In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages.
Mots clés : regular language, logic, Lindström quantifier, expressive power, semidirect product
@article{ITA_2003__37_3_179_0, author = {\'Esik, Zolt\'an and Larsen, Kim G.}, title = {Regular languages definable by {Lindstr\"om} quantifiers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {179--241}, publisher = {EDP-Sciences}, volume = {37}, number = {3}, year = {2003}, doi = {10.1051/ita:2003017}, mrnumber = {2021315}, zbl = {1046.20042}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003017/} }
TY - JOUR AU - Ésik, Zoltán AU - Larsen, Kim G. TI - Regular languages definable by Lindström quantifiers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 179 EP - 241 VL - 37 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003017/ DO - 10.1051/ita:2003017 LA - en ID - ITA_2003__37_3_179_0 ER -
%0 Journal Article %A Ésik, Zoltán %A Larsen, Kim G. %T Regular languages definable by Lindström quantifiers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 179-241 %V 37 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003017/ %R 10.1051/ita:2003017 %G en %F ITA_2003__37_3_179_0
Ésik, Zoltán; Larsen, Kim G. Regular languages definable by Lindström quantifiers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 3, pp. 179-241. doi : 10.1051/ita:2003017. http://www.numdam.org/articles/10.1051/ita:2003017/
[2] Regular languages in NC. J. Comput. System Sci. 44 (1992) 478-499. | Zbl
, , and ,[3] On uniformity within . J. Comput. System Sci. 41 (1990) 274-306. | Zbl
, and :[4] Modular temporal logic, in: 14th Annual IEEE Symposium on Logic in Computer Science, Trento (1999). IEEE Computer Society, 344-351.
, and ,[5] Monadic logic of order over naturals has no finite base. J. Logic and Comput. (to appear). | MR | Zbl
and ,[6] Weak second order logic and finite automata. Zeit. Math. Logik Grund. Math. 6 (1960) 66-92. | Zbl
,[7] Lindström quantifiers and leaf language definability. Int. J. Found. Comput. Sci. 9 (1998) 277-294.
and ,[8] On the expressive power of temporal logic. J. Comput. System Sci. 46 (1993) 271-294. | Zbl
, and ,[9] Critical classes for the -product. Theoret. Comput. Sci. 61 (1988) 17-24. | Zbl
and ,[10] Finite Model Theory. 2nd ed., Springer (1999). | MR | Zbl
and ,[11] Automata, Languages, and Machines. vol. A and B, Academic Press (1974, 1976). | MR | Zbl
,[12] Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98 (1961) 21-51. | Zbl
,[13] Results on homomorphic realization of automata by -products. Theoret. Comput. Sci. 87 (1991) 229-249. | Zbl
,[14] Temporal logic with cyclic counting and the degree of aperiodicity of finite automata. Acta Cybernet. 16 (2003) 1-28. | Zbl
and ,[15] A generalization of the Büchi-Elgot-Trakhtenbrot theorem, in: Computer Science Logic, 15th International Workshop, CSL (2001), Paris (2001), LNCS 2142, Springer, 355-368. | Zbl
and ,[16] Descriptive Complexity. Graduate Texts in Computer Science, Springer-Verlag, New York (1999). | MR | Zbl
,[17] Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc. 116 (1965) 450-464. | Zbl
and ,[18] The descriptive complexity approach to LOGCFL. J. Comput. System Sci. 62 (2001) 629-652. | Zbl
, and ,[19] First order predicate logic with generalized quantifiers. Theoria 32 (1966) 186-195.
,[20] The many faces of a translation, in: Automata, Languages and Programming, 27th International Colloquium, ICALP'00, LNCS 1853, 890-901. | Zbl
, , and ,[21] A property of finite simple non-abelian groups, Proc. Amer. Math. Soc. 16 (1965) 552-554. | Zbl
and ,[22] Counter-Free Automata. MIT Press (1971). | MR | Zbl
and ,[23] Finite automata with generalized acceptance criteria, in: Automata, Languages and Programming, 26th International Colloquium, ICALP'99, Prague, LNCS 1644, Springer, 605-614. | Zbl
and ,[24] Varieties of Formal Languages. Plenum (1986). | MR | Zbl
,[25] Logic, semigroups and automata on words, Ann. Math. Artif. Intell. 16 (1996) 343-384. | Zbl
,[26] The temporal logic of programs, in: 18th IEEE Symp. Foundations of Computer Science, Providence (1977) 46-57.
,[27] Undecidability, automata, and pseudo-varieties of finite semigroups, Int. J. Algebra and Comput. 9 (1999) 455-473. | Zbl
,[28] The kernel of monoid morphisms, J. Pure Appl. Algebra 62 (1989) 227-268. | Zbl
and ,[29] On finite monoids having only trivial subgroup. Inf. and Control 8 (1965) 190-194. | Zbl
,[30] Families of recognizable sets corresponding to certain varieties of finite monoids. J. Pure Appl. Algebra 15 (1979) 305-318. | Zbl
,[31] Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser (1994). | MR | Zbl
,[32] On logical descriptions of regular languages, in: LATIN 2002, LNCS 2286, Springer (2002) 528-538. | Zbl
,[33] Regular languages defined with a bounded number of variables, in: STACS 2001, LNCS 2010, Springer (2001) 555-562.
and ,[34] Regular languages defined with generalized quantifiers, Automata, languages and programming (Tampere, 1988), Lecture Notes in Comput. Sci. 317, Springer, Berlin (1988) 561-575. | Zbl
, and ,[35] Regular languages defined with generalized quantifiers. Inf. and Comput. 118 (1995) 289-301. | Zbl
, and ,[36] Classification of finite monoids: The language approach. Theoret. Comput. Sci. 14 (1981) 195-208. | Zbl
,[37] Temporal logic and semidirect products: An effective characterization of the until hierarchy, in: 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington. IEEE Computer Society (1996) 256-263.
and ,[38] Automata on infinite objects, in Handbook of Theoretical Computer Science. Vol. B, Elsevier, Amsterdam (1990) 133-191. | Zbl
,[39] Languages, automata, and logic, in: Handbook of Formal Languages. Vol. 3, Springer (1997) 389-455.
,[40] Finite automata and logic of monadic predicates, Dokl. Akad. Nauk SSSR 140 (1961) 326-329. | Zbl
,[41] MR
(ed.), Generalized Quantifiers and Computation, LNCS 1754, Springer (1997). |Cité par Sources :