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AXIOMATIZING OMEGA AND OMEGA-OP POWERS
OF WORDS
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Abstract. In 1978, Courcelle asked for a complete set of axioms and
rules for the equational theory of (discrete regular) words equipped
with the operations of product, omega power and omega-op power.
In this paper we find a simple set of equations and prove they are
complete. Moreover, we show that the equational theory is decidable
in polynomial time.
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1. INTRODUCTION

The theory of finite automata and regular languages on finite words has been
generalized to various linear and nonlinear structures. In many cases, the study of
such extensions was motivated by questions from formal logic. The linear struc-
tures studied include omega words [8], (countable) ordinal words [1,9,10,17], and,
more recently, all (countable) words on scattered linear orders, in the terminology
of [6,7,14], ¢f. [6,7], where there is a unified treatment.

Countable words3, i.e., finite or countably infinite labeled linear orders, were
already studied by Courcelle in the 1970’s. He singled out a subclass of countable
words that we call regular words. These words arise as initial solutions of finite
systems of recursion equations. Since each finite system of recursion equations
unfolds to a system of regular trees, it follows that the regular words are exactly
the frontiers of regular trees. This observation was made explicit by Thomas
in [15]. He also gave a characterization of regular words in terms of formal logic.
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He showed that a nonempty countable word, viewed as the isomorphism class of
a labeled linear order, is regular iff it is a model of an Ny-categorical sentence
of a certain monadic second-order logic. In [5], the authors have shown that a
countable word is regular iff it can be defined on an ordinary regular language
(which can be chosen to be a prefix code) equipped with the lexicographical order
such that the labeling function satisfies a regularity condition.

Courcelle defined the operations of product, omega power and omega-op power,
and characterized the least class of words that can be generated from the letters of
an alphabet by a property of (regular) trees. It was shown by Heilbrunner in [13]
that a word belongs to this class iff it is a nonempty scattered regular word. An
infinite collection of operations generating all regular nonempty words from single
letters, including those having dense suborderings, was also described in [13].

In this paper, our concern is the equational theory of words equipped with the
operations of product, omega power and omega-op power. Courcelle [11] asked
for a complete set of axioms and rules for this theory. In this paper, we find such
a system. The axioms are the identities given in Definition 3.6, and the rules
are those of standard equational logic. Our methods also give a polynomial time
decision algorithm. (That the equational theory is decidable follows from the result
of Thomas [15] to the effect that the equality of the frontiers of regular trees is
decidable. However, no elementary upper bound seems to be known for this more
general problem.) Moreover, it follows that for any alphabet A, the algebra of
discrete regular A-labeled nonempty words is freely generated by A in the variety
axiomatized by the equations in Definition 3.6.

Our results extend those in [3] concerning the equational theory of just the
operations of product and omega power. However, the arguments and methods
used here are quite different. In particular, we have not used automata to achieve
the polynomial complexity bound.

We use what might be called a “bottom up” method to prove the completeness
theorem. Given a scattered word u, we show how to partition its underlying linear
order L, into blocks of an equivalence relation: two points p < ¢ are in the same
block iff the interval {x € L, : p < x < ¢} is finite. The blocks of L, are also

o~

linearly ordered in the obvious way, and we denote this linearly ordered set by L.
The blocks of scattered regular words are denoted by what we call the “primitive
terms” below. It turns out that if two primitive terms s,¢ denote isomorphic
words, then our axioms Ax are strong enough so that Ax F s = t. We then may
choose a normal form for primitive terms. Now, we let u denote the word on /L\u7
where a block is labeled by a new letter corresponding to the normal form for any
primitive term denoting the block. In order to show that u is also regular, we
make use of “proper terms”. Any scattered regular word on A is denoted by a
term on A, built from letters in A using the operations of product, omega and
omega-op power. We prove that every term is provably equal to a proper term.
If ¢ is a proper term, we show how to obtain a term ¢ and a substitution o such
that the word denoted by 7 is @ and () = t. These preliminary results allow a
quick proof of the completeness theorem, as seen below.
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1.1. NOTATION

w is the linearly ordered set of the nonnegative integers; w°P is the linearly
ordered set {...,—2,—1,0}.

2. LINEAR WORDS

If (L, <) is a linearly ordered set, and p < ¢ in L, we say ¢ is the successor
of p, and p is the predecessor of ¢, if there is no r € L with p < r < gq.

A linear word, (L,,<,u,A) consists of a linearly ordered set (L., <), an
“alphabet” A and a “labeling function” w : L, — A. When the alphabet A is
fixed, we say for short that u is a word on A, or (an “A-labeled word”) over the
linear order (L., <). The linear order (L,, <) is the underlying linear order of w.
When L, is empty, we have the empty word, written 1, on A (for any set A).
An interval of the linear order (L, <) is a subset I of L such that if p < ¢ <r in
L, and if p,r € I, then q € I. If u,v are words on A, we say v is a subword of u
if L, is an interval of L,, and if, for any p € L, v(p) = u(p).

If u and v are words over A with underlying linear orders (L., <) and (L,, <),
respectively, a morphism h : © — v is an order preserving function h : L, — L,
which preserves the labeling:

Thus, for any set A, the collection of words on A forms a category. Two words
u,v on A are isomorphic when they are isomorphic in this category, i.e., when

there are morphisms h : u — v, g:UHusuchthatuiviuandviugv
are the respective identities. We write u = v when v and v are isomorphic. We
usually identify isomorphic words.

We equip the collection of all words on A with several operations. Suppose that
u= (Ly,<,u) and v = (L,, <,v) are words. The product « - v is the word over
the sum L, + L,, i.e., over the disjoint union of L, and L, ordered so that x < y,
for every xz € Ly, y € L,; for pairs in L, or L,, the order is the original one. For
x € Ly + Ly,

(u-v)() =

v(z) ifx € L,.

{u(:c) ifrxelL,
The omega power of u, denoted u®, is the word whose underlying order is L, X w,

ordered and labeled as follows:

(z,i) < (y,j) < i<jor(i=jandz <y)

u’(z,1) = wu(x).
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Similarly, the omega-op power u*"" of u is the word whose underlying order is
L, x w°P, ordered and labeled as for u*, but now i, j range over the nonpositive
integers.

In the latter sections, we will also be considering the reverse operation u — u”.
The underlying order of u” is (L., >), i.e., the reverse of (L,,<). The labeling
function of the reverse is the same as that of u.

Remark 2.1. The operations just defined make sense also for “partial words”,
i.e., labeled partially ordered sets. For example, the underlying partial order of
the product u - v is, as a set of pairs, <, U <, U(Ly, X L), where <, is the set of
ordered pairs (z,y) € L, such that x < y; similarly for <,.

Note. The subcollection of all words on A whose underlying linear order is finite
or countably infinite is closed under the operations of product, omega and omega-
op power. As mentioned in the introduction, in [13], the least collection of words
on A which contains the singletons labeled a € A, closed under product, omega
and omega-op powers was shown to be the nonempty scattered regular words, i.e.,
those nonempty scattered words isomorphic to the frontier of a binary regular tree.
(A word is scattered [14] if there is no order embedding of the rationals into its
underlying linear order.)

3. TERMS

All of our algebras (X,-* ") are enrichments of a semigroup (X, -) by two
unary operations z — z*, and x — z*”°. The basic models are the algebras
(AW, - » @ ) of all finite and countable words on the alphabet A, enriched with
the three indicated operations. For each such algebra, we let (AR, -,* W ) denote
the least subalgebra of AW containing the singletons, i.e., the subalgebra of AW
consisting of the scattered nonempty regular words.

Proposition 3.1. Suppose that A and B are sets and B is any algebra of words
on B equipped with the operations -* *"". Then any function A — B can be
extended to a homomorphism AW — B.

Proof. Given h: A — B, for each word u in AW define h*(u) as the word obtained
by substituting a disjoint copy of h(a) for each € L,,, where u(z) = a. It is a
routine matter to show that hf is a homomorphism. (I

Definition 3.2. Let A be a fixed set.

(1) A term on the alphabet A is either a letter a € A, or t - #', t* or t*”,
where t,t’ are terms on A.

(2) When t is a term on the alphabet A, we let |¢| denote the linear word on
A denoted by t. More precisely, |a| is a singleton set, labeled a. Using
induction, we define
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|- t] = Jt] - |
] = [t
7] = e

(3) An equation ¢t = ¢’ is valid if |¢| & |¢/].

(4) The height of a term ¢, denoted ht(t), is the maximum number of nested “
and “” operations. Terms of height zero are called “finite terms”. Those
of positive height are “infinite terms”.

We sometimes add a term 1 of height 0 denoting the empty word. When ¢ is a
term, 1-¢t and t-1 mean ¢; 1 -1 means 1.

As usual, each term on A induces a term function X4 — X over any algebra X
equipped with the operations -, ,“”*. For a term ¢, the word t| is just the value
of the function induced by t over the algebra AW when each letter a is evaluated
as the singleton word labeled a.

From Proposition 3.1 we immediately infer the following fact.

Proposition 3.3. For any terms t,t' on A, t = t' is valid iff t = t' holds in all
algebras of words under any evaluation of the letters in A, i.e., when t = t' holds
in the variety generated by all word algebras.

Because we will always interpret the operation sign - as an associative operation,
we allow ourselves to write terms such as ¢y -ts - - - tg, for £ > 3, with no parentheses.

Definition 3.4. We assume a nonempty “alphabet” A. A primitive term (on A)
is either

(1) a1---ax, a; €A, k>1(a “finite” primitive term), or

(2) a1---ag(br---bm)¥, a;,b;j € A k>0,m>1 (a “right infinite” primitive
term), or

(3) (em---c1)*"ag---a1, a; ¢; €A, k>0,m>1 (a “left infinite” primitive
term), or

4) (em-c1)*"ag---ar(by--bp)?, ai,bj,c € A k>0, mn>1 (a“bi-
infinite” primitive term).

A proper term is either

e a primitive term, or

e a term of the form ¢-¢ where t,t’ are proper terms and |¢| has no greatest
element or [¢'| has no least element, or

e a term of the form ¥, or t*”*, where ¢ is a proper term and [t| either has
no least or no greatest element.

An extended primitive term is either 1 or a primitive term; an extended
proper term is either 1 or a proper term.

Remark 3.5. If r,[ are primitive terms such that |r| has a greatest and |I| has a
least element, then 7 - [ is primitive. Indeed, » must have the form 3.4.1 or 3.4.3,
and [ must have the form 3.4.1 or 3.4.2.
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Definition 3.6 (The axioms). Let Ax denote the following infinite set of equations
between terms on the three-element set x,y, 2.

(-y)-z=z-(y-2) (1)
(-y)* =x-(y z)* (2)
(@) =@ 2"y (3)
(z")“ =2, n>2 (4)
()" =", n>2 (5)

Remark 3.7. In [2], Bedon and Carton define semigroups equipped with an omega
power operation satisfying (2) and (4). These semigroups are a one-sorted version
of Wilke algebras®* [16].

Proposition 3.8. Fach equation in Ax is valid.

For terms ¢t and ' on A, let us write Ax -t = ¢/ iff ¢ =t/ is derivable from the
equations in Ax by the rules of equational logic. (Note that in a derivation, axioms
may be instantiated by terms on A.) It follows from Propositions 3.8 and 3.3 that
any such equation is valid.

The following theorem is one of the main tools used to prove the completeness
of the axioms.

Theorem 3.9. For each finite term t on A there is a unique finite primitive term
ay---ap on A such that AxFt=a1---ag.

For each infinite term t on A there are extended primitive terms l,r and an
extended proper term m on A such that:
AxkFt=1-m-r;
[t| has a least element iff | # 1;
[t| has a greatest element iff r # 1;
if m # 1, either |l| does not have a greatest element or |m| has no least,
and either |m| has no greatest element or |r| has no least; if m =1, then
either || has no greatest or |r| has no least;

e ht(l-m-r)=ht(t).

Thus, since | - m -1 1is proper, for each term t there is a proper term t' with
ht(t') = ht(t) and AxkFt=1t.

Proof. The claim for finite terms is clear, using the associativity axiom.

Suppose now that t is an infinite term.

Ift = (a;---ap)?, welet I =tandlet m =7 =1;if t = (ag---a1)*", we let
Il=m=1andlet r =1t.

We continue by induction on the structure of ¢.

Suppose that ¢t = t1 - to. If ¢1 is finite, so that ¢, is infinite, let [ = aq - - - arlo,
m = mg and r = ry, where Ax - t1 = a1 ---ax and Ax - to = ly - mgy - ra, by the
induction hypothesis. Similarly when ¢, is finite and ¢; is infinite.

“Wilke algebras are called “binoids” in [16].
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Now assume t = tq - to and both ¢, ts are infinite terms. Then, let

l=10
m = mq - (r1la) - ma

T =T,

where Ax - t; = l; -m; - r;, i = 1,2, by the induction hypothesis. Note that we
need not worry about the case when r; has a greatest and Iy has a least element,
by Remark 3.5. Also, Ax+t =1-m-r, by the associativity axiom (1).

If t = (¢1)“, and t; is infinite with AxF ¢ =13 - mq - r1, we let

=1
m = (m1 7“111)
r=1.

Axtt=1-m-r, by axiom (2).
Ift = (tl)‘*’op where t; is infinite with Ax Ft1 = Iy - mq - 1, we let

=1
m = (7"1[1 . ml)wop
rTr=17T.
Axtt=1-m-r by axiom (3). This completes the proof. O

Proposition 3.10. Suppose that t1,ts are primitive terms on A. Then

|t1| = |t2| <— Axhtt; =ts.

Proof. In fact, for each primitive term there is a normal form. The normal form
of a finite term is itself. For a term of the form a;---ax(by---by)¥, we find
the shortest word b; - - - b; such that by --- b, is a power of by ---b;, and then ap-
ply the rewriting rule z(yx)¥ ~ (xy)¥ to ai---ag(by---b;)* as many times as
possible. Then [t;| 2 |to| iff t; and t3 have the same normal form. The nor-
mal form of a left infinite primitive term is obtained in the same way. Note
that the normal form of a finite, or left or right infinite primitive term is unique
modulo associativity. As for bi-infinite primitive terms, a normal form is a term
(bg - -+ bl)“’op ay - am(cy - cy)¥, where neither by, - - - by nor ¢; .. . ¢, is a nontrivial
power of a word, moreover, if m # 0, then a; is different from by and a,, is different
from ¢,,. However, the normal form may not be unique. In that case, m = 0 holds
for all normal forms, and the normal forms are equivalent modulo the equation

(2y)“” () = (y2)°"" (y2)*,

which is easily derivable from the axioms. O
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Now fix the alphabet A. A primitive word® is either a finite word on A or
a word on A whose underlying linear order is isomorphic to w,w or w? + w,
which is ultimately periodic (in both directions in the later case). Thus, the
nonempty primitive words are those denoted by primitive terms. Thus, for a finite
or countable alphabet A, there are only countably many primitive words on A.

Suppose that v is a linear word on A, with underlying order (L., <), and
suppose v is a subword of u, with underlying linear order (L,,<). We say v is
closed with respect to the successor relation if whenever z,y € L and y is
the successor in L, of z, then x € L, <= y € L,.

A minimal successor closed subword of a word u is a nonempty subword of u
which is closed with respect to the successor relation and which does not contain
any proper nonempty subword with the same property.

The minimal successor closed subwords of u are the blocks of the equivalence
relation = on L,,:

p=q < p<qand [p,q] is finite, or
q < p and [g, p] is finite.

Here, [p,q] = {z:p <z < g}.

Proposition 3.11. Any minimal successor closed subword of a word is either
finite, or its underlying linear order is isomorphic to w,wP, or wf 4+ w.

Proposition 3.12. For any term t on A, each minimal successor closed subword
of |t| is a primitive word.

Proof. Clear, either from Theorem 3.9, or by a straightforward induction. O

Example 3.13. The word abaaba®b...a"b. .. is a minimal successor closed word,
but it is not primitive.

Definition 3.14 (The new alphabet B). For each nonempty primitive word u on
A, let b, be a new letter in an alphabet B disjoint from the set of all terms on A.

Now, given a linear word v on A whose minimal successor closed subwords
are primitive, let u denote the linear word on B whose points are the minimal
successor closed subwords of u, each labeled by the corresponding letter in B. The
order in u is inherited from wu.

Proposition 3.15. Suppose that u,v are A-labeled words whose minimal successor

~

closed subwords are primitive. Then, u = v iff u = v.

~

Proof. If u = v, then clearly u = v.

Now let ¢ : u — v be an isomorphism. We define an isomorphism ¢ : u — v,
as follows. When M is a minimal successor closed subword of u, and x € M, let
©® (M) denote the minimal successor closed subword of v containing ¢(x). O

5Tn the field of Combinatorics on Words, a “primitive word” is a finite nonempty word which
is not a proper power. This is not the way we are using the term.
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Lemma 3.16. Let u; and ua be words whose minimal successor closed subwords
are primitive.
e Suppose that uy has no greatest element or that us has no least. Then

-

Uy - Uy = /’Lzl"/u\g.

e Suppose that uw # 1 and u has no least or no greatest element. Then

o~

uu}

(uw)”

and

— op

ur” = (u)*

Proof. For uy - ug: there exist no x € L,, and y € L,, such that in uy - ug, y is
the successor of x. O

Let ¢, be a primitive term on A such that |¢,| = u. Since by Proposition 3.10
all such primitive terms are equivalent with respect to the axioms, in the subse-
quent arguments we can fix the term ¢, for each nonempty primitive word u. For
example, we can take the lexicographically least. Let ¢ denote the unique term
homomorphism mapping terms on B to terms on A such that

for each letter b, € B. Let o also denote the substitution that maps a linear word
on B to the corresponding word on A, so that for every term ¢t on B,

(&) = a([t])-

Proposition 3.17. For each proper term t on the alphabet A there is a term t on
the alphabet B such that o(t) =t and ht(t) < ht(t) when t is infinite. Moreover,
if [t| = u, then |t]| = u.

Proof. If t is primitive, then Tisa single letter, and 0(?) = t, by definition of o. If
t =1, -ty is proper, then ¢ = t; - t2, by the lemma. Since o is a homomorphism,
using induction, o(t) = t. If t = (t;)* or (t,)*”", then t is (1) or (1),
respectively. Again o(t) = t. O

As mentioned earlier, if Ax -t = ¢/, for terms ¢ and ¢/, then the equation t =t/
is valid. We now prove the converse.

Theorem 3.18. The axioms are complete: any valid equation is derivable from Ax.

Proof. Suppose that t1,t2 are terms on A such that [t;| 2 |t2|. We use induction
on

h := max{ht(¢t1), ht(t2)}
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to show that Ax - ¢t; = to. When h = 0, the only axiom needed is the associativity
axiom. Now suppose that h > 0, so that both ¢1,t; must be infinite terms. By
Theorem 3.9, there are proper terms s1, s such that Ax - ¢; = s;, and ht(s;) =
ht(t;) < h, i = 1,2. Since |s1] = |s2|, also |$1| = |S2|, by Propositions 3.15
and 3.17. Now ht(s;) < h, i = 1,2. By induction,

Ax §1:§2.

But, by Proposition 3.3, for any terms ¢,t’, and any term morphism ¢, if Ax -t =
/', then Ax F p(t) = @(¢'). Thus, in particular,

Ax F o(51) =0(3$2),
i.€.,
Ax S§1 = 82,

and thus,
Ax tl = tg. U

Corollary 3.19. There is an O(n3) algorithm to decide if an equation t = t' is
valid, where n is the total number of symbols in the terms t,t’.

Proof. Our recursive algorithm first converts the terms ¢ and ¢’ into proper terms,
using the constructive proof of Theorem 3.9. During the conversion, the primitive
subterms are brought into normal form and an ordered list of the encountered
normal forms is maintained. (We assume a lexicographic order on the normal
forms and that in case of ambiguity the lexicographically least normal form is
selected.) This can be done in O(n?) time. If ¢ and thus ' are finite, we just
compare the two sides for syntactic equality. If ht(¢), ht(¢t') > 0, then, in linear
time, we compute the terms ¢ and 7" and repeat the procedure. Since h is at
most n, and since the heights are reduced by one at each step, the algorithm
terminates in O(n?) time. O

Corollary 3.20. Ift =t' is valid, then ht(t) = ht(t').

Proof. The algorithm given in the proof of Corollary 3.19 reduces the heights of
the terms by one in each step. Moreover, when ¢ = t' is valid, the algorithm
terminates with height 0 terms. O

3.1. ADDING REVERSE

In a more or less routine manner, we may now obtain an axiomatization of the
equational theory of linear words enriched with the operations of product, omega
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and omega-op power and the reversal operation ¢ — ¢". The axioms are (1, 2, 4)
together with

(") ==z (6
(x-y) =y -a" (7
(@) = (@)~ (8)

The axioms (3), and (5) are now redundant.

3.2. ADDING 1

We may add a constant term 1 to denote the empty word (on any alphabet),
and then add the following axioms to those in Definition 3.6.

l-z2=2 =2x-1
(1)* = @) =1
1"=1

4. ALL AXIOMS

For the reader’s convenience, we list the totality of the axioms.

(-y)z=z-(y-2)
(@-y)* =a-(y -x)*
(@ 9" = (y-2)" -y
@) =2 n>2
(™) = 2", n>2

(") ==

(-y)" =y 2"

(@) = ()"
lz=2 =2x2-1
N !

1" =1

5. FREE ALGEBRAS

The first theorem follows immediately from the proof of the Completeness The-
orem, Theorem 3.18.



14 S.L. BLOOM AND M.Z. ESIK

Recall the definitions of the word algebras (AW, ") and (AR,,-* ")
above Proposition 3.1.

Theorem 5.1. Let V be the variety of all models of Ax in Definition 3.6. For
any set A, the algebra freely generated by A in'V is the algebra (AR, -,* “"") of
scattered, reqular, A-labeled nonempty words.

For any alphabet C, we have defined the reverse u” of a word in the word
algebra CW as follows: the underlying order of u” is (L,, >), the reverse of the
underlying order (L., <) of u, and the labeling of points in L, is the same as that
in w. The enrichment of the algebra (CW, - ,“’Op) by this reverse operation is
denoted C'W also.

Now, fix a set A and choose a set A disjoint from A and a bijection a — @ from
A — A. We modify the reverse operation in ((A U A)R,,-,* "), the algebra of

all regular, scattered A U A-labeled linear orders.

a”

(@)" =

I
SIS

On the other words in (A U A)R,, we define

(u-v)" =" u
(uw)r u” )w"p
(uw”p)r — (ur)w

The last equation follows from the previous one and the fact that (u")" = u.

Theorem 5.2. Let V" be the variety of all models (X, -, T of the identi-
ties (1), (2), (4), (6), (7), and (8). For any set A, the algebra freely generated
by A in V" is (AU A)R,, equipped with the above operations. By letting 1 denote
the empty word in (AU A)R,, we obtain the algebra freely generated by A in the
variety of all models of the complete set of the identities in Section 4.

6. OTHER MODELS

Aside from the countable word algebras AW, we mention three other classes of
models.
(1) Uncountable words: for any infinite cardinal R, and any fixed set A, the
collection of all words on A over linear orders of cardinality < N satisfies
all of the axioms above, with the same definition of the operations.
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(2) Partial words: as noted in Remark 2.1, the operations u- v, u*, uw” u” are
meaningful for labeled partially and not necessarily linearly ordered sets.
Further, for any infinite cardinal X, and any fixed set A, the collection of
all A-labeled partially ordered sets of cardinality < N satisfies the axioms.

(3) Languages of words: for any set A and any infinite cardinal R, the col-
lection of all languages of words on A over linear (or partial) orders of
cardinal < N satisfies the axioms; a language of words is, as usual, a sub-
set of words, and the operations on subsets of words are defined as follows:

U-Vi={u-v:uelU veV}
Uw.{{ul-ug...:uieU} if1¢U
ol {1u U - {1~ ifl1eU
e .{{...ug-ulzuiGU} if1¢U
O {1yuU -{1})¢” if1eU
Ur={u :ueU}
1:={1}.

Each of these three classes of models generates the same variety as do the countable
words, since all free algebras are subalgebras of algebras in each class.

7. FINITE AXIOMATIZABILITY

Using a slight modification of the analogous result in [3], we can show:

Theorem 7.1. For any finite subset E of the azioms enumerated in Section 4,
even the axioms involving the reverse operation " and the neutral element 1, there
is some prime number p and an algebra M such that each equation in E is true
in M, but the power identity (aP)* = ¥ fails in M.

Thus, by the Compactness Theorem,

Corollary 7.2. There is no finite axiomatization for any of the varieties consid-
ered above.

Proof of Theorem 7.1. Let M = NU {1, T, L}, the disjoint union of the nonneg-
ative integers with a three element set. Let p be a prime. Define the operations
z -y and ¥ on M as follows.
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z+y ifx,yeN
x ify=1
Ty =<y ife=1
T if exactly one of z,y is T and the other is in NU {1}
L otherwise.
1 ifz=1
x¥ {T if x € N and p|z
1 otherwise.
" =2
x" = .

It is easy to check that (M, -, 1) is a commutative monoid. Now we verify some of
the axioms. We show that (z - y)¥ = x - (y - x)*. There are three possibilities.

If (x-y)¥ =1, then x =y =1, so that « - (y - ) = 1.

If (z-y)¥ =T, thenz,y € Nand p|(z+y). But thenz - (y-2)¥ =2-T =T.
Otherwise, (z-y)* = (y-x)* =Land - L = 1.

Since the reverse operation is the identity function and since the omega power
operations is the same as the omega-op power operation, equations (6) and (8)
also hold in M. It follows now that (3) holds.

Last, if n < p, and & € N, then 2™ = nz, so that p|nz iff p|x. Thus, for x € N
and n < p, (z™)* =a¥; if x € {T,L1}, (a™)¥ =a¥ = L, for all n > 1. Thus,
if p is a prime larger than all exponents k used in the identities (z*)* = 2* and
(2*)«”" = 2" which occur in E, M is a model for F and the identities (1), (2),
(3), and all of the reverse axioms and the axioms involving 1. However,

(17)% = p*
=T
# 1
=1v,

so that the identity (zP)¥ = z¥ fails in M. O

8. CONJECTURES AND OPEN PROBLEMS

The algebras of (countable) words, equipped with the operations of product
and an initial fixed point operation, defined by Courcelle in [11], can be shown to
form iteration algebras (or iteration theories) [4]. In fact, over all categories, initial
fixed points lead to iteration theories, cf. Esik and Labella [12]. We conjecture
that the variety generated by algebras of words has a finite axiomatization over the
variety of all iteration algebras. Thomas [15] has shown, using methods and results
of formal logic, that the equational theory of this variety of iteration algebras is
decidable. However, the methods applied in [15] do not provide an elementary
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upper bound, not even for the equational theory of product, omega power and
omega-op power. It would be interesting to find upper and lower bounds.
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