Episturmian morphisms generalize sturmian morphisms. They are defined as compositions of exchange morphisms and two particular morphisms , and . Epistandard morphisms are the morphisms obtained without considering . In [14], a general study of these morphims and of conjugacy of morphisms is given. Here, given a decomposition of an Episturmian morphism over exchange morphisms and , we consider two problems: how to compute a decomposition of one conjugate of ; how to compute a list of decompositions of all the conjugates of when is epistandard. For each problem, we give several algorithms. Although the proposed methods are fundamently different, we show that some of these lead to the same result. We also give other algorithms, using the same input, to compute for instance the length of the morphism, or its number of conjugates.
Mots clés : combinatorics on words, sturmian morphisms, conjugacy, algorithms
@article{ITA_2003__37_1_85_0, author = {Richomme, Gwenael}, title = {Some algorithms to compute the conjugates of episturmian morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {85--104}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/ita:2003009}, mrnumber = {1991753}, zbl = {1084.68094}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003009/} }
TY - JOUR AU - Richomme, Gwenael TI - Some algorithms to compute the conjugates of episturmian morphisms JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 85 EP - 104 VL - 37 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003009/ DO - 10.1051/ita:2003009 LA - en ID - ITA_2003__37_1_85_0 ER -
%0 Journal Article %A Richomme, Gwenael %T Some algorithms to compute the conjugates of episturmian morphisms %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 85-104 %V 37 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003009/ %R 10.1051/ita:2003009 %G en %F ITA_2003__37_1_85_0
Richomme, Gwenael. Some algorithms to compute the conjugates of episturmian morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 1, pp. 85-104. doi : 10.1051/ita:2003009. http://www.numdam.org/articles/10.1051/ita:2003009/
[1] Représentation géométrique de suites de complexités . Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl
and ,[2] Sturmian words, Chap. 2, edited by M. Lothaire. Cambridge Mathematical Library, Algebraic Combinatorics on Words 90 (2002). | MR
and ,[3] Tilings and rotations on the torus: A two dimensional generalization of Sturmian sequences. Discrete Math. 223 (2000) 27-53. | MR | Zbl
and ,[4] Fine and Wilf's theorem for three periods and a generalization of Sturmian words. Theoret. Comput. Sci. 218 (1999) 83-94. | Zbl
, and ,[5] Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553. | MR | Zbl
, and ,[6] Suites équilibrées. Theoret. Comput. Sci. 242 (2000) 91-108. | MR | Zbl
,[7] On a paper by Castelli, Mignosi, Restivo. RAIRO: Theoret. Informatics Appl. 34 (2000) 373-377. | Numdam | MR | Zbl
,[8] Episturmian words and morphisms (results and conjectures), edited by H. Crapo and D. Senato. Springer-Verlag, Algebraic Combinatorics and Comput. Sci. (2001) 533-539. | MR | Zbl
,[9] Episturmian words and Episturmian morphisms. Theoret. Comput. Sci. 276 (2002) 281-313. | MR | Zbl
and ,[10] Return words in Sturmian and Episturmian words. RAIRO: Theoret. Informatics Appl. 34 (2000) 343-356. | Numdam | MR | Zbl
and ,[11] Conjugation of standard morphisms and a generalization of singular words2002).
and ,[12] Symbolic Dynamics II: Sturmian trajectories. Amer. J. Math. 61 (1940) 1-42. | JFM | MR
and ,[13] Suites à termes dans un alphabet fini, in Séminaire de théorie des Nombres de Bordeaux. Exposé 25 (1983). | MR | Zbl
,[14] Conjugacy and Episturmian morphisms, Technical Report 2001-03. LaRIA, Theoret. Comput. Sci. (to appear). | MR | Zbl
,[15] Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88 (1991) 365-384. | MR | Zbl
,[16] On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109. | MR | Zbl
,[17] Some remarks on invertible substitutions on three letter alphabet. Chin. Sci. Bulletin 44 (1999) 1755-1760. | MR | Zbl
and ,Cité par Sources :