided it is also an l-word.

We mention here a detail upon which we shall come later in the proof of The-
orem 4.1. Let f ′ be a word in A∗ − R(X)A∗ then it is straightforward to see
that f ′ is an r-word iff f ′v has no factor in X for every v ∈ E(X) and has no
occurrence of X other than the last one if v ∈ X . Symmetrically, let f ′′ be a word
in A∗−A∗L(X) then f ′′ is an l-word iff vf ′′ has no factor in X for every v ∈ E(X)
and has no occurrence of X other than the first one if v ∈ X .

3. Auxiliary technical results

We present several preliminary lemmas here in one section for easy reference in
the sequel. First we discuss the notion of sesquipower, which is closely connected
to the notion of self-overlap.

Let k be a positive integer, the word w is called a k-sesquipower if it is a left
factor of u+ for some word u of length less than or equal to k, |u| ≤ k, or which
amounts to the same, w = usu′ for some left factor u′ of u and non-negative integer
s and |u| ≤ k. Obviously, we have an equivalent statement: w is a k-sesquipower
if and only if it is a right factor of v+ or just the same, w = v′vt for some integer
t ≥ 0 where v is a right factor of v for some word v of length |v| ≤ k. We have the
following assertion, which is a folklore, relating sesquipowers to self-overlapping
words.

Proposition 3.1. For any words x, y and u the following assertions are equivalent:

(i) xu = uy;
(ii) u is a left factor of x+, u is a right factor of y+ and |x| = |y|;
(iii) x = pq, u = (pq)sp = p(qp)s, y = qp for some words p, q.

It is straightforward to see the if |w| > k, w is k-sesquipower if and only if w
self-overlaps with borders no longer than k. So in the sequel if we want to prove
some word not to self-overlap with borders which are left or right factors of X we
just show that it is not a k-sesquipower for a certain k ≥ max {|x| : x ∈ X}.

In the three following simple statements we show that we can pick out of three
special words, not self-overlapping with short borders, a primitive one. Let N be
a positive integer.

Lemma 3.2. Let u and v be words such that |u| ≥ 3N, 0 < |v| ≤ N , u = λm, uv =
µn with primitive words λ, µ and integers m ≥ 2, n ≥ 2. If not both of u and uv
self-overlap with borders of length shorter than or equal to N then m = n = 2.

122 N.H. LAM

Proof. We have

|λ| =
|u|
m

|µ| =
|u|
n

+
|v|
n

≤ |u|
n

+
N

n
·

If m or n ≥ 3 we get

|λ| + |µ| ≤ |u|
3

+
|u|
2

+
N

2
≤ 5|u|

6
+

N

2
≤ |u|

as |u| ≥ 3N . By Fine and Wilf, λ = µ, therefore v = λn−m, which implies
|λ| ≤ |v| ≤ N , so both of u and uv are N -sesquipowers which contradicts the
assumption. Hence m = n = 2. �

Lemma 3.3. Let u and v be non-empty words such that |u| > |v| and u = λ2, uv =
µ2 for some primitive words λ, µ. Then µ = λλ̄n for some positive integer n and
some primitive word λ̄ such that λ is a left factor of λ̄+ and |λ̄| < |v|

2 ·

Proof. Clearly, |µ| > |λ|, so we can write

µ = λλ1

where |λ1| = |µ| − |λ| = |u|+|v|
2 − |u|

2 = |v|
2 · Let λ̄ be the primitive root of λ1,

λ1 = λ̄n, n > 0, then we have

µ = λ(λ̄)n

and

|λ̄| ≤ |λ1| =
|v|
2
·

From the equality

uv = (λ)2v = λλv = µ2 = λλ1λλ1

it follows λv = λ1λλ1. Since |λ1| = |v|
2 < |u|

2 = |λ|, we see that λ self-overlaps
with (left) border λ1. Therefore λ is a left factor of λ̄+. �

Proposition 3.4. Let u, v1, v2 be non-empty words such that |u| ≥ 3N , |v1| ≤ N ,
|v2| ≤ N . Suppose that u, uv1 and uv1v2 do not self-overlap with borders shorter
or equal to N . Then at least one of them is primitive.

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 123

Proof. Assume the contrary that all of u, uv1, uv1v2 are not primitive

u = λm, m ≥ 2 (1)
uv1 = µn, n ≥ 2 (2)

uv1v2 = ηp, p ≥ 2. (3)

By Lemma 3.2 m = n = p = 2. We show that this is impossible.
Apply Lemma 3.3 to (1) and (2), we obtain

µ = λλ̄r , r > 0, (4)

where λ̄ is primitive, λ is a left factor of λ̄+ and |λ̄| ≤ |v1|
2 ≤ N

2 ·
Similarly, apply Lemma 3.3. to (2) and (3), we get that µ is a left factor of µ̄+

for some primitive word µ̄, with |µ̄| ≤ |v2|
2 ≤ N

2 ·
Since λ is a left factor of µ, µ̄+ and λ̄+ have a common left factor λ for which

|λ| =
|u|
2

≥ 3N

2
> N =

N

2
+

N

2
≥ |µ̄| + |λ̄|.

Therefore, µ̄ = λ̄ and in view of (4) and the “synchronizing ” property of primitive
words we get µ ∈ λ̄+ despite (4) and the primitivity of µ. �

The meaning of the following lemma is that any non-sesquipower can be “pump-
ed” up to more non-sesquipowers.

Lemma 3.5. Let w not be a k-sesquipower and let u be the longest proper left
factor of w, w = uv and v �= 1, which is a k-sesquipower, that is, u = us

1u2, s ≥ 0,
with u2 a proper left factor of u1, u1 primitive and |u1| ≤ k. Then for sufficiently
large integers t, namely, for all t such that |ut

1u2| ≥ 2k, the words ut
1u2v are not

k-sesquipowers.

Proof. Note that u �= 1. We show actually that for every t such that |ut
1u2| ≥

min (|us
1u2|, 2k) the word ut

1u2v is not a k-sesquipower. Suppose that ut
1u2v is a

k-sesquipower then it is a left factor of a power of a certain word of length no
longer than k.

If min (|us
1u2|, 2k) = |us

1u2| then t ≥ s and w = us
1u2v is a factor of ut−s

1 us
1u2v =

ut
1u2v. Thus w is a factor of a power of some word of length ≤ k, or just the same,

w is a left factor of a power of some word of length ≤ k. This contradicts the
assumption.

Else, if min (|us
1u2|, 2k) = 2k and, being a k-sesquipower, ut

1u2v = un
3u4, where

u3 is primitive word, |u3| ≤ k and u4 is a proper left factor of u3. By Fine and
Wilf we have u1 = u3, consequently, n ≥ t and u2v = un−t

3 u4 = un−t
1 u4. Therefore

w = us
1u2v = us

1u
n−t
1 u4 = un−t+s

1 u4 is a left factor of u+
1 , hence is a k-sesquipower,

contradiction. The lemma is proved. �
The next lemma is left as an easy exercise.

124 N.H. LAM

Lemma 3.6. Let p not be a factor of q and |q| ≥ 2|p|. Then qpn is primitive for
all integers n > 0.

Now we start up properly for our task by the next section.

4. Short i-words

Let X be a finite N -canonical comma-free code with m = max {|x| : x ∈ X}.
Suppose that h is a primitive i-word for X of length greater than m. We put
K = max (N, m) and f = hk, where k ≥ 3K+3N

|h| . We have the following key
statement.

Theorem 4.1. f2 contains a factor of length greater than 3K and less than or
equal to 3K + 3N which is either an r-good or an l-good word.

Proof. We first prove that f has a factorization f = f ′f ′′ such that either f ′ is an
r-word or f ′′ is an l-word and

|f |
2

− m < |f ′|, |f ′′| <
|f |
2

+ m.

Let f = f ′
0f

′′
0 be a factorization such that

|f |
2

+ 1 ≥ |f ′
0|, |f ′′

0 | ≥
|f |
2
·

Note that f ′
0 ∈ A∗ − R(X)A∗ and f ′′

0 ∈ A∗ − A∗L(X). The following repeated
argument will lead to the desired r-word f ′ or l-word f ′′.

Suppose that f ′
0 is not r-word (otherwise we are done). Then there exists a

word u1 ∈ X + E(X) such that f ′
0u1 contains a factor y1, not a right one in case

u1 ∈ X , in X .
f ′
0u1 = v1y1w1.

Since f ′
0 avoids X and u1 contains no factor in X when u1 ∈ E(X) and no proper

factor in X when u1 ∈ X we see that y1 must overlap both f ′
0 and u1. This means

that f ′
0 has right factor x1 which is a non-empty proper left factor of y1:

f ′
0 = f ′

1x1

for f ′
1 ∈ A∗. At this moment we get the factorization

f = f ′
1f

′′
1

where f ′′
1 = x1f

′′
0 . Note that |f ′

0| − |f ′
1| = |x1| < m, we have

|f |
2

− m ≤ |f ′
0| − m < |f ′

1| < |f ′
0| ≤

|f |
2

+ m.

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 125

Therefore, as |f ′
1| + |f ′′

1 | = |f |, for |f ′′
1 | the same inequalities obtain

|f |
2

− m < |f ′′
1 | <

|f |
2

+ m.

Consider now the symmetrical situation. Suppose that f ′′
1 is not an l-word, there

is then some word u2 ∈ X + E(X) such that u2f
′′
1 contains a factor y2 ∈ X , not a

left one in case u2 ∈ X . Reasoning as above: since f ′′
1 , being a factor of f , avoids

X and u2 avoids X if u2 ∈ E(X) and does properly X if u2 ∈ X , we again see that
y2 must overlap both u2 and f ′′

1 that means that f ′′
1 has a left factor x2 which is

a non-empty proper right factor of y2. We specify this situation in more detail by

u2 = v2z2, y2 = z2x2, f ′′
1 = x2f

′′
2

for z2 ∈ A+, f ′′
2 ∈ A∗. Now it is crucial to notice that, as f ′′

1 = x1f
′′
0 and x1

is a left factor of X , x2 must be longer than x1, otherwise z2 ∈ L(X) despite
u2 ∈ X + E(X) ⊆ A∗ − A∗L(X). Hence x1 is a proper left factor of x2. Put
f ′
2 = f ′

1x2. We have now the factorization

f = f ′
2f

′′
2 .

Further, it is directly to see that x2 overlaps both f ′
0 and f ′′

0 as x1 is a proper left
factor of x2 and x1 is a right factor of f ′

0. This implies that |f ′′
0 |− |f ′′

2 | < |x2| < m
and, consequently,

|f |
2

− m ≤ |f ′′
0 | − m < |f ′′

2 | <
|f |
2

+ m,

and
|f |
2

− m < |f ′
2| <

|f |
2

+ m.

Now we proceed similarly with the latter factorization and with f ′
2 playing the

role of f ′
0 in the initial factorization of f to obtain a left factor x3 of x for which

x2 is a proper right factor and the ensuing factorization f = f ′
3f

′′
3 . Of course, x3

overlaps both f ′
0, f

′′
0 as x2 does, from which follow the relevant inequalies for the

length of f ′
3, f

′′
3 and so on. However we cannot iterate the argument infinitely, as

the length of factors of X are bounded by m. So we stop in some step, no later
than m − 1 ones, to obtain a factorization

f = f ′f ′′

with the claimed properties regarding as on which step we get stuck, even or odd.
Suppose for instance that f ′′ is an l-word. Let u be the longest left factor of

f ′′f ′f ′′f ′ which is an m-sesquipower. We write

u = us
1u2

126 N.H. LAM

for s ≥ 0 and u2 is a proper left factor of u1. Since f is a power of a primitive
word, h, of length longer than m and |u1| ≤ m by Fine and Wilf we have

|u| < |f | + m

otherwise u1 ∈ h+, hence |u1| > m, a contradiction. If we write

f ′′f ′f ′′f ′ = uy

for y ∈ A∗ then |y| = 2|f | − |u| > 2|f | − |f | − m = |f | − m ≥ 3K + 3N − m >
3K+3N−2m. On the other hand 2|f |−|u| > |f |−|u| ≥ 3K+3N−|u|. Therefore
|y| > max (3K + 3N − 2m, 3K + 3N − |u|) = 3K + 3N − min (|u|, 2m).

Put u0 = u if |u| < 2m and u0 = ut
1u2, where t is the smallest integer such that

|ut
1u2| ≥ 2m, otherwise. In any case, we have

min (|u|, 2m) ≤ |u0| < 3m.

Note that u0 is a right, and left, factor of u, in particular, we can write

lu0 = u

for l ∈ A∗. Note also that |u0y| > |u0|+3K +3N −min (|u|, 2m) ≥ min (|u|, 2m)+
3K−min (|u|, 2m) = 3K. Now let u3 be the left factor of u0y of length 3K, that is

u0y = u3v

for v ∈ A+ and |u3| = 3K. We see that u0 is a proper left factor of u3 and we
write

u0r = u3

for r ∈ A+. We have the following relations

f ′′f ′f ′′f ′ = uy = lu0y = lu3v = lu0rv.

Observe that because ur, which is a left factor of f ′′f ′f ′′f ′, is not an m-sesquipower,
in any case (i.e., if u = u0 or |u0| ≥ 2m by Lem. 3.5) u0r, that is u3, is not an
m-sesquipower either.

In order to employ the canonicity, we estimate the length of |v|. If u = u0, that
is, if l = 1, then

|v| = |f ′′f ′f ′′f ′| − |u0| > 2|f ′′f ′| − 3m = 2|f | − 3m ≥ 2(3K + 3N) − 3m > 3N.

If |u0| ≥ 2m then |l| = |u| − |u0| < |f | + m − 2m = |f | − m, hence

|v| = |f ′′f ′f ′′f ′| − |l| − |u3| > 2|f | − (|f | − m) − 3K

= |f | + |m| − 3K > 3K + 3N − 3K

= 3N.

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 127

Now we use the hypothesis. Since X is N -canonical and f2 ∈ E(X) hence f3 ∈
E(X), for the factorization

f3 = f ′lu3vf ′′

with respect to the factor v of length |v| ≥ 3N , there exist three words v1, v2, v3

such that 0 < |v1|, |v2|, |v3| ≤ N and v1, v1v2, v1v2v3 all are left factors of v and

f ′lu3v1, f ′lu3v1v2, f ′lu3v1v2v3 /∈ A∗L(X)

which means
u3v1, u3v1v2, u3v1v2v3 /∈ A∗L(X)

because of the large length (larger than m) of the latter words.
All of the three words u3v1, u3v1v2, u3v1v2v3 cannot be m-sesquipowers because

u3 is not so. Moreover, by Lemma 3.4, as |u3| = 3K ≥ 3N , one of them, say,
u3v1v2v3, should be primitive.

Now it is routine to verify that g = u3v1v2v3 is a good word, and more than
that, an l-good one. Let us verify the the definition of a good word:

(1) g avoids X because g is a factor of f3, which does so as f3 ∈ E(X);
(2) g is not a factor of X2: g is too long for that |g| > 3K > 2m;
(3) clearly g /∈ A∗L(X). Also, if u = u0 then u3 is a common left factor of g

and f ′′; if |u0| ≥ 2m then u0 is a common left factor of u and u3, hence of
f ′′ and g. That means in all cases g and f ′′ have a common factor of length
at least min (3K, 2m) = 2m > m which implies that g ∈ A∗ − R(X)A∗,
for f ′′ ∈ A∗ − R(X)A∗ as well, since the two inclusions concern only the
left factors of length less than m. More than that, by the same reason and
by (1), we have

(3’) E(X)g ∩ A∗XA∗ = ∅;
(4) in view of (1) and (3) we have g ∈ E(X) and in view of (3’) g2 ∈ E(X);
(5) holds because g is not an m-sesquipower;
(6) g is primitive by choice.

So (1)–(6) shows that g is a good word, and in addition to them, (3’) shows that
g is an l-good word. Certainly,

3K < |g| = |u3| + |v1| + |v2| + |v3| ≤ 3K + 3N

what is the desired estimate. Moreover, as g is a factor of f3 of length not exceeding
|f |, it must be a factor of f2. This concludes the proof. �

In virtue of Theorem 4.1, we have the following dichotomy. First, there are
no primitive i-words of length longer than m. This means that they are finite
in number. Because good words are primitive i-words, the good words are also
finite in number and all of them have length shorter or equal to m. In order
to complete X , then, all we have to do is to search for appropriate goods words
among the words of length not exceeding m.

The following argument may help. For any two i-words u, v, not factors of X ,
with different primitive roots if uv and vu avoid X then unvn avoids X for all

128 N.H. LAM

positive integers n. They all are primitive i-words by [9], moreover, of arbitrarily
large length, contradiction with the finitude assumption. So at least of uv, vu
contains a factor in X and u, v cannot be both in any completion of X . Therefore,
any completion of X differs from X by at most one word (of length no greater
than m).

The next possibility: there are infinitely many primitive i-words. In this case
there is always a relatively “short” l- or r-good word g, no longer than 3K + 3N ,
provided by Theorem 4.1. The proof of theorem provides also an explicit, effective
means to determine g.

Nevertheless, how could we know in which branch of the dichotomy we are: all
of the primitive i-words are of length not exceeding m or some of them are longer
than m? The answer is an instance of the following results by Ito, Katsura, Shyr
and Yu [5]:

Proposition 4.2. Let R be a regular set accepted by a deterministic automaton
consisting of n > 1 states. Then
(i) R contains a primitive word if and only if it contains a primitive word of length
not exceeding 3n − 3;
(ii) R contains infinitely many primitive words if and only if it contains a primitive
word of length in the range [n, 3n − 3].

Proposition 4.3. If R contains only a finite number of primitive words then all
of them have length less than n.

In view of these propositions, we check, if there is a primitive word p with
n ≤ |p| ≤ 3n−3. If yes, R contains an infinity of primitive words; if no R contains
only finitely many (may be, none) primitive words and the number of them can
be bounded by an effectively computable constant.

It is clear that the sets R(X), L(X) are finite, E(X) is regular, as X is finite.
Also, the set of i-words is easily seen to be regular. Our problem is to test the set
of i-words minus A∗Am+1A∗ for a primitive word in it.

The next section is devoted to the completion of X , starting from an l- or r-good
word.

5. Short good words

In view of the discussion in the preceding section, for diversity of treatment, we
may now suppose that we dispose of an r-good word g satisfying

3K < |g| ≤ 3K + 3N.

We recall that “g is an r-good word” implies that gv is free of factors in X for
every word v of E(X) beside the a priori property of a good word (of an r-word,
more exactly) that gv has only one occurrence in X , that of v itself, if v ∈ X . In
order to complete X , we follow the steps below:

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 129

(a) if for almost all (i.e. all but finitely many) primitive i-words v, v contains
g as a factor or vg contains a factor in X or an occurrence of g different from the
last one (this issue we can effectively test in view of Prop. 4.2, to wit we test

{v : vg ∈ A∗XA∗} ∩ {v : vg ∈ A∗gA+} ∩ {v : v ∈ E(X), v2 ∈ E(X)}

for the finitude of primitive words) then the set of good words for X + g is finite
(the maximum length is effectively computable by Prop. 4.3) and we are finished.
Otherwise

(b) we can effectively pick out a primitive i-word v such that

|v| > 2|g|

and vg contains no occurrence of any word in X + g, except the last one (of g).
We state that vg is both an r-good word for X . Indeed,

1. vg is an r-word, because of the current assumption on g and v;
2. vg is not in F (X2), as |vg| > 3|g| > (K > 2m, too long to be a factor of

X2);
3. vg is primitive, in view of Lemma 3.6;
4. vg is not a 6K-sesquipower (hence not an m-sesquipower). Because from

any equality for the overlapping
xvg = vgy

where x, y ∈ A+, |x| = |y| < |vg|, it follows |x| > |v| for g does not contain v and
vg does not contain any occurrences of g different from the last one. Thus the
borders are longer than |v| > 2|g| > 6K;

(c) put p = vg. So p is an r-good word and |p| > 3|g| > 9K. It may self-overlap
only with the borders longer than 6K.

If for almost all e-words w ∈ E(X), either wp contains a factor in X or an
occurrence of p different from the last one then we are done, the comma-free code
X + p has only a finite number of good words (of course, the hypotheses can be
effectively tested), we can complete it at least by trial. Otherwise we can choose
(again, effectively) an e-word q, q ∈ E(X), with |q| ≥ 2|p| such that qp does not
contain any factor in X and any occurrence of p other than the last one. By
Lemma 3.6 qpi is primitive for all positive integers i. We choose a positive integer
n satisfying

(n − 2)|p| > |q| + 6N.

Certainly, n > 2. We have first

Remark 5.1. It is routine to check that qpn+1 is a good word for X .

Let Gi, for every i = 0, 1, . . . , n − 1, be the set consisting of the words of the
form

upiqpn

satisfying the following conditions:
(i) |u| ≥ |p|;

130 N.H. LAM

(ii) up (if i > 0) and uq (if i = 0) are e-words;
(iii) p is not a right or left factor of u;
(iiii) upiqpn is primitive.

We have a few further remarks. For every i = 0, 1 . . . , n − 1:

Remark 5.2. All words of Gi are not m-sesquipowers since p is not an m-
sesquipower.

Remark 5.3. All words of Gi avoid X and are not factors of X2. First, by (ii)
up and uq (for i = 0) avoid X ; qp avoids X by definition; pq avoids X since p is
r-good and q is an e-word. The next claim is obvious.

Remark 5.4. All words of Gi are i-words. The fact that up (for i > 0), uq (for
i = 0) and p are e-words together with Remark 5.3 yield Gi ⊆ E(X). Next, p is
r-good and up is an e-word shows that pup avoid X hence so does pu which implies
Gi ⊆ I(X).

Remark 5.5. If upiqpn has another occurrence of pn, apart from the last one,
then it must occur in up if i > 0 and in uq if i = 0. This is because |q| ≥ 2|p|, q
does not contain p, n > 2 and p is primitive.

These remarks give rise to the following assertion.

Proposition 5.6. (g) Every word of Gi is a good word for X.
(gg) All words of Gi are not factors of pnqpn.

Proof. (g) follows from Remarks 5.2, 5.3, 5.4 and (iiii).
(gg) holds because pnqpn has only two occurrences of pn and because of (i) and
(iii). �

Next, we define the set H as follows: H consists of the words of the form vpn

satisfying
(j) |v| ≥ |q|;
(jj) vp is an e-word;
(jjj) p is not a right or left factor of v, q is not a right factor of v;
(jjjj) vpn is primitive.

It is routine to verify that the counterparts of Remarks 5.2–5.4 and Proposition 5.6
are also valid for H . Also, by the similar reasons, we have

Remark 5.7. If vpn has another occurrence of pn different from the last one, then
it must be one in vp.

Set

Ḡi = Gi − A+Gi

H̄ = H − A+H

as the sets of “minimal” words of Gi and H . The following proposition says that
the “minimal” words are of bounded length, hence Ḡi and H̄ are finite.

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 131

Proposition 5.8. (i) If wpiqpn is an e-word with n > i ≥ 0, |w| ≥ 6N + |p| and
if p is not a right factor of w then wpiqpn has a right factor in Gi, hence in Ḡi.
(ii) If wpn is an e-word with |w| ≥ 6N + |q| and if both p, q are not right factors
of w then wpn has a right factors in H, hence in H̄.

Proof. (i) Since |w| ≥ 6N + |p| and X is N -canonical, we can write

w = w′w6w5w4w3w2w1w0

where w′ ∈ A∗, |w0| = |p|, 0 < |wj | ≤ N and

wj . . . w1w0p
iqpn

is an e-word for j = 1, . . . , 6. In view of Proposition 3.4, there exist two different
integers

1 ≤ s ≤ 3 < t ≤ 6

such that
ws . . . w1w0p

iqpn

and
wt . . . w1w0p

iqpn

both are primitive, for, first |piqpn| > 3N and, second, all wj . . . w1w0p
iqpn for

j = 1, . . . , 6 are not N -sesquipowers, as |p| > 9K > N and n > 2 and q has
no factor p. Moreover, at least one of them has no left factor p, otherwise, p is
self-overlaps with borders shorter than (s − t)N < 6N ≤ 6K, which contradicts
the property of p which says that p is not a 6K-sesquipower. Say

ws . . . w1w0p
iqpn

has no left factor p. Finally,

ws . . . w1w0p
iqpn

as a factor of an e-word, avoids X which also shows that ws . . . w1w0p for i > 0
and ws . . . w1w0q for i = 0 atre e-words. All together, the facts above mean that

ws . . . w1w0p
iqpn ∈ Gi.

(ii) is handled analogously. The proposition is proved. �
The following statement is an immediate consequence of the preceding propo-

sition.

Theorem 5.9. Every word of Ḡi is no longer than 6N + (n + i + 1)|p| + |q| ≤
6N + 2n|p| + |q| for i = 0, 1, . . . , n − 1 and every word of H̄ is no longer than
6N + n|p| + |q|.

132 N.H. LAM

The restriction put on the length of p, q and n is to ensure the following property,
which will be used to establish the comma-freeness of the would-be completions
of X .

Corollary 5.10. For every word of upiqpn of Ḡi, |u| ≤ (n − 3)|p| and for every
word vpn of H̄, |v| ≤ (n − 2)|p|. Moreover, the words of Ḡi and H̄ have a unique
occurrence of pn.

Proof. The upper bound for the length of u, v follows directly from the assumption
on n and from Theorem 5.9. For the next claim, consider an arbitrary word upiqpn

of Ḡi, 0 ≤ i < n. There is already one occurrence of pn, the terminal one. Another
occurrence, if exists, should be a factor of up (in case i > 0) or uq (in case i = 0)
by Remark 5.5, hence

|pn| ≤ max (|uq|, |up|) = |uq|.

On the other hand, by Theorem 5.9

|u| ≤ 6N + |p|.

This implies
n|p| ≤ |u| + |q| ≤ 6N + |p| + |q|.

But this contradicts the assumption that

(n − 2)|p| > |q| + 6N.

It is handled similarly for the case of H̄ , where if some word vpn of H̄ has two
occurrences of pn then by Remark 5.7

|pn| ≤ |vp|.

This is again a contradiction, since by Proposition 5.9, |v| ≤ 6N + |q| despite the
assumption

(n − 2)|p| > |q| + 6N

which completes the proof. �
We intend to make up a completion of X , which includes G′

is and H ; for this
purpose first we fix the following

Proposition 5.11.

(h) No word of H̄ is a factor of Ḡi, for all i = 0, 1, . . . , n − 1, and vice versa.
(hh) No word of H̄ or Ḡi is a factor of qpn+1 and vice versa, qpn+1 is not a

factor of H̄ or Ḡi, for all i = 0, 1, . . . , n − 1.
(hhh) No word of Ḡi is a proper factor factor of Ḡj, 0 ≤ i ≤ j < n.

(hhhh) No word of H̄ is a proper factor of another word in H̄.

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 133

Proof. (h) because every word of H̄ and Ḡi has a unique (terminal) occurrence of
pn and because of (jjj) q is not a right factor of v.

(hh), (hhh) and (hhhh): analogously handled. �

Put now

X̄ = qpn+1 +
n−1⋃

i=0

Ḡi + H̄.

Note that X̄ avoids X and the Proposition 5.11 says nothing but that X + X̄ is an
infix code. Recall that every word of X̄ is a good word for X . How long are the
borders of X̄? We shall show that they are much longer than m which is helpful
in proving the comma-freeness of X + X̄.

If in some pair of overlapping words of X̄ the overlap is shorter than |pn| then
the resulting borders are of length at least min (|u|, |v|, |q|) which is indeed larger
than m. If, otherwise, the overlap is longer than |pn|, then it must contains an
occurrence of pn, being a right factor of one of the overlapping word, and pn is
a right factor of all words of X̄. Hence one of the two overlapping words has at
least two occurrences of pn, so it is qpn+1 by Corollary 5.10 and thus the right
border is p and the overlap is qpn. Since q is not a right factor of v, the other of
the overlapping words is upiqpn ∈ Ḡi, 0 ≤ i < n. Hence the left border is upi. In
any case the borders are at least min (|u|, |v|, |q|, |p|) long. In sum, the borders are
always longer than m.

As we might expect, all the constructions we have done so far aim at the fol-
lowing

Theorem 5.12. X + X̄ is a comma-free code.

Proof. Suppose the contrary that X + X̄ is not comma-free. Then, in virtue of
Proposition 5.11, we can assume that there exists some words, not necessarily
distinct, x1, x2, x3 ∈ X + X̄ and r, l ∈ A∗ such that

x1x2 = lx3r

and 0 < |l| < |x1|, 0 < |r| < |x2|.
A little observation first: product of two words of X̄ avoids X , since pu, pv (u, v

are the words in (i), (j) of the definition of the words of Gi and H , respectively)
avoid X (recall that p is an r-good word and up, vp are in E(X)). All x1, x2, x3

should be in X̄ due to the following reasons: the observation above, p is an r-
word, every word of X̄ is a good word, the borders of X̄ is larger than m and X
is comma-free. To wit, suppose that x3 ∈ X . Since x3 overlaps both x1 and x2

by the observation above, x1 and x2 cannot be both in X̄. However, both of them
are not in X because X is comma-free; if x1 ∈ X, x2 ∈ X̄ or x1 ∈ X̄, x2 ∈ X then
x2 ∈ R(X)A∗ or x1 ∈ A∗L(X) correspondingly, contradictions. Therefore x3 ∈ X̄.
Since x3 is a good word, x1 and x2 cannot be both in X ; if only one of them is not
in X then the borders are shorter than m, a contradiction. So all three x1, x2, x3

are in X̄.

134 N.H. LAM

Further, x3 has an occurrence of pn and every word of X̄ , different from qpn+1,
has only one occurrence of pn, so the foregoing occurrence of pn in x3 must overlap
x1 and x2, and only in case x2 �= qpn+1. However this possibility is ruled out by
the fact that n > 2, p is primitive and every word in X̄ has no left factor p but
has a right factor pn and by the following reasons. First, if x2 = upiqpn ∈ Ḡi

then that occurrence must be in pupiq and overlap the initial occurrence of p and,
maybe in addition, pi, or q (if i = 0), as q does not contains p and p is primitive,
which means that |u| > (n − 2)|p|, a contradiction by Corollary 5.10. Next, if
x2 = vpn ∈ H̄ then |v| > (n − 2)|p|, again a contradiction by Corollary 5.10. So
we have x2 = qpn+1. Note that qpn+1 has exactly two occurrences of pn, hence x3

is a right factor of x1qp
n. If x3 = qpn+1 then p is a right factor of q, contradiction.

Otherwise x3 ∈ Ḡi or x3 ∈ H̄ then x3 is a (right) factor of pnqpn by Proposition 5.6
(gg), again contradiction by Corollary 5.10 and thus the proof is completed. �

We present our ultimate statement, the completion theorem.

Theorem 5.13. The finite comma-free code X + X̄ is maximal.

Proof. It suffices to prove that good words for X are no longer good ones for
X + X̄ . It can be done as follows.

Let f be an arbitrary good word for X . Consider the word f l with l arbitrarily
large but fixed integer.

1. If f is a factor of qpn+1 then obviously f is not a good word for X + X̄. Now
suppose that f is not a factor of qpn+1. If pi is a factor of f l then

i|p| < |f | + |p|

otherwise, by Fine and Wilf and primitivity of f , f is a conjugate of p, hence a
factor of p2 and all the more a factor of qpn+1, despite the assumption. So we get

i <
|f |
|p| + 1

which simply means that i is bounded.
2. Suppose that f l contains an occurrence of pn+1:

f l = rpn+1s

for some words r, s with r sufficiently long and p not being a right factor of r. If,
however, q is a right factor of r then f l contains qpn+1 and f is not good for X+X̄.
If q is not a right factor of r then rpn+1 is an (sufficiently long) lr-word for X , as f
is so. Therefore rpn+1 contains a right factor in H̄ in virtue of Proposition 5.8(ii),
that is, in X̄, and we are done for this alternative.

3. Next, suppose that f l contains no occurrence of pn+1. Consider the word

f lqpn+1.

FINITE COMPLETION OF COMMA-FREE CODES. PART 2 135

If it has a factor in X , clearly, f cannot be a good word for X + X̄. Else, consider
the word

f lqpn.

Denote w the longest right factor of f lqpn which is in (qpn)∗. Certainly |w| ≥ |qpn|.
On the other hand, by Fine and Wilf

|w| ≤ |qpn| + |f | + |qpn|

because in the opposite case, f = qpn in view of primitivity of both f and qpn.
Contradiction (or f is not good for X + X̄).

Let write w = (qpn)d+1, d ≥ 0, and

f lqpn = rw = r(qpn)(qpn)d.

Let further pi be the longest right factor of r in p∗. Since f l is free from any
occurrence of pn+1, we have i ≤ n. We write

r = tpi

for some word t such that p is not a right factor of t.
If i = n, by maximality of |w|, q is not a right factor of t. This implies that

r = tpn has a (right) factor in H̄ , as r, therefore t, is chosen arbitrarily large at
the onset. Thus

f lqpn = rw

contains a factor in H̄ ⊆ X̄ and f is not a good word for X + X̄.
Last possibility, if 0 ≤ i < n then

tpiqpn

has a (right) factor in Ḡi and the word

f lqpn = tpiw

has a factor in X̄: f is not a good word for X + X̄ either, which thus concludes
the proof. �

Acknowledgements. I am greatly grateful to the referee for keen and penetrating remarks
and comments that help improve the paper.

References

[1] J. Berstel and D. Perrin, Theory of Codes. Academic Press, Orlando (1985).
[2] N.J. Fine and H.S. Wilf, Uniqueness Theorem for Periodic Functions. Proc. Amer. Math.

Soc. 16 (1965) 109-114.
[3] S.W. Golomb, B. Gordon and L.R. Welch, Comma-free Codes. Canad. J. Math. 10 (1958)

202-209.

136 N.H. LAM

[4] S.W. Golomb, L.R. Welch and M. Delbrück, Construction and Properties of Comma-free
Codes. Biol. Medd. Dan. Vid. Selsk. 23 (1958) 3-34.

[5] M. Ito, M. Katsura, H.J. Shyr and S.S. Yu, Automata Accepting Primitive Words. Semigroup
Forum 37 (1988) 45-52.

[6] M. Ito, H. Jürgensen, H.J. Shyr and G. Thierrin, Outfix and Infix Codes and Related Classes
of Languages. J. Comput. Syst. Sci. 43 (1991) 484-508.

[7] B.H. Jiggs, Recent Results in Comma-free Codes. Canad. J. Math. 15 (1963) 178-187.
[8] N.H. Lam, Finite Completion of Comma-Free Codes. Part 1, in Proc. of DLT 2002. Springer-

Verlag, Lect. Notes Comput. Sci. 2450 357-368.
[9] R.C. Lyndon and M.-P. Shützenberger, The Equation aM = bN cP in a Free Group. Michigan

Math. J. 9 (1962) 289-298.
[10] Al.A. Markov, An Example of an Independent System of Words Which Cannot Be Included

in a Finite Complete System. Mat. Zametki 1 (1967) 87-90.
[11] A. Restivo, On Codes Having No Finite Completions. Discret Math. 17 (1977) 306-316.
[12] H.J. Shyr, Free Monoids and Languages. Lecture Notes, Hon Min Book Company, Taichung,

2001.
[13] J.D. Watson and F.C.H. Crick, A Structure for Deoxyribose Nucleic Acid. Nature 171 (1953)

737.

Communicated by J. Berstel.
Received April 22, 2003. Accepted February 10, 2004.

To access this journal online:
www.edpsciences.org

