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FREE GROUP LANGUAGES: RATIONAL VERSUS
RECOGNIZABLE*
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Abstract. We provide alternative proofs and algorithms for results
proved by Sénizergues on rational and recognizable free group lan-
guages. We consider two different approaches to the basic problem
of deciding recognizability for rational free group languages following
two fully independent paths: the symmetrification method (using tech-
niques inspired by the study of inverse automata and inverse monoids)
and the right stabilizer method (a general approach generalizable to
other classes of groups). Several different algorithmic characterizations
of recognizability are obtained, as well as other decidability results.
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1. INTRODUCTION

In [7] Sénizergues solved a conjecture raised by Sakarovitch in [5] and [6] by
proving that every rational free group language is either recognizable or disjunctive
(its syntactic congruence is the identity). In the process of doing so, Sénizergues
showed also that recognizability is decidable for rational free group languages and
their syntactic congruences are decidable.

Our purpose in the present paper is to provide further insight into rationality
and recognizability of free group languages by considering two alternative ap-
proaches to the decidability of recognizability. These two approaches are indepen-
dent from each other and from Sénizergues’s strategy to solve the problem. In
the end, we end up with alternative proofs for Sénizergues results obtained in a
different order.
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We named the first of these approaches the symmetrification method. Sym-
metrification here means the automaton obtained from an automaton on a dual
alphabet X = X UX ! by adding dual edges to the original ones, a common tech-
nique in the context of inverse automata and inverse monoids [8]. We obtain here
several different characterizations of recognizability, most of them algorithmic.

The second approach is fully independent of the first and is named the right
stabilizer method. By right stabilizer of a language L we mean the set of all
elements g such that Lg = L. The largest normal subgroup contained in the right
stabilizer is called syntactic subgroup in [7]. This approach may be generalized to
other classes of groups (cf. [9]).

Section 2 introduces notation and basic results of language theory. In Section 3
we introduce some basic results for group languages in general. Section 4 is devoted
to the symmetrification method and Section 5 to the right stabilizer method.

2. PRELIMINARIES

The reader is referred to [1] for definitions and results stated in this section. We
remark that all the proofs presented in this paper are constructive in the sense that
they provide algorithms to construct a rational expression, a finite automaton, etc.
This fact will be always implicit when we shall refer to previous results.

Let M be a monoid. We call a subset of M an M-language. Whenever possible,
brackets will be omitted in the representation of singleton sets. Given A, B C M,
we write AB = {ab| a € A,b € B} and we denote by A* the submonoid of M
generated by A.

We denote by Rat M the smallest family F of M-languages such that:

e cvery finite M-language is in F;
o if A, BeF, then AUB,AB, A* € F.

The elements of Rat M are called rational M-languages. Alternatively, an M-
language A is said to be rational if A can be obtained from finite M-languages
using the operators union, product and star a finite number of times.

Given A C M, we define a relation ~4 on M by x ~ 4 y if

Vp,q € M prq € A< pyq € A.

The relation ~ 4 is a congruence on M, the syntactic congruence of A. We say that
A is a recognizable M-language if the congruence ~ 4 has finite index. We denote
the set of all recognizable M-languages by Rec M. Alternatively, an M-language
A is recognizable if there exists some homomorphism ¢ : M — N into a finite
monoid N such that App~! C A. In this case, we have necessarily Kerp Cr~ 4,
where Kerp = {(u,v) € M x M | up = vp}. It is well known that Rec M
constitutes a boolean algebra [1] (Prop. III.1.1).
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The following simple result will prove useful in forthcoming sections:

Lemma 2.1. Let ¢ : M — N be a surjective monoid homomorphism and let
A CN. Write o =~ 4p-1 and T =~4. Then

M/o — N/t : 2o — (zp)T

is a monoid isomorphism.

Proof. Let ® : M — N/t be defined by z® = (z¢)7. In view of the classical
isomorphism theorems, it suffices to show that Ker® = o. Given x,y € M, we
have

@ =y < (zp) 7 (yp)
& Vm,m' € M, (mp)(zp)(m'p) € A& (mo)(ye)(m'y) € A
S Vm,m' e M, (mam/)p € A< (mym/)p € A
S Vm,m' € M, mxm’ € Ap~! & mym’ € Ap~!
S aoy

and the lemma holds. O

Classical language theory is restricted to the case where M is a finitely generated
free monoid X *. In this context, recognizability can be most efficiently expressed
through automata. Let X be a finite set. Our notation for an X-automaton is a
quadruple A = (Q, I, T, E) where Q is a finite set, I, T C Q and E C QXX xQ. We
may also write Q@ = V(A) and F = E(A) if convenient. The language L(A) C X*
recognized by A is the set of labels of successful paths in A, that is, u € L(A) if
and only if there exists a path in A of the form

z1 T2 Tn
Go—q1— ... —qn

withqo € I, ¢, € T, (¢j—1,2;5,¢;) € Eand x1 ...z, = u. We shall use the notation
— ¢ (respectively ¢ —) to express that ¢ is an initial (respectively terminal) state.
It is well known that L C X* is recognizable if and only if L = L(A) for some
X-automaton A.

Kleene’s Theorem states that Rat X* = Rec X* for every finite set X [1]
(Prop. II1.2.1). An easy consequence is that Rec M C Rat M for every finitely
generated monoid M [1] (Prop. I11.2.4).

Let A= (Q,I,T,E) be an X-automaton. We say that A is

e deterministic if |I| = 1 and the implication

(pamaQ)v(pamaT) GE:>(]:T'

holds;
o trim if every vertex g € @ lies in some successful path;
e complete if the projection E — Q x X : (p,x,q) — (p,x) is surjective.
If A is deterministic and (p, z,q) € E, we write ¢ = px.
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It is well known that, given L € Rec X*, there exists a unique, up to isomor-
phism, smallest deterministic X-automaton recognizing L, the minimum automa-
ton of L. We denote the minimum automaton of L by ming. If L # @), then ming
is trim. Moreover, miny, is a quotient of every trim deterministic X-automaton A
recognizing L, that is, miny, can be obtained identifying vertices of A through an
appropriate equivalence relation 7. Indeed, if A = (Q,,T, E), 7 is defined by

pTqe L(Q,p,T,E)=L(Q,q,T, E). (1)

Given X-automata A = (Q,I,T,FE) and A" = (Q',I',T', E’), we define the direct
product Ax A= (Q xQ',I xI''T xT' E") by

E"={((p.0),z,(¢.4) | (p,z,q) € E, (p,x,¢') € E'}-

It is immediate that
LAx A =LA NLA).

Moreover, if A and A’ are both deterministic, so is A x A’. We define also the
trim subautomaton of A by

tr(A) = (QNS,INS,TNS,EN(SxX x9)),

where S consists of all vertices of A that lie in some successful path. Trivially,

L{tr(A)) = L(A).

3. GROUP LANGUAGES

For common concepts and results in group theory and combinatorial group
theory, the reader is referred to [3] and [4], respectively. Most of the results
included in this section are folklore, but we include some (simple) proofs.

Given a subgroup H of a group G, we denote by [G : H| the index of H of G.
We recall that a congruence o on a group G is fully determined by the normal
subgroup lo: in fact,

ach < ab ' €lo
holds for all a,b € G and G/o = G/(10).

Given a group G and some A C G, we define the right stabilizer of A in G to
be

R(A)={g9€G|AgC A}-
We define also
S(A)={g€G|Ag= A}

and
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Lemma 3.1. Let G be a group and A C G. Then
(i) S(A) = R(A)N(R(A))~Y;
ii) S(A) is the largest subgroup of G contained in R(A);
) N(A) is the largest normal subgroup of G contained in S(A);
) N(A

(
i) N
N(A) =1~y

(iii
(iv
Proof. (i) Let g € S(A). Then g € R(A) trivially. Moreover, Ag~! = Agg~! = A,
hence g~ € R(A) and so g € (R(A))~!. Thus S(A) C R(A) N (R(A))~!.
Conversely, if g € R(A) N (R(A))~!, then Ag C A and Ag~! C A. It follows
that
AgC A=Ag7lg C Ag,
thus Ag = A and g € S(A).
(ii) Clearly, 1 € S(A) and

geSA) e Ag=As A=Ag' o gt ecSA).

Let g, h € S(A). Then Agh = Ah = A and so gh € S(A). Thus S(A) is a subgroup
of G, and S(A) is obviously contained in R(A).

Let H be another such subgroup. Given h € H, we have then h € R(A). On the
other hand, h™! € H C R(A) yields h € (R(A))"! and so h € R(A)N(R(A))~! =
S(A). Therefore H C S(A).

(iii) This is a standard group-theoretical construction.

(iv) Let g € N(A) and z,y € G. We want to show that

rgy € A& xy € A (2)

Suppose that zgy € A. Since g=! € N(A), we have y~lg~ly € N(A4) C S(A),
yielding

wy = (zgy)(y~'g~'y) € A-S(A) = A.
Conversely, zy € A yields
zgy = (zy)(y~'gy) € A-S(A) = A.

Thus (2) holds and N(A) C 1 ~4.

To prove the converse inclusion, we only need to observe that 1 ~ 4 is a normal
subgroup of G contained in S(A) and apply (iii). Since 1 ~4 is the kernel (in
the group-theoretical sense) of a group homomorphism, it is certainly a normal
subgroup of GG. Finally, if g € 1 ~ 4, then in particular

ag€e A<= a€ A

It follows that Ag~! = A, hence Ag = A and g € S(A) as required. O

The subgroup N(A) is called in [7] the syntactic normal subgroup of A.



54 P.V. SILVA

Proposition 3.2. Let G be a group and A C G. Then the following conditions
are equivalent:
(i) A € RecG;
(i) [G: N(4)] < oo;
(ili) [G:S(A4)] < 0.
Proof. We have A € RecG if and only if ~ 4 is a finite index congruence on G
if and only if [G : 1 ~4] < oo. By Lemma 3.1(iv), we obtain (i) < (ii). Since
N(A) C S(A), we have that (ii) = (iii). It remains to prove that (iii) = (ii).
Assume that [G : S(A)] < co. Then

N(A) = () a(S(A)z~" = [ (@S(A))(S(A)z™")

zeG zeG

is a finite intersection of finite index subgroups of G and it follows easily that
[G: N(A)] < co. Thus (ii) holds. O

Since S(H) = R(H) = H, whenever H is a subgroup of G, we obtain the
following well-known result:

Corollary 3.3. If H is a subgroup of G, then H € RecG if and only if |G : H] <
00.

Given aset X, let X '={2z"!|z€ X} bea set of formal inverses for X. We
write X = X UX !, We define an involution X — X :w — w™! by:

(x_l) = foreveryaceX o
(1 ...2)7 " cxyt forall oy, ...z, € X.

This involution is extended to 7*—1anguages by defining
L t'={w'|lwelL}
It is an easy exercise to check that
LeRatX =L 'cRatX .

This fact will be used without further reference.

A word w € X is said to be reduced if w contains no factor of the form zz~
for every x € X. We define a map ¢ : X" = X that assigns to every word w € X
the reduced word we obtained by successively cancelling from w all factors of the
form zz~! (z € X). Tt is well known that

1

e ¢ is well defined;
e Kert is the congruence on X generated by the relation {(wu=™11) | u €
Y*};
e FG(X)=X /(Kert) is the free group on X.
The canonical morphism X — FG(X) will be denoted by 7.
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We shall use the following version of Benois’ Theorem:

Lemma 3.4 [1] (Prop. I11.2.8). If L € RatX , then Li € RatX and it is effec-
tively constructible from L.

Finally, we relate rationality and recognizability in an arbltrary finitely gener-
ated group to the corresponding concepts in a free monoid X"

Lemma 3.5. Let G be a finitely generated group. Let o : FG(X) — G be a
surjective homomorphism for some finite set X and write 8 = wa.. Then:

(i) RatG ={LB3|L € RatX };

(i) given L € Raty*, we have LB € RecG if and only if LGB! € RatX .
Proof. (i) Let F = {LB3| L € Rat X }. Since a homomorphic image of a rational
language is still rational [1] (Prop. I11.2.2), we have F C Rat G. The converse in-
clusion follows from the straightforward fact that F contains the finite G-languages

and is closed for the operators union, product and star.
——*
(ii) Let L € Rat X . By Lemma 2.1, we have

G/ r~ip= X'/ ~rppr.

Since L3 € Rec@ if and only if G/ ~ 4 is finite and L3S~ € Rat X" if and only
if 7*/ ~rpp-1 is finite, the lemma follows. O

4. THE SYMMETRIFICATION METHOD
Let A= (Q,I,T,E) be an X-automaton. We write

D(E)=EU{(q,2"",p) | (p,z,q) € E}

and we define the X-automaton D(A) = (Q, I, T, D(E)). We say that D(A) is the
symmetrification of A. The automaton A is said to be inverse if

e A is deterministic;

o Ais trim;

e D(E) = E.
An important example of inverse X-automaton is the automaton Z(H) = (Qg, H, H, Eyr)
associated to a finite index subgroup H of FG(X) [2] (Sect. 2), where Qg is the
set of all left cosets of H and

Ey ={(Ha,z,Hax) |a € FG(X),r € X}-
In fact, Z(H) is a complete inverse automaton and
L(Z(H)={ueX |H(ur)=H}=Hr '

The following lemma will be useful.
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Lemma 4.1. Let A= (Q,i,T, E) be an inverse X -automaton.
(i) If p—25q is a path in A, then there exists also a path of the form p—q.
(11) If (paxa Q)’ (p/,l‘, Q) € E; then p= p/'

Proof. (i) Since A is inverse, all paths labelled by yy~' (y € X) are loops. Since
wt is obtained from w by successively removing factors of this form, the result
follows.

(ii) If (p,z,q), (0, x,q) € E, then we also have (¢,27,p),(¢,2~1,p’) € E and
the result follows from A being deterministic. O

We are interested in obtaining different characterizations of recognizability for
a rational FG(X)-language. In the next lemmas, we compare the alternative
conditions we shall consider, starting with a useful technical statement.

Lemma 4.2. Let L € Rat X and let A = ming,. If
u u
p—q, p—r

are paths in A and D(A), respectively, then ¢ = r.
Proof. Assume that

1 o T
P=q—qn—..-—qk = ¢
and
] T2 Tk
p=ro—ri—...—Tp =T

are paths in A and D(A), respectively, with w = 1 ... x,. We have ¢g = p = ry.
Assume that gj_1 = r;_1 for some j € {1,...,k} and suppose that g; # r;. Then

(gj-1,75,q5) € E(A), (¢j-1,75,75) € E(D(A)).

Since A is deterministic, we conclude that (r;, x;l, gj—1) € E(A) and so we have
a path in A

x;lxj
[ A—F

labelled by a non reduced word, contradicting A = ming,. Thus r; = ¢;. By
induction, we conclude in particular that r = r, = qr = q. (I

We note that the preceding proof holds in fact for any finite deterministic trim
automaton recognizing just reduced words.

Given a language L, we denote by Pref(L) the set of all prefixes of words in
L. Tt is immediate that if L is rational, so is Pref(L) — we only need to make all
vertices terminal in miny,.

Lemma 4.3. Let L € RatX be nonempty and let A = ming,. Consider the
following conditions:
(A) Pref(Li) = X i;

(B) X'/ ~L(p(ay is a group;
(C) D(A) is complete.
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Then:
(i) (A) = (C) and (B) = (C);

(ii) no other implication holds in general.

Proof. (i) Assume that (A) holds. Let p € V(A) and = € X. Since A is trim, we
have a path of the form — i——p in A. If 27! is the last letter of u, then we have
an edge of the form (¢, 271, p) in A and so (p, z,q) is an edge in D(A). Otherwise,
uz € X 1 = Pref(Lt) and so uazv € L for some word v. Since A is deterministic,
this implies the existence of an edge of the form (p,z,r) in A (and consequently
in D(A)). Thus D(A) is complete and (C) holds.

Assume now that (B) holds. Let p € V(D(A)) = V(A) and z € X. Since A is
trim, we have a path of the form

—i=py—bp—... Ep=p (3)

in A. Suppose first that zx = z71. Then (p,z,pr_1) € E(D(A)) as required.
Thus we assume that z=! # x1. Since 7*/ ~L(D(A)) is a finite group, there exists
some n > 0 such that 2" ~ppay) 1. Let p—-t — be a path in D(A) from p
onto a final vertex. Since z1...73v € L(D(A)) and 2" ~p(pca)) 1, we obtain
x1...xpx"™v € L(D(A)). Tt follows that there exists a path of the form

— = g g T
in D(A). Since (3) is a path in A, Lemma 4.2 yields ¢4 = px = p. Hence
(p,z,q) € E(D(A)) and D(A) is complete. Therefore (C) holds.
(ii) Let X = {«} and consider L = z*. Then:
e Pref(L:) = z* and so (A) does not hold;
e L(IDA)=X",X"/ ~1(D(A)) s the trivial group and D(A) is complete,
thus (B) and (C) do both hold.
Therefore (B) % (A) and (C) # (A).
Finally, we consider L' = ™ U (z~1)*. Then:
e Pref(L/t) = X and so (A) holds;
e L(D(A)) =, hence X'/ ~L(D(A)) 18 a two-element semilattice and (B)
does not hold;
e D(A) is complete, thus (C) holds.
Therefore (A) # (B) and (C) # (B). O

Lemma 4.4. Let L € RatX be nonempty and let A = ming,. Suppose that
(L(D(A)))t = Li. Then conditions (A), (B) and (C) in the preceding lemma are
equivalent.
Proof. (A) = (C). By Lemma 4.3(i).

(C) = (B). Assume that (C) holds. Since the implication

(p.z,q) € E(D(A)) = (¢,27",p) € E(D(A))
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holds in D(A), we conclude that the implication
wv € L(D(A)) = uzz~'v € L(D(A))

holds for all u,v € X and z € X. Since Lt = L(A) C L(D(A)) and every word
in L7~ can be obtained from a word in Lt by successively inserting factors of
the form zz~! (z € X), we obtain the inclusion Lxr~ C L(D(A)).

Conversely,

(L(D(A) = L = (L(D(A)))7 = L = L(D(A)) C Lrr,
thus L(D(A)) = Lrn~! and
X'/ ~rpan=X | ~par1 2 FG(X)/ ~px

by Lemma 2.1. Thus (B) holds.

(B) = (A). Assume that (B) holds. Then we can fix some w € L. Let
we X t—1. Then uis a prefix of a cyclically reduced word v — a word whose
square is reduced. Indeed, if w is not itself cyclically reduced, then u is of the
form zu'z~! for some z € X, implying that |X| > 1. In this case, we can take
y € X — x and consider v = uy. Since 7*/ ~L(D(A)) is a (finite) group, there
exists some n > 0 such that v ~p(p4y) 1. We may assume that n > |w|. Since
w € Lu C L(D(A)), we obtain v*w € L(D(A)). Thus

(v"w)e € (L(D(A)))e = Lu.

Since n > |w| and v is cyclically reduced, we have (v"w). = vz for some z € X t.
Thus u € Pref(v) C Pref(Li) and so Pref(Li) = X ¢ as required. O

Before proving the main theorem of the section, we need one more technical
lemma.

Lemma 4.5. Let L € RatX and let A = ming,. If D(A) is complete, then
Lrm~! C L(D(A)).

Proof. Since Lt = L(A) C L(D(A)) and every word in Lrm~! can be obtained

from a word in L. by successively inserting factors of the form zz~! (z € X), it
suffices to show that

wv € L(D(A)) = uzz~'v € L(D(A))
holds for all u,v € X" and 2 € X. Since the implication
(p,7,9) € E(D(A)) = (¢, ',p) € E(D(A))
holds in D(A), our claim follows from D(A) being complete. O

The following theorem provides four different characterizations of recognizabil-
ity involving the symmetrification of minp,.
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Theorem 4.6. Let L € RatX be nonempty and let A = ming,. Then the
following conditions are equivalent:
(i) L7 € Rec FG(X);
(ii) (L(D(A)))e = Lt and Pref(Lt) = X v;
(iti) (L(D(A)))e = Lt and X/ ~L(D(A)) 5 a group;
(iv) (L(D(A)))t = Lt and D(A) is complete;
(v) Pref(Le) =X 1 and X/ ~L(D(A)) 5 @ group.
Proof. By Lemma 4.4, conditions (ii), (iii) and (iv) are equivalent.

We prove next that (i) implies (iv). Assume that L7 € Rec FG(X) and write
H =1 ~p,. Since FG(X)/H = FG(X)/ ~rx, H is a finite index subgroup of
FG(X). We observed before that Z(H) = (Qu, H, H, Ex) is a complete inverse
automaton. Let B = (Qg, H,T, Ep), with

T ={Ha|ae Lr}

Since L # (), then T # (). Hence B is trim and so is a complete inverse automaton
like Z(H). It is immediate that

LB)={ueX |H(ur)eT}={ueX |H(ur)=H(vr) for some v € L}-
Now
H(ur) = H(vr) & (w1 € H (w7 ~pr 1 & um ~pp v,
Since umr ~p, vr for some v € L if and only if ur € Lm, we conclude that
L(B) = Lrr—1. Since B is deterministic and trim, we know that B’ = ming -1
must be a quotient of B (that is, obtained from B by identification of vertices). It
is not difficult to check that all the properties characterizing a complete inverse
automaton are preserved by quotients, with the possible exception of determinism.
Since B’ is deterministic by definition, then B’ is itself complete and inverse. We
write B' = (Q',i',T", E'). . o
We define now the X-automaton R = (X U1,1, X U1, Eg), where
Er={(y,z,2) e XU x X x X |y#a '}
It is easy to check that R = min~,. We show that
A= tr(B' x R). 4)
Let C = tr(B’ x R). Since B’ and R are both deterministic, so is C. Moreover,
L(C)=L(B' xR)=LB)NLMR) = Lrr ' NX 1= L,

thus we conclude that C is a trim deterministic automaton recognizing Lt¢. To
show that C = miny, = A, it remains to show that the equivalence 7 defined in
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the vertex set of C by (1) is the identity. Write C = (Qc¢,ic,Tc, Ec) and let
p,q € Q¢ be distinct. We must show that L(Qc,p, Te, Ec) # L(Qc,q,Tc, Ec).
Since C is a subautomaton of B’ x R, we may write p = (p1,p2) and ¢ = (q1, ¢2)
with p1,q1 € V(B') = Q' and p2,q2 € V(R) = X U 1.

Consider first the case py # ¢2. Interchanging p and ¢ if necessary, we may
assume that there exists some x € X such that poz is defined in R but gz is not
— equivalently, pox is a reduced word but gox is not.

We remark now that we can always reach a terminal vertex from any vertex of
B’ x R. In fact, let (s1,s2) € V(B x R). Take m = |Q'| and take y € X — 55 "
Since B’ is complete, we have a path

m

y
§1—T1
in B’ for some vertex r1. Since B’ is trim, we have a path
u
ri—t; —

in B’ onto some terminal vertex t;. We may assume of course that |u| < |Q’|. We
conclude that there exists a path

m

Yy ou
$1—t1 —

in B’. By Lemma 4.1(i), there exists a path of the form

(y"u)e
S1 4%1 — .

Since m > |ul|, we have (y™u)t = yv for some reduced word v. Since y # s5 ', we
must have a path

(51552)%(151;152) -
in B’ x R for some t3 € V(R).

Now, since B’ is complete, p1z is defined and the preceding remark implies that
we have a path

(p1,p2) (b1, ta) —

in B’ x R (and therefore in C) for some terminal vertex (¢1,t2). However, since
g2z is not defined in R, we have no path of the form

(41, 92) (1, t5) —
in C. Thus L(Qc¢,p,Te, Ec) # L(Q¢,q,Tc, Ec) in this case.
Assume now that ps = g2. Thus p; # ¢1. Since B’ is a minimal automaton,

the languages L(Q',r',T', E’) (' € Q') are all different. Thus there exists some
M € N such that the words in

{fweX"| |lw <M}
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suffice to distinguish all of them. Take z € X such that pox is defined in R. Since
B’ is complete, pyxM and gz are both defined. By Lemma 4.1(ii), p; # ¢
implies p12™ # ™. Without loss of generality, we may then assume that there
exists some w € L(Q',p1a™M, T’ E") — L(Q', 1™, T’, E') with |w| < M. Since B’
is complete, we have in fact w € L(Q', 2™ ,Q" — T', E’). Thus

xMwEL(Q’,pl,T’,E’), xMwEL(Q’,ql,Q’—T’,E/)
and Lemma 4.1(i) yields

(zMw)e € L(Q',p1, T', E), (zMw) € L(Q',q1,Q" —T', E').

Since |w| < M, we have (zMw). = zu for some reduced word w.
Since pox is defined in R, we have a path

Tu

(p1,p2)—(t1,t2) —

in C for some t; € T and t2 € V(R). However, since gizu ¢ T’, we have no path
of the form
(g1, q2) == (8], t5) —
in C. Thus L(Q¢,p,Tc, Ec) # L(Qc,q,Tc, Ec) also in this case and (4) holds.
We show now that D(A) is complete. By (4), we may assume that A = tr(B’ x
R). Let (p1,p2) € V(D(A)) = V(A) and = € X. Since A is trim, we have a path
of the form

— (i 1)i>(p17p2)
in A. Suppose first that the last letter of w is z7!. Then we have an edge
((qlaq2)5$_17(plap2)) in A and so ((p17p2)7x7 (Q17Q2)) € E(D(-A)) as reqU-ired'
Suppose now that 2~ is not the last letter of w. Then we have an edge (p2, z, )
in R. On the other hand, since B’ is complete, we have an edge of the form
(p1,z,q1) in B’. Thus ((p1,p2),x, (q1,x)) € E(B' x R). We remarked before that
we can always reach a terminal vertex from an arbitrary vertex of B’ x R, hence
(¢1,2) € V(C) and so ((p1,p2),,(q1,2)) € E(A) C E(D(A)). Thus D(A) is
complete.

Next we show that

L(D(A)) = Lrr*. (5)

Let w € L(D(A)). Then we have a successful path

- (pOa QO)A(pla ql)ﬂ’ cee i’(pna Qn) -

in D(A) with z1...2, = u. Let j € {1,...,n}. By definition of D(A), we have
either

((pj—1,4j-1), 25, (pj. 45)) € BE(A)  or  ((pj,45),2; "5 (Pj—1,45-1)) € E(A).
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Hence (pj_1,z;,p;) € E(B’) or (pj,xj*l,pj_l) € E(B'). Since B’ is inverse, we get
(pj—1,25,p5) € E(B’) in either case and so we have a path

z1 T2 Tn
—Po—P1——--- —Pn

in B, showing that u € L(B') = Lrn~!. Thus L(D(A)) C Lar~ L.
The reverse inclusion follows from Lemma 4.5, hence (5) holds. Thus

(L(D(A)))e = (Ler ) = Le

and so condition (iv) holds.

Conversely, assume that condition (iv) holds. We show that (i) holds. By
Lemma 3.5(ii), we must show that Lx7~! € Rat X", Therefore it suffices to show
that Lrm—1 = L(D(A)).

Since Ker: = Kerrm, we have (L(D(A)))m = Lt and so L(D(A)) C Lxm— .
The converse inclusion follows from Lemma 4.5. Therefore (i) holds and so (i) is
equivalent to (iv).

Since (ii) is equivalent to (iii), it is clear that (v) is implied by the other condi-
tions. It remains to prove that (v) implies (L(D(A)))t = Lit. We assume then that
(v) holds. Since Lt C (L(D(A)))e trivially, we only have to prove the opposite
inclusion. We start showing that

urz v € L(D(A)) = wv € L(D(A)) (6)

holds for all u,v € X and z € X. Since 7*/ ~L(D(A)) is a (finite) group, there
exists some n > 0 such that

" ~ppay) 1 ~rnmey) "

On the other hand, by Lemma 4.3(i), we know that D(A) is complete and so we

can always insert a loop labelled by 2”1z~ at any position in an arbitrary path

in D(A). Thus
urr~'v € L(D(A)) = uz"z""v € L(D(A)) = ur "0 € L(D(A)) = uv € L(D(A))

and (6) holds.

Let w € L(D(A)). By (6), we have w. € L(D(A)). Write we = ...z,
with 21,..., 2 € X. Since L # (), then Pref(Li) = X".. Thus there exists some
z € X v such that (we)z € Li. Therefore we have paths of the form

. 1 x2 Tk
—lt=po—P1—... — Pk 7
. i ) Tk 4
== Qo ot —

in D(A) and A, respectively. By Lemma 4.2, we obtain g, = pi, hence we € Lt
and (L(D(A)))t C Lt as required. Therefore (L(D(A)))t = Lt and the theorem is
proved. (I
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Together with Lemma 4.3(ii), the next example shows that we cannot omit any
of the conditions appearing in (ii)—(v) of the preceding theorem.

Example 4.7. Let X = {z} and L = x. Then (L(D(A)))t = Lt but Pref(L.) #
X'

Proof. Straightforward computation shows that L(D(A)) = (xz~!)*z. Thus
(L(D(A)))t = x = Li. However,

Pref(Li) = {1,2} # X ©. O

We can now deduce the following result, proved in the end of Section 3 of [7].

Corollary 4.8 [7]. Given L € RatX , it is decidable whether or not Lw €
Rec FG(X).

Proof. If L = 0, then Lm = 0 € Rec FG(X). Assume that L # (). In view of
Lemma 3.4, the automaton A can be effectively constructed, and so can D(A).
Therefore any one of the conditions (ii)—(v) in Theorem 4.6 can be checked using
the basic decidability properties of rational languages. O

The following corollary provides yet another characterization of recognizability
involving D(.A), less interesting because nonalgorithmic.

Corollary 4.9. Let L € RatX " and let A = ming,. Then the following conditions
are equivalent:

(i) L7 € Rec FG(X);

(i) Lwn' € RatX ;

(ii) Lrr—t = L(D(A)).
Proof. The equivalence (i) < (ii) follows from Lemma 3.5(ii). The implication (i)
= (iii) follows from (5) in the proof of Theorem 4.6 for L # . In the case L = 0),
it is immediate. Finally, we have (iii) = (ii) trivially. d

We can also obtain the following result, also proved in the end of Section 3
of [7].

Corollary 4.10. Let L € RatX " be such that Lw € Rec FG(X). Then the syntac-
tic congruence ~p,, is decidable and the syntactic group FG(X)/ ~pr is effectively
constructible.

Proof. By Lemma 2.1, we have a monoid isomorphism
X'/ ~pmn1— FG(X)] ~pmi W ~pm-1 (W) ~pr

By Corollary 4.9, we have Lan~! = L(D(A)). Thus, to decide whether or not
(um) ~r (vm) for some given u,v € Y*, we only need to check if u ~p(p(ay) v,
and this can certainly be done because L(D(A)) is an effectively constructible
rational language. Therefore ~ . is decidable.
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Since .
FG(X)/ ~1r= X [ ~r(D(a))
we conclude that FFG(X)/ ~r, is in fact effectively constructible. O

5. THE RIGHT STABILIZER METHOD

An alternative (and shorter) path to the recursiveness of Rec FG(X) is given
by the computation of right stabilizers. The following result is the cornerstone of
the whole approach.

Theorem 5.1. Let L, L' € RatX  and define
P={ueX | (Lu) C L't}

Then P € RatX .
Proof. Given u € X "1, we have that
wueP & (Luun (X t—L') =0
& =((Lu)en (X0 — L'e) # 0)
& =(ue (L YX v —L)))
sueX 11— (LY X - L)),
thus P = X ¢ — (L7Y(X v — L't)) is an effectively constructible rational X-

language by Lemma 3.4 and the standard closure properties of rational languages.
O

Now we are able to prove:

Theorem 5.2. Let L € RatX . Then (R(Lx))w ', (S(Lw))m '€ RatX and
are effectively constructible from L.

Proof. Since R(0)) = S(f) = FG(X), we may assume that L # (. In view of
Lemma 3.4 and Lvm = Lw, we may also assume that L C X 1. Write

R = (R(Lm))n .
We have

R = (R(L72)*7r_1 NX 1t={weX ¢|(Lr)(wr) C Lr}
={weX | (Lw) C L},

hence R’ is an effectively constructible rational language by Theorem 5.1.
Write
S = (S(Lm))m L.
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We have

§" = (S(Lm)m~" N X'v={weX | (Ln)(wr) = Lr}
={weX | (Lw)=L}

Since
(Lw)y=L < (Lw)e CL A LC (Lwy < (LweCL A (Lw ) CL,

we conclude that
S'=Rn(R)
Therefore S’ is also an effectively constructible rational language. ([l

The following lemma prepares us for a new characterization for recognizability.

Lemma 5.3. Let H be a subgroup of FG(X). Then [FG(X) : H| < oo if and
only if Hr='v € Rat X and Pref(Hr 1) = X 1.

Proof. Suppose first that [FG(X) : H|] < co. We observed before that Z(H) is a
complete inverse automaton recognizing Hn~!. By Lemma 3.4, we conclude that
Hrn've Rat X . Let u € X ¢ If u is not itself cyclically reduced, then | X| > 1.
In any case, there is some x € X U1 such that ux is a nonempty cyclically reduced
word. Let n = [FG(X) : H| = |V(Z(H))|. Since Z(H) is complete and trim, it
contains a path of the form

. (uz)™ v o,
— 1 — .

We can assume that |v| < n. By Lemma 4.1(i), we obtain
((uz)"v)e € L(Z(H)) = Hrn '

Since uz # 1 and |v| < n, we have ((uz)"v). = uw for some w € X t. Thus
ww = (uw)e € Hr~ ' and u € Pref(Hr—141).

Suppose now that Hrx~!', € RatX and Pref(Hn ') = X 1 Let A =
(Q,4,T, E) denote ming,—1,. For every ¢ € @, we fix a path of the form

—2st e T.
We show that
FG(X)= | H(w;'n). (7)
9€Q

Let u € X ¢. Since Pref(Hr 1) = X", there exists a path in A of the form
i—q. It follows that uw, € L(A) = Hr~'s and so (uw,)m € Hr~'um = H. Thus

umw = (quw(;l)ﬁ € H(w;lﬂ)

and (7) holds. Therefore [FG(X) : H| < oo as required. O
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Corollary 5.4. Given L € Raty*, the following conditions are equivalent:
(i) L7 € Rec FG(X);
(ii) [FG(X) : S(Lm)] < oo;
(iii) Pref((S(Lw))r ') = X 0.

Proof. The equivalence (i) < (ii) follows from Proposition 3.2 and the implica-
tion (ii) = (iii) follows from Lemma 5.3. Finally, assume that (iii) holds. Since
(S(Lm))m~1r € Rat X by Theorem 5.2, we obtain [FG(X) : S(Lx)] < oo by
Lemma 5.3. Thus (iii) = (ii) as required. O

An alternative algorithm for Corollary 4.8 follows, since condition (iii) in Corol-
lary 5.4 is decidable in view of Theorem 5.2.

We give now an alternative proof for Sénizergues’s theorem on rational FG(X)-
languages, that proved in its full generality the conjecture raised by Sakarovitch
in [5] and [6].

Corollary 5.5 [7] (Th. 1.1). Given A € Rat FG(X), then either A € Rec FG(X)
or ~ 4= id.

Proof. Let A € Rat FG(X). By Lemma 3.5(i), we have A = L for some L €
Rat X . Assume that A ¢ Rec FG(X). By Lemma 3.1(iv), we must show that
N(A) = 1. By Corollary 5.4, we must have Pref((S(4))r~'t) # X «. Take
uwe X 1—Pref((S(A))r='s) and let v € X 1—1. We need to show that vr ¢ N (A).

Consider first the case | X| = 1. Since v is reduced and nonempty, there exists
some nonzero integer n such that u is a prefix of v™. Thus v" ¢ Pref((S(A))r~1.).
Since vr € N(A) would imply (v")7 € S(A) and so v™ € (S(A))r ¢, we conclude
that vm ¢ N(A).

It remains to be considered the case | X| > 1. Since v and v are both reduced
words, there exists some reduced word w such that vwow=tu=! € X' In fact,
we only need to make sure that:

e the first letter of w is not the inverse of the last letter of u;

e the last letter of w is not the last letter of v;

e the last letter of w is not the inverse of the first letter of v.
Since |X| > 4, this can be easily achieved. Suppose that vm € N(A). Then
(uvwvw tu=Hr € N(A) C S(A) and so

uwvw ruTt = (uvwvwtu)e € (S(A))r .
This contradicts u ¢ Pref((S(A))m~1.), hence v ¢ N(A) as required. O

In view of Corollaries 4.8 and 5.5, we may now extend Corollary 4.10 to rational
languages, providing in the whole an alternative path to yet another Sénizergues
result:

Corollary 5.6 [7]. Let A € RatFG(X). Then the syntactic congruence ~ 4 is
decidable and the syntactic group FG(X)/ ~a is effectively constructible.
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