We describe Wadge degrees of -languages recognizable by deterministic Turing machines. In particular, it is shown that the ordinal corresponding to these degrees is where is the first non-recursive ordinal known as the Church-Kleene ordinal. This answers a question raised in [2].
Mots-clés : hierarchy, Wadge degree, $\omega $-language, ordinal, Turing machine, set-theoretic operation
@article{ITA_2003__37_1_67_0, author = {Selivanov, Victor}, title = {Wadge degrees of $\sf \omega $-languages of deterministic {Turing} machines}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {67--83}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/ita:2003008}, mrnumber = {1991752}, zbl = {1048.03031}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003008/} }
TY - JOUR AU - Selivanov, Victor TI - Wadge degrees of $\sf \omega $-languages of deterministic Turing machines JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 67 EP - 83 VL - 37 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003008/ DO - 10.1051/ita:2003008 LA - en ID - ITA_2003__37_1_67_0 ER -
%0 Journal Article %A Selivanov, Victor %T Wadge degrees of $\sf \omega $-languages of deterministic Turing machines %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 67-83 %V 37 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003008/ %R 10.1051/ita:2003008 %G en %F ITA_2003__37_1_67_0
Selivanov, Victor. Wadge degrees of $\sf \omega $-languages of deterministic Turing machines. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 1, pp. 67-83. doi : 10.1051/ita:2003008. http://www.numdam.org/articles/10.1051/ita:2003008/
[1] Notes on Descriptive Set Theory. Manuscript (2001).
,[2] A hierarchy of deterministic context-free -languages. Theoret. Comput. Sci. 290 (2003) 1253-1300. | MR | Zbl
,[3] On a hierarchy of sets II. Algebra and Logic 7 (1968) 15-47 (Russian). | MR | Zbl
,[4] The difference and truth-table hierarchies for NP, Preprint 7. Dep. of Informatics, Koblenz (1986).
, and ,[5] Set Theory. North Holland, Amsterdam (1967). | MR | Zbl
and ,[6] Some results in the Wadge hierarchy of Borel sets. Springer, Lecture Notes in Math. 1019 (1983) 28-55. | MR | Zbl
,[7] Descriptive set theory. North Holland, Amsterdam (1980). | MR | Zbl
,[8] Theory of recursive functions and effective computability. McGraw-Hill, New York (1967). | MR | Zbl
,[9] Hierarchies of hyperarithmetical sets and functions. Algebra i Logika 22 (1983) 666-692 (English translation: Algebra and Logic 22 (1983) 473-491). | MR | Zbl
,[10] Hierarchies, Numerations, Index Sets. Handwritten Notes (1992) 300 pp.
,[11] Fine hierarchy of regular -languages, Preprint No. 14. The University of Heidelberg, Chair of Mathematical Logic (1994) 13 pp. | MR
,[12] Fine hierarchy of regular -languages. Springer, Berlin, Lecture Notes in Comput. Sci. 915 (1995) 277-287.
,[13] Fine hierarchies and Boolean terms. J. Symb. Logic 60 (1995) 289-317. | MR | Zbl
,[14] Fine hierarchy of regular -languages. Theoret. Comput. Sci. 191 (1998) 37-59. | MR | Zbl
,[15] Wadge Degrees of -Languages of Deterministic Turing Machines. Springer, Berlin, Lecture Notes in Comput. Sci. 2607 (2003) 97-108. | MR | Zbl
,[16] -languages. Springer, Berlin, Handb. Formal Languages 3 (1997) 339-387. | MR
,[17] Determinateness and the separation property. J. Symb. Logic 45 (1980) 143-146. | MR | Zbl
,[18] Degrees of complexity of subsets of the Baire space. Notices Amer. Math. Soc. (1972) R-714.
,[19] Reducibility and determinateness in the Baire space, Ph.D. Thesis. University of California, Berkeley (1984).
,[20] On -regular sets. Inform. and Control 43 (1979) 123-177. | MR | Zbl
,[21] Wadge degrees and descriptive set theory. Springer, Lecture Notes in Math. 689 (1978) 151-170. | MR | Zbl
,Cité par Sources :