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A SHARPENING OF THE PARIKH MAPPING ∗
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Abstract. In this paper we introduce a sharpening of the Parikh map-
ping and investigate its basic properties. The new mapping is based on
square matrices of a certain form. The classical Parikh vector appears
in such a matrix as the second diagonal. However, the matrix prod-
uct gives more information about a word than the Parikh vector. We
characterize the matrix products and establish also an interesting in-
terconnection between mirror images of words and inverses of matrices.
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Introduction

The Parikh mapping (vector) is an old and important tool in the theory of
formal languages. This notion was introduced in [8]. One of the important results
concerning this mapping is that the image by the Parikh mapping of a context-
free language is always a semilinear set. (For details and ramifications, see [11].)
The basic idea behind Parikh vectors is that properties of words are expressed as
numerical properties of vectors. However, much information is lost in the transition
from a word to a vector.
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In this paper we introduce a sharpening of the Parikh mapping, where somewhat
more information is preserved than in the original Parikh mapping. The new
mapping is based on a certain type of matrices. The classical Parikh vector will
appear in such a matrix as the second diagonal. All other entries above the main
diagonal contain information about the order of letters in the original word. All
matrices are triangular, with 1’s on the main diagonal and 0’s below it.

Two words with the same Parikh matrix always have the same Parikh vector,
but two words with the same Parikh vector have in many cases different Parikh
matrices. Thus, the Parikh matrix gives more information about a word than
a Parikh vector. The exact meaning of the entries in a Parikh matrix is given
below in Theorem 2.1. Our second main result, Theorem 3.2, shows an interesting
interconnection between the inverse of a Parikh matrix and the Parikh matrix of
the mirror image.

We start with some basic notations and definitions. The set of all nonnegative
integers is denoted by N . Let Σ be an alphabet. The set of all words over Σ is Σ∗

and the empty word is λ. If w ∈ Σ∗ then |w| denotes the length of w.
In this paper we very often use “ordered” alphabets. An ordered alphabet is

an alphabet Σ = {a1, a2, . . . ak} with a relation of order (“<”) on it. If we have
a1 < a2 < · · · < ak, then we use the notation

Σ = {a1 < a2 < · · · < ak} ·

Let a ∈ Σ be a letter. The number of occurrences of a in a word w ∈ Σ∗ is denoted
by |w|a. Let u, v be words over Σ. The word u is a scattered subword of v if there
exists a word t such that v ∈ u t, where denotes the shuffle operation. We
now introduce a notation very important in our subsequent considerations.

If u, v ∈ Σ∗, then the number of occurrences of u in v as a scattered subword is
denoted by |v|scatt−u. For instance,

|acbb|scatt−ab = 2, |acba|scatt−ab = 1 and |aabbc|scatt−abc = 4.

Thus, partially overlapping occurrences of a word as a scattered subword are
counted as distinct occurrences. The number |v|scatt−u is denoted as a binomial
coefficient in [10]. Indeed, we are back to ordinary binomial coefficients if we are
dealing with a one-letter alphabet.

Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet. The Parikh mapping
Ψ : Σ∗ → Nk, is defined by

Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
).

The Parikh vector of w is (|w|a1 , |w|a2 , . . . , |w|ak
). Note that the Parikh mapping

Ψ is a morphism from the monoid (Σ∗, ·, λ) to the monoid (Nk, +, (0, 0, . . . , 0)).
The mirror image of a word w ∈ Σ∗, denoted mi(w), is defined as: mi(λ) = λ

and mi(b1b2 . . . bn) = bn . . . b2b1, where bi ∈ Σ, 1 ≤ i ≤ n.
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Our exposition is largely self-contained. The reader is referred to [9] as a com-
prehensive treatment on formal languages and diverse background material. The
most fundamental applications and interconnections of Parikh vectors with lan-
guage theory are presented in [11].

Semilinearity plays an important role in the study of language families suitable
as models in linguistics, for instance, see [5]. We refer the reader also to [2]
for recent results about the preservation of semilinearity under certain machine
mappings and its significance to decision problems.

1. Parikh mapping extended to matrices

We consider a special type of matrices, called “triangle” matrices. A triangle
matrix is a square matrix M = (mi,j)1≤i,j≤k, such that mi,j ∈ N , for all 1 ≤ i,
j ≤ k, mi,j = 0, for all 1 ≤ j < i ≤ k, and, moreover, mi,i = 1, for all 1 ≤ i ≤ k.

The set of all triangle matrices is denoted by M. The set of all triangle matrices
of dimension k ≥ 1 is denoted by Mk. Clearly, Mk constitutes a monoid under
matrix multiplication.

We are now ready to introduce the main notion of this paper.

Definition 1.1. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet, where
k ≥ 1. The Parikh matrix mapping, denoted ΨMk

, is the morphism:

ΨMk
: Σ∗ → Mk+1,

defined by the condition: if ΨMk
(aq) = (mi,j)1≤i,j≤(k+1), then for each 1 ≤ i

≤ (k +1), mi,i = 1, mq,q+1 = 1, all other elements of the matrix ΨMk
(aq) being 0.

Consider the following examples. Let Σ be the ordered alphabet {a < b < c}
and assume that w = bbaac. Then ΨM3(w) is a 4 × 4 triangle matrix that can be
computed as follows:

ΨM3(bbaac) = ΨM3(b)ΨM3(b)ΨM3(a)ΨM3(a)ΨM3(c)

=




1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


 . . .




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1




=




1 2 0 0
0 1 2 2
0 0 1 1
0 0 0 1


 ·
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Another example is given by w′ = aabbc, for which we obtain

ΨM3(w
′) = ΨM3(aabbc) = ΨM3(a)ΨM3(a)ΨM3(b)ΨM3(b)ΨM3(c)

=




1 2 4 4
0 1 2 2
0 0 1 1
0 0 0 1


 ·

On the other hand,

ΨM3(acb) = ΨM3(cab) =




1 1 1 0
0 1 1 0
0 0 1 1
0 0 0 1


 ·

Hence, the Parikh matrix mapping is not injective. One of the major open prob-
lems is to characterize non-injectivity, that is, to provide some natural conditions
for two words to possess the same Parikh matrix. This problem is closely linked
with the fundamental problem about the information content of a Parikh matrix:
how much does the Parikh matrix tell about a word?

It was brought to our attention by one of the referees that the term Parikh
matrix was used in [7] for the growth matrix of a morphism (or a D0L system).

2. Significance of the entries of a Parikh matrix

In this section we characterize the entries of the Parikh matrix. We first in-
troduce some notation that will be applied in our first theorem. Recall also the
notation |v|scatt−u defined in the Introduction.

Consider the ordered alphabet Σ = {a1 < a2 < · · · < ak}, where k ≥ 1. We
denote by ai,j the word aiai+1 . . . aj , where 1 ≤ i ≤ j ≤ k.

We are now ready to prove the basic property of the Parikh matrix mapping.

Theorem 2.1. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet, where
k ≥ 1, and assume that w ∈ Σ∗. The matrix ΨMk

(w) = (mi,j)1≤i,j≤(k+1), has the
following properties:

(i) mi,j = 0, for all 1 ≤ j < i ≤ (k + 1);
(ii) mi,i = 1, for all 1 ≤ i ≤ (k + 1);
(iii) mi,j+1 = |w|scatt−ai,j . for all 1 ≤ i ≤ j ≤ k.

Proof. Obviously the first two properties, (i) and (ii) are true. Now we prove the
property (iii). Assume that |w| = n. The proof is by induction on n. If n ≤ 1,
then clearly the assertion is true.

Assume now that the assertion (iii) is true for all words of length at most n
and let w be of length n + 1. Hence w = w′ai, where |w′| = n and ai ∈ Σ with
1 ≤ i ≤ k.
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It follows that:

ΨMk
(w) = ΨMk

(w′ai) = ΨMk
(w′)ΨMk

(ai).

Assume that

ΨMk
(w′) =




1 m′
1,2 . . . . . . m′

1,k+1

0 1 . . . . . . m′
2,k+1

...
...

...
...

...
...

...
...

... m′
k,k+1

0 0 . . . . . . 1




·

By the inductive hypothesis the matrix ΨMk
(w′) has the property (iii).

From Definition 1.1, we deduce that

ΨMk
(ai) =




1 0 . . . 0
...

...
...

...
...

...
0 . . . 1 1 . . . 0
...

...
...

...
...

...
0 0 . . . 1




·

All elements in the matrix ΨMk
(ai) are zero except that the elements on the main

diagonal are 1 and also the element on the position (i, i + 1) is 1.
Therefore, the matrix ΨMk

(w) equals




1 m′
1,2 . . . . . . m′

1,k+1

0 1 . . . . . . m′
2,k+1

...
...

...
...

...
...

...
...

... m′
k,k+1

0 0 . . . . . . 1







1 0 . . . 0
...

...
...

...
...

...
0 . . . 1 1 . . . 0
...

...
...

...
...

...
0 0 . . . 1




= M.

The resulting matrix, M = (mp,q)1≤p,q≤k+1 has the property that mj,i+1 = m′
j,i

+m′
j,i+1, for all j, 1 ≤ j ≤ i and, for all other indices, mp,q = m′

p,q.
This completes the inductive step, because the number of occurrences of aj,i

= aj . . . ai (as a scattered subword) in w equals the sum of the number of oc-
currences of aj,i in w′ and the number of occurrences of aj,i−1 in w′. Thus,
Theorem 2.1 follows.

Corollary 2.2. The matrix ΨMk
(w) has as the second diagonal (i.e., the vec-

tor (m1,2, m2,3, . . . , mk,k+1)) the Parikh vector of w, i.e., (m1,2, m2,3, . . . , mk,k+1)
= (|w|a1 , |w|a2 , . . . , |w|ak

).

As already pointed out, the Parikh matrix mapping gives more information
about a word than the classical Parikh mapping, although the Parikh matrix
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mapping is still not injective. Injectivity would of course mean that the information
given by Parikh matrices is complete. This would be more than one can reasonably
hope for: one cannot expect that words could be expressed as matrices in this
fashion, which would give all information in a simple numerical form.

So far very little is known about sets of Parikh matrices associated to languages
belonging to a fixed family such as the families in the Chomsky hierarchy. The
following remark shows that the semilinearity result of context-free languages does
not carry over to sets of matrices.

Remark 2.3. Consider the ordered alphabet {a < b} and the context-free lan-
guage L = {anbn|n ≥ 1}. Clearly,

ΨM2(a
nbn) =




1 n n2

0 1 n
0 0 1


 ·

Hence ΨM2(L) cannot be a semilinear set (for any reasonable extension of the
definition of semilinearity to matrices).

Clearly, every triangle matrix is not a Parikh matrix of some word. For instance,
the matrix




1 2 7
0 1 3
0 0 1




is not a Parikh matrix. This follows because ab occurs as a scattered subword at
most 6 times in a word with the Parikh vector (2,3). In fact, we have the following
immediate corollary of Theorem 2.1:

Corollary 2.4. The entries mi,j+1, 1 ≤ i < j ≤ k in a Parikh matrix ΨMk
(w)

satisfy the inequality

mi,j+1 ≤ mi,j · mi+1,j+1.

Various strengthenings of Corollary 2.4 can be obtained. For instance, the product
of the entries in the Parikh vector constitutes an upper bound for the entry m1,k+1.
Thus, the size of the entry m1,3 in Remark 2.3 is maximal. On the other hand,
upper bounds can be satisfied and yet the matrix is not a Parikh matrix. For
instance, x = rst is the only possible value of x for the matrix




1 r rs x
0 1 s st
0 0 1 t
0 0 0 1
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to be a Parikh matrix, whereas in the matrix




1 r x
0 1 s
0 0 1




any x with 0 ≤ x ≤ rs is possible. Whether or not a given triangle matrix is a
Parikh matrix is clearly a decidable question.

3. Inverses of matrices versus mirror images of words

This section investigates interrelations between the inverse of a Parikh matrix
associated to a word w and the Parikh matrix of mi(w), the mirror image of w.
Clearly, the set of all triangle matrices of order k ≥ 2 with integer entries is a
noncommutative group with respect to multiplication, the unit element being the
unit matrix of order k. Consequently, for each Parikh matrix A, there exists the
inverse matrix A−1.

Definition 3.1. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let
w ∈ Σ∗ be a word. Assume that the Parikh matrix of w is ΨMk

(w)
= (mi,j)1≤i,j≤k+1. The alternate Parikh matrix of w, denoted ΨMk

(w), is the
matrix (m′

i,j)1≤i,j≤k+1, where m′
i,j = (−1)i+jmi,j , for all 1 ≤ i, j ≤ k + 1.

Observe that the mapping ΨMk
(w) is a morphism of Σ∗. For the Parikh vector Ψ

and for every word w, Ψ(w) = Ψ(mi(w)). However, for the Parikh matrix mapping
the situation is completely different. The next theorem reveals the interrelation
between the inverse of the Parikh matrix of a word w and the alternate Parikh
matrix of the mirror image of w.

Theorem 3.2. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let
w ∈ Σ∗ be a word. Then:

[ΨMk
(w)]−1 = ΨMk

(mi(w)).

Proof. The proof is by induction on n = |w|.
If n = 1, then w = aq for some 1 ≤ q ≤ k. By Definition 1.1, ΨMk

(aq)
= (mi,j)1≤i,j≤(k+1), such that for each 1 ≤ i ≤ (k + 1), mi,i = 1, mq,q+1 = 1 and
all other elements of the matrix ΨMk

(aq) are zero.
It is easy to verify that [ΨMk

(aq)]−1 = (m′
i,j)1≤i,j≤(k+1), so that for each 1 ≤ i

≤ (k+1), m′
i,i = 1, m′

q,q+1 = −1 and all other elements of the matrix [ΨMk
(aq)]−1

are zero.
Hence, [ΨMk

(w)]−1 = ΨMk
(mi(w)).

For the inductive step assume that the Theorem 3.2 is true for all words u ∈ Σ∗,
with |u| ≤ n and let w ∈ Σ∗ be a word with |w| = n + 1. Then w = xap such that
|x| = n and ap ∈ Σ with 1 ≤ p ≤ k.
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We see that

[ΨMk
(w)]−1 = [ΨMk

(xap)]−1 = [ΨMk
(x)ΨMk

(ap)]−1 = [ΨMk
(ap)]−1[ΨMk

(x)]−1.

Assume that

ΨMk
(mi(x)) =




1 m1,2 . . . . . . m1,k+1

0 1 . . . . . . m2,k+1

...
...

...
...

...
...

...
...

... mk,k+1

0 0 . . . . . . 1




·

By the inductive hypothesis [ΨMk
(x)]−1 = ΨMk

(mi(x)) = (mi,j)1≤i,j≤k+1, where
mi,i = 1, 1 ≤ i ≤ k + 1, mi,j = 0, 1 ≤ j < i ≤ k + 1 and mi,j+1

= (−1)i+j+1|mi(x)|scatt−ai,j , for all 1 ≤ i ≤ j ≤ k,
We know by the proof for n = 1 that

[ΨMk
(ap)]−1 =




1 0 . . . 0
...

...
...

...
...

...
0 . . . 1 −1 . . . 0
...

...
...

...
...

...
0 0 . . . 1




·

Thus, all elements in the matrix [ΨMk
(ap)]−1 are zero except that the elements

on the main diagonal are 1, and the element on the position (p, p + 1) is −1.
Therefore [ΨMk

(w)]−1 equals




1 0 . . . 0
...

...
...

...
...

...
0 . . . 1 −1 . . . 0
...

...
...

...
...

...
0 0 . . . 1







1 m1,2 . . . . . . m1,k+1

0 1 . . . . . . m2,k+1

...
...

...
...

...
...

...
...

... mk,k+1

0 0 . . . . . . 1




= M ′.

The resulting matrix, M ′ = (m′
i,j)1≤i,j≤k+1 has the property that

m′
p,j = mp,j − mp+1,j

= (−1)p+j |mi(x)|scatt−ap,j−1 − (−1)p+j+1|mi(x)|scatt−ap+1,j−1

= (−1)p+j |apmi(x)|scatt−ap,j−1 = (−1)p+j |mi(w)|scatt−ap,j−1 ,

for all p < j ≤ k + 1. For all other indices, m′
i,q = mi,q.

This completes the induction and proves Theorem 3.2.
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Observe that Theorem 3.2 provides a very simple method to compute the inverse
of a Parikh matrix. One can also apply it directly to matrices: inverses of matrices
of a certain type can be computed in this way.

As an example, consider the ordered alphabet Σ = {a < b < c} and assume
that w = cbbaa. Then

ΨM3(cbbaa) =




1 2 0 0
0 1 2 0
0 0 1 1
0 0 0 1


 ·

Since mi(cbbaa) = aabbc, we have by Theorem 3.2:

[ΨM3(cbbaa)]−1 = ΨM3(aabbc) =




1 −2 4 −4
0 1 −2 2
0 0 1 −1
0 0 0 1


 ·

A special relation between |w|scatt−ai,j and |mi(w)|scatt−ai,j is obtained in the next
corollary. In the statement the last vertical bars stand for the absolute value.

Corollary 3.3. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let w ∈
Σ∗ be a word. Assume that the Parikh matrix of w is ΨMk

(w) = (mi,j)1≤i,j≤k+1,
and that [ΨMk

(w)]−1 = (m′
i,j)1≤i,j≤k+1. Then |mi(w)|scatt−ai,j = |(m′

i,j+1)| for
all 1 ≤ i, j ≤ k.

4. Computing the inverse of a Parikh matrix

We consider now another method to compute the inverse of a Parikh matrix.
We begin with some further definitions and notations.

Let (A, <) be an ordered set. The dual order of the order <, denoted <◦, is
defined as:

a <◦ b iff b < a.

Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet. The dual ordered alphabet,
denoted Σ◦, is Σ◦ = {ak < ak−1 < · · · < a1}.

Consider the ordered alphabet Σ = {a1 < a2 < · · · < ak} and let w ∈ Σ∗ be a
word. The Parikh matrix associated to w with respect to the dual order on Σ is
denoted by ΨMk,◦(w).

Let v = (v1, v2, . . . , vn) be a vector. The reverse of v, denoted v(rev), is the
vector v(rev) = (vn, vn−1, . . . , v1).

Now we introduce the notion of a reverse of a triangle matrix. Let M =
(mi,j)1≤i,j≤n be a triangle matrix. The reverse of M , denoted M (rev), is the
matrix M (rev) = (m′

i,j)1≤i,j≤n, where m′
i,j = mn+1−j,n+1−i, for all 1 ≤ i < j ≤ n.

(The entries on and below the main diagonal are the same in M and M (rev).)
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Note that M (rev) is also a triangle matrix. An easy way to obtain M (rev) is to
reverse in M all diagonals that are parallel to the main diagonal. For instance,

If M =




1 2 3 7
0 1 4 5
0 0 1 6
0 0 0 1


 then M (rev) =




1 6 5 7
0 1 4 3
0 0 1 2
0 0 0 1


 ·

A further method to compute M (rev) is to consider the transpose of M =

(mi,j)1≤i,j≤n, i.e., M t = (m′
i,j)1≤i,j≤n, where m′

i,j = mj,i, for all 1 ≤ i, j ≤ n.
The matrix M t defines in a natural way a square. Let c be the geometrical

center of this square. In order to compute M (rev), one has to replace each element
mi,j by the element symmetric with respect to c. (Note that the geometrical center
is an entry of M exactly in the case when the dimension of M is odd.)

The reader can easily verify the following proposition. (Observe that Def. 3.1
can be immediately extended to concern arbitrary matrices A.)

Proposition 4.1. Let A, B be two triangle matrices of the same dimension. Then
(i) [A(rev)](rev) = A;
(ii) (AB)(rev) = B(rev)A(rev);
(iii) A = A;
(iv) AB = A B.

The next theorem gives another method of computing the inverse of a Parikh
matrix:

Theorem 4.2. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let
w ∈ Σ∗ be a word. Then

[ΨMk
(w)]−1 = [ΨMk,◦(w)](rev).

Proof. The proof is by induction on n = |w|. If n = 1, then w = aq for some
1 ≤ q ≤ k. It follows that ΨMk

(aq) is the triangle matrix having 1 on the main
diagonal and on the position (q, q + 1), all other entries being 0.

In the dual order the letter aq appears on the position k + 1 − q. Hence, the
matrix ΨMk,◦(aq) is the triangle matrix having the entry 1 on the main diagonal
and on the position (k + 1 − q, k + 2 − q), all other entries being 0.

The alternate Parikh matrix ΨMk,◦(aq) is the triangle matrix having the entry
1 on the main diagonal, −1 on the position (k + 1− q, k + 2− q), all other entries
being 0.

We deduce that [ΨMk,◦(aq)](rev) is the triangle matrix, where 1 is on the main
diagonal, the value on the position (k+2−(k+2−q), k+2−(k+1−q)) = (q, q+1)
is −1 and all other elements are 0.

One can easily verify that this is exactly the inverse of the matrix ΨMk
(aq).

For the inductive step, assume that w = w′ai, where |w′| = n and ai ∈ Σ.
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Now using the inductive hypothesis and Proposition 4.1(ii) we obtain (recall
also that ΨMk,◦(w) is a morphism):

[Ψ(w)]−1 = [Ψ(w′ai)]−1 = [Ψ(ai)]−1[Ψ(w′)]−1

= [ΨMk,◦(ai)](rev)[ΨMk,◦(w′)](rev) = [ΨMk,◦(w′)ΨMk,◦(ai)](rev)

= [ΨMk,◦(w′ai)](rev) = [ΨMk,◦(w)](rev).

As an illustration, observe first that by Theorem 2.1 we have

ΨM3(cbbaa) =




1 2 0 0
0 1 2 0
0 0 1 1
0 0 0 1


 ·

Consider the dual ordered alphabet Σ◦ = {c < b < a}. Thus,

ΨM3,◦(cbbaa) =




1 1 2 4
0 1 2 4
0 0 1 2
0 0 0 1


 ·

The alternate Parikh matrix of the matrix ΨM3,◦(cbbaa) is

ΨM3,◦(cbbaa) =




1 −1 2 −4
0 1 −2 4
0 0 1 −2
0 0 0 1


 ·

Finally, the reverse matrix of the above matrix is:

[ΨM3,◦(cbbaa)](rev) =




1 −2 4 −4
0 1 −2 2
0 0 1 −1
0 0 0 1


 ·

This last matrix is indeed the inverse of the matrix ΨM3(cbbaa).

The above Theorem 4.2 provides a simpler method to compute the inverse of a
Parikh matrix. Here we have to reverse a matrix that is of a fixed size (card(Σ)+1),
whereas in the case of Theorem 3.2 we have to reverse the word w that can be
arbitrarily long.
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From Theorems 3.2 and 4.2 we deduce:

Corollary 4.3. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet and let
w ∈ Σ∗ be a word. Then:

ΨMk
(mi(w)) = ΨMk,◦(w)(rev)

.

The subsequent final observation concerning the functions introduced is rather
obvious. Consider the following four functions from Mk to Mk: the identity I,
the mapping − of A to A, the mapping (rev) of A to A(rev) and the mapping
(rev) of A to A

(rev)
. Then these four functions together with the operation of

composition constitute a group and, moreover, this is the well-known Four-Group
of Klein.

5. Some further problems

Our next proposition gives a simple method of deciding whether or not a nonzero
number appears in the upper right-hand corner of some power of a given Parikh
matrix.

Proposition 5.1. Let k ≥ 1 be an integer and let Σ = {a1 < a2 < · · · < ak}
be an ordered alphabet. Assume that w ∈ Σ∗ is a word with ΨMk

(w) = M
= (mi,j)1≤i,j≤k+1. The following assertions are equivalent:

(i) there is an integer p ≥ 1 such that for the matrix Mp = (m(p)
i,j )1≤i,j≤k+1,

m
(p)
1,k+1 �= 0;

(ii) there is an integer p′ ≥ 1 such that in the matrix Mp′
= (m(p′)

i,j )1≤i,j≤k+1,

for all 1 ≤ i ≤ j ≤ k + 1, m
(p′)
i,j �= 0;

(iii) for all i, 1 ≤ i ≤ k, we have mi,i+1 �= 0, i.e., the Parikh vector of w has all
components nonzero.

Proof. (i) ⇒ (ii) From Theorem 2.1 it follows that the word v = wp has as a
scattered subword the word a1a2 . . . ak. Therefore v has as scattered subwords all
words of the form ai,j , where 1 ≤ i ≤ j ≤ k. Thus, again by Theorem 2.1, we
conclude that for all 1 ≤ i ≤ j ≤ k + 1, m

(p)
i,j �= 0.

(ii) ⇒ (iii) Obviously, since wp′
has the Parikh vector with all components

nonzero, it follows that w has the Parikh vector with all components nonzero.
(iii) ⇒ (i) Consider the word u = wk. One can easily deduce that u has as a

scattered subword the word a1a2 . . . ak. Again by Theorem 2.1 we conclude the
assertion (i).

Observe that from the above proof of (iii) ⇒ (i) we conclude an upper bound
for the power p, namely, p ≤ k. In the following remark we list some simple facts
concerning injectivity.
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Remark 5.2. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet. The
following assertions are true:

(i) if L is a strictly bounded language over Σ, i.e., L ⊆ a+
1 a+

2 . . . a+
k , then the

restriction of ΨMk
to L is an injective mapping;

(ii) if L is a bounded language over Σ, such that L ⊆ w∗, where w ∈ Σ∗, then
the restriction of ΨMk

to L is an injective mapping.

Observe that, in the cases listed in Remark 5.2, also the ordinary Parikh mapping
(from words to vectors) is injective. Thus, these cases do not contribute towards
the main goal of characterizing the additional information provided by Parikh
matrices, as opposed to Parikh vectors.

The examples given in Section 1 are over a three-letter ordered alphabet. One
could perhaps hope for that the Parikh matrix mapping is injective over two letters,
say {a < b}. Also this is futile, as shown by the simple example:

ΨM2(a
2b2a2b2) = ΨM2(ba

4b3) =




1 4 12
0 1 4
0 0 1


 ·

Indeed, reference [1] investigates the injectivity of Parikh matrix mappings in more
detail, especially in case of two-letter alphabets. We mention a couple of examples
from [1]. When restricted to the language (a∗ ∪ b∗)(a∗ ∪ b∗), or to the language
a∗bab∗, Parikh matrix mappings are injective. Consider the matrices




1 4 6
0 1 3
0 0 1


 and




1 5 8
0 1 3
0 0 1


 ·

Then the four words

baabaab, baaabba, abbaaab, abababa

are exactly the ones having the first matrix as the Parikh matrix. Similarly, the
six words

aababbaa, aabbaaba, abaababa, baaaabba, ababaaab, baaabaab

are exactly the ones having the second matrix as the Parikh matrix.

6. Conclusion

Parikh matrices constitute a new promising way of encoding words numerically
and thus transferring problems about words and languages to problems about
vectors and matrices.

We hope to return to this topic in the future. Of related problem areas, we
mention here problems concerning slenderness, a notion studied rather intensively
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in recent years, see [3,4,6]. A language L is slender if there is an integer t such that
L contains no more than t words of equal length. Similarly, L is Parikh-slender
(resp. Parikh-matrix-slender) if there is an integer t such that L contains no more
than t words with the same Parikh vector (resp. Parikh matrix). How can we
decide, say, of a given context-free language whether or not it is Parikh-matrix-
slender?

A problem area we have not discussed at all in this paper concerns sets of Parikh
matrices and families of such sets, analogous to the family of semilinear sets of
Parikh vectors. Basic questions in this area deal with interconnections between
language families and matrix families. For instance, in view of Remark 2.3, we
might look for a “natural” family of sets of matrices such that the set of Parikh
matrices resulting from a context-free language is in this family.
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