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RANDOM GENERATION FOR FINITELY AMBIGUOUS
CONTEXT-FREE LANGUAGES * **
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Abstract. We prove that a word of length n from a finitely ambigu-
ous context-free language can be generated at random under uniform
distribution in O(n?logn) time by a probabilistic random access ma-
chine assuming a logarithmic cost criterion. We also show that the
same problem can be solved in polynomial time for every language ac-
cepted by a polynomial time 1-NAuxPDA with polynomially bounded
ambiguity.
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INTRODUCTION

Given a formal language L, consider the problem of generating, for an instance
n € N, a word of length n in L uniformly at random. Observe that here the
language is not part of the input and it is defined by some specific formalism (for
instance a generating grammar). In the literature this problem has been studied
in particular for unambiguous context-free languages [8,10,11,15,20]. For such
languages, the algorithm with the best time complexity in the worst case generates,
uniformly at random, a word of size n in the language in O(n logn) time [10]. This
bound is in terms of arithmetic complexity: each step of the algorithm can require
an arithmetic operation over O(n)-bits integers or it can generate in constant
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time an integer of O(n) bits uniformly at random. This result is obtained in a
more general context concerning the random generation of labeled combinatorial
structures defined by unambiguous formal specifications that use operations of
union, Cartesian product, construction of sets, sequences and cycles [10].

On the contrary, uniform random generation for structures represented by am-
biguous formalisms has not received much attention in the literature. An analysis
of the complexity of uniform random generation for combinatorial structures de-
fined by polynomial time relations is given in [17]: the authors give some evidence
that, under suitable hypotheses, (almost uniform) random generation is easier
than counting, but more difficult than recognizing. Following a similar approach,
a subexponential time algorithm is presented in [12] for the (almost uniform) ran-
dom generation of words in a (possibly ambiguous) context-free language.

In this work we study the problem for languages defined by a formal specifica-
tion of bounded ambiguity. As a model of computation (discussed in Sect. 1) we
assume a probabilistic random access machine, under logarithmic cost criterion,
which can only use unbiased coin flips for generating random numbers. Thus, the
corresponding complexity bounds take into account both the size of the operands
and the number of random bits used in the computation. Our main result states
that for finitely ambiguous context-free languages, a word of length n can be gener-
ated uniformly at random in O(n?logn) time and O(n?) space, using O(n? logn)
random bits. We observe that the same bounds for time and random bits are
obtained for unambiguous context-free languages by applying the procedures de-
scribed in [10] assuming our model of computation.

The proof of this result is based on a multiplicity version of Earley’s algorithm
for context-free recognition [9], presented in details in Section 2.1; in the case of
finitely ambiguous context-free languages, this procedure computes the number of
derivation trees of an input word of size n in O(n?logn) time and O(n?) space.

We extend this result to languages accepted by one-way nondeterministic auz-
iliary push-down automata working in polynomial time and using a logarithmic
amount of work-space [4,7]. In this case, we obtain a polynomial time random
uniform generator whenever the automaton has a polynomial number of accepting
computations for each input word.

1. PRELIMINARY NOTIONS

In this work, as model of computation, we assume a Probabilistic Random
Access Machine (PrRAM for short) under which the complexity of a procedure
takes into account the number of random bits used by the computation; a similar
model is implicitly assumed in [18] to study the complexity of random number
generation from arbitrary distributions.

Formally, our model is a Random Access Machine [1] equipped in addition with
a 1-way read-only random tape and an instruction RND. The random tape contains
a sequence r = rg, 71 ... of symbols in {0,1} and, in the initial configuration, its
head scans the first symbol. During the computation, the instruction “RND ¢”
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transfers the first ¢ unread bits from the random tape into the accumulator and
moves the tape head ¢ positions ahead. For a fixed sequence r on the random
tape and a given input z, the output M (z,r) of the computation of a PrRAM
M, is defined essentially as in the standard RAM model; furthermore, by M (z)
we mean the random variable denoting the output M (z,r) assuming r a sequence
of independent random variables such that Pr{r; = 1} = Pr{r; = 0} = 1/2 for
every i > 0. Hence the instruction “RND i” generates an integer in {0,...,2' — 1}
uniformly at random. To evaluate the space and time complexity of a PrRAM
computation we adopt the logarithmic cost criterion defined in [1] for the standard
RAM model, assuming, in addition, a time cost i for every instruction “RND 7”.
Due to the restriction to unbiased coins, an algorithm in this model may fail to
give the correct answer and in this case it outputs a conventional symbol L.

We think this machine takes the advantages of the two main models considered
in connection with the random generation of combinatorial structures, i.e. the
“arithmetic” machine assumed in [10] and the probabilistic Turing machine used
in [17]. From one side, it is suited for the specification of algorithms at high level
allowing an easy analysis of time and space complexity. From the other, it also
allows to carry out a somehow realistic analysis of the procedures that does not
neglect the size of operands, trying to reasonably satisfy the principle that every
elementary step of the machine be implementable in constant time by some fixed
hardware.

In this work we are mainly interested in the random generation of words from
a given language. Given a finite alphabet ¥ (such that L ¢ ¥) and a language
L C ¥*, for every n € N, let L,, be the set {z € L : |x| =n} and let C(n) be the
cardinality of L,. An algorithm A is a uniform random generator (u.r.g.) for a
language L if, for every n > 0, the following conditions hold:

1. A on input n returns a value A(n) € L, U {L},

2. Pr{A(n) =z | A(n) # L} = Cr(n)~?! for every z € L,, and

3. Pr{A(n) =1} < 1/4.

Observe that the constant 1/4 in the previous definition can be replaced by any
positive number strictly less than 1, leaving the definition substantially unchanged.
More precisely, assume there is an algorithm A, satisfying points 1) and 2) above,
such that Pr{A(n) = L} < 4§, for some 0 < ¢ < 1; then, for every 0 < ¢’ < 1,
there exists an algorithm A’ satisfying the same conditions 1) and 2) such that
Pr{A’(n) = L} < ¢’. Moreover, if A works in Ta(n) time and uses Ra(n) random
bits, then A" works in time O(Ta(n)) and uses O(Ra(n)) random bits.

As an example, we describe a u.r.g. for unambiguous context-free languages
obtained by adapting a well-known procedure for the random generation of com-
binatorial structures proposed in [10]. Our purpose here is to evaluate its time
complexity with respect to our model of computation.

1.1. UNAMBIGUOUS CONTEXT-FREE LANGUAGES

Let G = (V, X, S, P) be a context-free (c.f. for short) grammar, where V is the
set of nonterminal symbols (we also call variables), ¥ the alphabet of terminals,
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S € V the initial variable and P the family of productions. We assume G in
Chomsky normal form [16] without useless variables, i.e. every nonterminal ap-
pears in a derivation of some terminal word from the initial symbol S. It is well-
known that every c. f. language not containing the empty word e can be generated
by such a grammar.

For every A € V, let La be the set {z € ¥* | A =¢ =z} and, for every
x € ¥*, let da(z) be the number of leftmost derivations A =¢, « (or, equivalently,
the number of derivation trees of the word x rooted at A). Moreover, for every
¢ € N, we denote by T'4(¢) the sum Ta(£) = 3_,,,_, da(x) and by La(¢) the subset
{r eLallz|=1¢}.

It is well-known that every sequence {T'4(¢)}¢>1 has an algebraic generating
function [5] and hence, by a result due to Comtet [6], there exists a set of poly-
nomials po(z),p1(x),... ,pm(x) with integer coefficients such that, for all ¢ large
enough,

Po(O)Ta(6) + pL(O)Ta(C = 1) + -+ pru (/T4 (€ —m) = 0.

Since Ta(n) = O(r™) for some r > 0, the previous equation implies that the
first n terms Ta(1),... ,Ta(n) can be computed in O(n?) time on a RAM under
logarithmic cost criterion. Moreover, for each T4(¢) with 1 < ¢ < n, the integers
ba(f) = [logTa(f)] can be computed in O(¢log{) time (see Lem. A.2), for an
overall time cost of O(n?logn).

Now, assume G is unambiguous. Then, for every A € V and every x € 3%,
da(z) < 1 while, for each ¢ € N, T4(¢) coincides with the cardinality of L 4(¢).
Thus a u.r.g. for Lg can be designed which, on input n € N, first computes the
coefficients T (¢), for all 1 < ¢ < n and every A € V; then, it calls Procedure
Generate on input (S,n). Such a procedure, for an input (4,£) € V x N, returns
an element w € L(¢) U {L} such that Pr{w = 1L} < 1/4 and Pr{w =z | w #
1} =Ta(0)? for every x € La(¢). The computation is described by the following
scheme, where  is a global parameter to be fixed for increasing the probability of
success of the algorithm, P4 denotes the subset of productions in P of the form
A—BC with B,C € V, and P} is the set of productions in P of the form A—a
with a € 3.

The procedure chooses an element uniformly at random either in P} (if £ = 1),
or in the set Py x {1,...,¢ — 1} (if £ > 1), the choice depending on a total
order relation < among the elements of these sets. To define <, we assume a
lexicographic order < in both alphabets ¥ and V and set A—a < A—b in Pﬁ
if a < b, while (A—-BC,h) < (A—DE,k) in Py x {1,...,£ — 1} if either h <
k, or h = k and BC < DE. If £ > 1, once a random element (A—BC,k)
€ Py x {l,...,£ — 1} is computed, the same procedure is recursively called on
input (B, k) and (C,¢—k), and then it returns the concatenation of the two words.
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procedure Generate(A4, )
1—0,r— 1L w1
while i < x and r = L do

t—1i+1
generate u € {1,... 72“0gTA(m} uniformly at random
if u <Ty(¢) then r — u
if r # 1 then
if =1 then
let A—a be the 7-th element of P}
w—a
else
compute the smallest element (A—BC, k) in P4 x {1,...,0—1}
such that > Tp(h)Tg(l —h) >r (%)

(A—DE,h)<(A—BC.k)
wp —Generate(B, k)
we «—Generate(C, £ — k)
if wp # 1L and we # 1 then w «— wpwe
return w.

Let A(n) be the output of Generate(A,n). We first give an upper bound to
Pr{A(n) = L}. Let e(¢) be the maximum of all values Pr{A({) = L} for A € V.
One can easily show that e(1) < (1/2)* and e(¢) < (1/2)" + maxi<k<e—1{e(k)
+e(l — k)} for every 1 < ¢ < n. A simple induction proves e(¢) < (2¢ —1)/2" and
hence fixing k = 3 4 [logn] we have

Pr{A(n) =1} <e(n)<1/4 for every A e V.

Moreover, since the grammar is unambiguous, reasoning by induction on ¢, it is
easy to verify that, if A(¢) # L then A(¢) is uniformly distributed in L4(¢). More
precisely, for every x € L4({), we have

Pr{A(0) =z | A(€) # L} = 1/C1,(0).

On the contrary, if the grammar is ambiguous (i.e. d4(x) > 1 for some A € V and
x € ¥*) then for every x € L4(¢), we have

da(x)

Pr{A(f) = | A(0) # 1} = 7= 0

Concerning the time complexity, we assume to search the element (A—BC, k) of
step (x) by a boustrophedonic routine [10]. Also, let N(¢) be the maximum number
of PrRAM instructions executed by Generate(A4, ¢) for A € V. Then, for a suitable
constant ¢ > 0, one can write the following recursion, for every 1 < £ < n,

N () = O(k) if¢=1
| O(k) + max<j< {ecmin{j, £ — j} + N(j) + N({ — j)} if£>1.
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This proves that N(n) = O(kn) + cf(n), f(n) being the solution of the minimax
equation f(n) = max{f(k) + f(n — k) + min{k,n — k}} usually arising in the
evaluation of the cost of boustrophedonic search [13]. Since it is known that
f(n) = O(nlogn), assuming £ = O(logn), we get N(n) = O(nlogn), which,
under our model of computation, gives a total time cost O(n?logn) since all
integers involved in the routine have O(n) bits. Finally, the number B(n) of
random bits used by the procedure on input n > 1 satisfies an equation of the
form B(n) = O(nlogn) + maxi<;<n{B(j) + B({ — j)} for a total amount of
O(n?logn) random bits.

We observe that, following an idea described in [11], the computation of the
coefficients {(T'4(£),ba(£)) : A € V,1 < ¢ < n} and the actual process of generating
a random word in L% can be mixed together into a unique procedure which only
requires space O(n) under logarithmic cost criterion (leaving unchanged the order
of growth of the time complexity).

This discussion is summarized by the following:

Proposition 1.1. Every unambiguous context-free language admits a uniform ran-
dom generator working in O(n?logn) time and using O(n?logn) random bits on
a PrRAM under logarithmic cost criterion.

2. FINITELY AMBIGUOUS CONTEXT-FREE LANGUAGES

The previous algorithm can be used to design a simple u.r.g. for inherently
ambiguous context-free languages which works in polynomial time whenever the
ambiguity of the grammar is bounded by a polynomial. In this section we show
that, in the case of finite ambiguity, such a u.r.g. requires O(n?logn) time.

Consider again a c.f. grammar G = (V,X,S, P) in Chomsky normal form
without useless variables; assume G is finitely ambiguous, i.e. there exists D € N
such that dg(x) < D for every x € X*. Intuitively, a u.r.g. for Lg can work as
follows: first, a word « is computed by calling Procedure Generate(S, n); then, the
value dg(z) is computed, a biased coin is thrown with probability 1/dg(z) and in
case of success the algorithm outputs z. This guarantees that all words of length
n in the language are generated with equal probability. Moreover, the generating
loop is repeated a suitable number of times to ensure that the probability of a
failure is below the given upper bound.

Formally, the algorithm is described by the following scheme, where £ > 0 is
a suitable integer constant discussed later and lem I denotes the least common
multiple of a set I C N.

procedure Gen_amb(G)

input n

m «— lem{1,... ,D}, £ — [logm]

1—0,w— L

while ¢ < kD and w = 1 do
t—1i+1
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x «—Generate(S, n)
if x # 1 then
d — ds (I)
generate r € {1,...,2°} uniformly at random
if r <m/d then w «— z
return w.

We point out that a word z is actually generated with probability h/ds(x), for
some 1/2 < h <1 (since the random integer r may be greater than m). However,
the value of h is fixed and independent of z, and therefore all words of length n
have the same probability to be generated by the algorithm. The value of dg(z)
is computed by a procedure we show later.

More formally, to prove the algorithm is a u.r.g. for Lg, assume Tg(n) > 0 and
let W and X be the random variables representing, respectively, the value of w
and x at the end of a while iteration. Since X is the output of Generate(S,n),
there exists 0 < ¢ < 1/4 such that, for every u € L%,

Pr{X =u}=(1-9)

Hence, we obtain

m (I1-0)m
ds(u)Q[IOng - 2[10gm]TS(n)
which is independent of u. On the other hand, at the end of each while itera-
tion, Pr{lV = L} = 1 — Crg(n) ((1 — §)m2-Me™IT4(n)~1). Then, since Ts(n)
< Crs(n)D, we have Pr{W = 1} < 1— 324 and hence the probability of returning

L is ( — %%)HD which is smaller than 1/4 for a suitable choice of x > 0.

To evaluate the time complexity of this procedure we first have to describe an
algorithm for the computation of dg(z). This is presented in detail in the following
subsection by using Earley’s algorithm [9] for context-free recognition. The main
advantage of this procedure, with respect to the well-known CYK algorithm [14],
is that in the case of a grammar with bounded ambiguity, the computation only

requires quadratic time on a RAM under unit cost criterion [2,9].

Pr{W =u} =Pr{X =u}

2.1. EARLEY’S ALGORITHM FOR COUNTING DERIVATIONS

Consider a finitely ambiguous c.f. grammar G = (V, 3, S, P) in Chomsky nor-
mal form, without useless variables. We want to describe an algorithm that, for
an input z € ¥*, computes dg(x), i.e. the number of derivation trees of x rooted
at S. The procedure manipulates a weighted version of the so-called dotted pro-
ductions of G, which are defined as expressions of the form A—a«- 3, where A € V,
a,f € (BUV)* and A—af € P (in our case, since G is in Chomsky normal form,
both a and 8 have length 2 at most).

Given an input string * = ajas . . . a,, the algorithm computes a table of entries
Si.j, for 0 < i < j < n, each of which is a list of terms of the form [A—a - §,¢],
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where A—« - (3 is a dotted production in G and ¢ is a positive integer. Each pair
[A—a - 3,t] is called state and t is the weight of the state.

We will prove that the table of lists S; ; computed by the algorithm has the
following properties for any pair of indices 0 < i < j < n:

1. S;; contains at most one state [A—a - §,t] for every dotted production
A—qa - in G;

2. a state [A—a - §,t] belongs to S; ; if and only if there exists § € V* such
that S = ai...a;Ad and a= Ait1 - .- Gj;

3. if [A—a - B, 1] belongs to S; ;, then t = #{a = Qig1... a;}, i.e. the number
of leftmost derivations o = iyl ... Q5.

Note that, since there are no e-productions, [A—a - §,t] € S;; implies o = ¢
for every 0 < ¢ < n. Furthermore, once the lists S;; are completed for any

0 <i<j<n,then ds(z) can be obtained as the sum } ;g 45 yes, , t-

The algorithm first computes the list Sy o of all the states [A— - a, 1] such that
S = A§ for some § € V*. Then, it executes the cycle of Scanner, Predictor and
Completer loops given below for 1 < j < n, computing at the j-th loop the lists
S;; for 0 < ¢ < j. To this end the procedure maintains a family of sets Lp; for
B €V and 1 <i <mn; each Lp,; contains all indices k& < ¢ such that a state of
the form [A—a - BS,t] belongs to Si; for some A € V, a, 8 € VU {e}, t € N.
Moreover, during the computation every state in S; ; is unmarked as long as it
may be used to add new states in the table; when this cannot occur any more the
procedure marks the state.

The command “ADD D TO §; ;" simply appends the state D as unmarked to
S;,; and adds i to the list Lp; whenever D is of the form [A—« - Bf,t]; the
command “UPDATE [A—a« - (3,t] IN S; ;7 replaces the state [A—a - 3,u] in S; ; for
some u € N by [A—« - 3,t], at last, “MARK D IN S, ;” transforms the state D in
S; ; into a marked state.

1 for j=1...ndo

Scanner:

2 for [AH . a,t] € ijl,jfl do

3 MARK [A— - a,t] IN Sj_1 ;1

4 if a = a; then ADD [A—a-,t] TO S;j_1;
Completer:

5 fori=35—-1...0do

6 for [B—~-,t] € 5;; do

7 MARK [B—~-,t] IN S; ;

8 for k€ Lp; do

9 for [A—a-Bp,u]l € Sy, do
10 if [A—aB-3,v] € Sk;

11 then UPDATE [A—aB - §,v + tu] IN S ;

12 else ADD [A—aB - 3,tu] TO Sk ;
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Predictor:

13 fori=0...5—1do

14 for [A—>Oé : Bﬁ,t] S S@j do

15 MARK [A—a - Bf,t] IN S; ;

16 for B—vy € P do

17 if [B—-v,1] ¢ S;; then ADD [B— -, 1] TO S; ;
18  while 3 UNMARKED [A— - B, t] € S; ; do

19 MARK [A— - Bf3,t] IN S, ;

20 for B—y € P do

21 if [B—-v,1] € S;; then ADD [B— -, 1] TO S; ;

We are then able to prove the following;:

Lemma 2.1. The table of lists S;;, 0 < i < j < n, computed by the procedure
described above satisfies the properties 1), 2) and 3).

Proof. First, observe that statement 1) is easily verified: at line 4 distinct states
are added to an initially empty list S; ;; at lines 12, 17, 21 a state is added to a
list provided no state with the same dotted production is already contained.

Statement 2) only refers to dotted productions appearing in the lists and does
not concern the weight of the states. Moreover, disregarding the computations on
the weight of the states, the procedure works on the dotted production exactly as
Earley’s algorithm; hence statement 2) is a consequence of its correctness (for a
detailed proof see Th. 4.9 in [2]).

Now, let us prove statement 3). First note that all states in S; ;, for 1 < i
< j < n, are marked during the computation. Hence, we can reason by induction
on the order of marking states. The initial condition is satisfied because all states
in each S; ;, 0 < j < n, are of the form [A— -, t] and have weight ¢t = 1. Also the
states of the form [A—a-,t] have weight ¢ = 1 and again statement 3) is satisfied.

Then, consider a state D = [A—aB - 3,w] € Si,; (k < j). We claim that w is
the number of leftmost derivations B = Q41 - ..a;. A state of this form is first
added by the Completer at line 12. Now, consider the set Ij of indices k < i < j
such that [A—« - Bf,u;] € Sk, for some u; € N and, for each i € Ij, let U; be the
family of states in S, ; of the form [B—~-,t]. It is clear that

w = Z Z tu;. (1)

i€l [B—~-,t]eU;

Moreover, each state [A—a - B, u;] € Sk, is marked at line 15 or 19 before D
is added to Sj ;. Also all states in U;, for all ¢ € I, are marked during the
computation of the weight w and, by the form of the grammar, updating w cannot
modify the weight of any state in U;. As a consequence, all the states in U; are
marked before D. Hence, by inductive hypothesis, for every i € I, we have

ui:#{aéakﬂ...ai} (2)
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and, for each [B—~-,t] € U,
t:#{fy:*>ai+1...aj}~ (3)

Now the number of leftmost derivations aB = ap,1 ... a; is clearly given by

Z #{a$ak+1...ai} Z #{fy:*>ai+1...aj}

k<i<j B—yeP

and the claim follows from equation (1) by applying statement 1) and equalities (2)
and (3). O

Theorem 2.2. Given a finitely ambiguous context-free grammar G in Chomsky
normal form, the algorithm described above computes the number of derivation
trees of a string of length n in O(n? logn) time and O(n?) space (under logarithmic
cost criterion,).

Proof. We first observe that every list .S; ; for 0 < ¢ < j < n contains at most a
constant number of states, each of which can be stored by using O(1) binary space
since G is finitely ambiguous. This implies a space complexity O(n?).

As far as the time complexity is concerned, note that in each loop, for a fixed
1 < j < n, the Scanner and Predictor phase execute O(j) commands, while the
Completer phase requires a number of unit steps proportional to

Z iLB;.

BeV,0<i<y

Since G is finitely ambiguous, each k € {0,1,...,5 — 1} can appear only in a
constant number of lists Lp ;, for B € V and 0 <7 < j, and hence the sum above
is bounded by O(j). As a consequence, we only need O(logn) logarithmic time to
locate each state in the table yielding a total time complexity O(n?logn). O

Applying this result to the u.r.g. defined at the beginning of this section, we
obtain the following

Corollary 2.3. If L is a finitely ambiguous context-free language, then there exists
a u.r.g. for L working in O(n?logn) time and O(n?) space on a PrRAM under
logarithmic cost criterion.

3. ONE-WAY AUXILIARY PUSHDOWN AUTOMATA

In this section we consider languages accepted by a one-way nondeterminis-
tic auziliary pushdown automaton (1-NAuxPDA, for short). We show that these
languages admit a polynomial time u.r.g. whenever they are accepted by a 1-
NAuxPDA that works in polynomial time and has a polynomially bounded ambi-

guity.
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We recall that a 1-NAuxPDA is a nondeterministic Turing machine having a
one-way read-only input tape, a pushdown tape and a log-space bounded two-way
read-write work tape [4,7]. It is known that the class of languages accepted by a
polynomial time 1-NAuxPDA corresponds exactly to the class of decision problems
that are reducible to context-free recognition via one-way log-space reductions [19].

Given a 1-NAuxPDA M, we define by CZM(I) the number of accepting compu-
tations of M on input x € ¥* and call ambiguity of M the function dj; : N — N
defined by dps(n) = maxgesn CZM(I), for every n € N. Then, M is said polyno-
mially ambiguous if, for some polynomial p(n), we have dyr(n) < p(n) for every
n > 0. Moreover, it is known that, given an integer input n > 0, a c.f. grammar
G, can be built such that L(G,) N X" = L(M) N X", where L(G,,) C ¥* is the
language generated by G,, and L(M) C ¥* is the language accepted by M. This
allows us to apply the results of the previous section to the languages accepted by
a I-NAuxPDA.

Here, we describe a modified version of the usual construction of G, [7] that
allows to bound the ambiguity of G,, with respect to the ambiguity of M. First of
all, we assume w.l.o.g. that the automaton cannot simultaneously consume input
and modify the content of the stack, at most one symbol can be pushed or popped
in a single move, there is only one final state and, finally, the input is accepted if
and only if the automaton reaches the final state with both the pushdown store
and the work tape empty.

A surface configuration of a 1-NAuxPDA M on input of length n is a 5-tuple
(q,w,,T, j) where ¢ is the state of M, w the content of its work tape, 1 <i < |w|
the work tape head position, I' the symbol on top of the stack and 1 < j < n+1 the
input tape head position. Observe that there are n©(!) surface configurations on
any input of length n > 0. Two surface configurations C, Cs form a realizable pair
(C1,C3) (on a word y € X7 ) if M can move (consuming input y) from C; to Cs,
ending with its stack at the same height as in C, without popping below this height
at any step of the computation. If (Cy, D) and (D, Csy) are realizable pairs on y’
and y” respectively, then (C1, C2) is a realizable pair on y = 3'y”. Let S,, be the set
of surface configurations of M on inputs of length n and define the c.f. grammar
Gn(M) = (N,X,S, P), where N = {S}U{(C1,C2,£): C1,Cy € S, and £ € {0,1}}
and the set P of productions is given by the following rules:

1. P contains both S—(Ci,, C#n,0) and S—(Cin, Cfin, 1), where Cj, and Cyy,
represent respectively the initial and final surface configuration of M;

2. (C1,C4,0)—0 € P iff (C1,C7) is a realizable pair on o € ¥ U{e} via a single

move computation;

(C1,C5,0)—(C1,D,1)(D,Cq,¢) € P, for £ € {0,1}, iff C1,Ca, D € Sy;

4. (01702, 1)—>(D1,D2,€) € P, for { € {0, 1}, ifft C4,D1,D2,Cy € S, D1 can
be reached from C in a single move pushing a symbol a on top of the stack
and C5 can be reached from D; in a single move popping the same symbol
from the top of the stack.

For the sake of brevity define, for each realizable pair (C1,C2), the set C(Cy, Ca)
of all computations of M starting from C7 and ending in C3 with the stack at

w
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the same height as in C, without popping below this height at any point of the
computation; define also the subset C1(C1,Cy) C C(C1, Cs) of such computations
(of at least two steps) during which the stack height never equals the stack height
at the extremes C1, Cs and the subset Co(Cy, C2) = C(C1, Cs) \ C1(Cq, C2) of one
step computations and longer computations during which the stack height equals,
at least once, the stack height at the extremes C1,Cs. Following [7] and [3], it is
possible to prove that:

Proposition 3.1. Given a polynomial time 1-NAuxPDA M, there exists an algo-
rithm computing, for an inputn > 0, the grammar G, (M) in polynomial time on a
RAM under logarithmic cost criterion. Moreover, for every ¢ € {0,1}, C1,Cy € S,
and y € ¥*, (C1,Cs) is a realizable pair on y via a computation in Ce(Cy,Cs) if
and only if (C1,Co, 0) = y.

In order to apply the result on c.f. grammars in this case, we have to bound
the ambiguity of G, (M).

Proposition 3.2. For every polynomial time 1-NAuxzPDA M, the number of left-
most derivations (Cy,Cy,€) = y in G, (M) is less than or equal to the number of
computations in Cy(Cy,Cs) consuming y.

Proof. We want to prove that the correspondence given in Proposition 3.1 defines,
for every C1,Cs € S, and y € ¥*, a bijective map from the leftmost derivations
(Cy,Ca, ) = y to the computations in Cy(C}, Cy) consuming y.

By the previous proposition, we simply have to show that such a map is injective,
i.e. if the computations associated with two leftmost derivations are equal, then the
two derivations themselves are the same. We reason by induction on the number
k of steps of the computation.

If kK =1 then the statement is obvious.

Assume k > 1 and £ = 0; for i € {1,2}, let (C1, Co,0)—(Cy, D;, 1)(D;, Ca, £;) =
y be two leftmost derivations (for some ¢; € {0,1} and D; € S,,). By the construc-
tion of the grammar, if the associated computations are equal, then D; = Da,
1 = {5 and there exist two words ¢/, y" such that y = y'y”, (C1, D;, 1) = 3 and
(Dy,Ca, ;) = y", for i € {1,2}. Then, by inductive hypothesis, (C1, D;,1) = 3’
are the same leftmost derivation for i € {1,2} and (D, Cs,¢;) = 3" are the same
leftmost derivation for i € {1,2}. Hence (Cy,Ca,0)—(C4, D;, 1)(D;, Ca, 4;) = y
are the same leftmost derivation for i € {1, 2}.

Now assume k > 1 and ¢ = 1 and fori € {1,2},let (C1, Ca,1)— (D1, D2, 4;) =
y be two leftmost derivations (for some ¢; € {0,1} and Dy ;, Dy ; € Sy,). If the as-
sociated computations are equal, then we have D11 = D12, Da1 = Do, {1 = {3,
and hence (D ;, Do, ¢;) = y for any i € {1,2}. Moreover, by inductive hypothe-
sis, the two derivations for i € {1, 2} coincide, hence (C1, C2,1)—(D1,i, D2,i,¢;) =
y are the same leftmost derivation for ¢ € {1, 2}. O

Now, we are able to state the main property of this section.



RANDOM GENERATION FOR FINITELY AMBIGUOUS C.F. LANGUAGES 511

Theorem 3.3. Every language L accepted by a polynomial time 1-NAuzPDA with
polynomially bounded ambiguity admits a u.r.g. working in polynomial time.

Proof. Let M be a polynomially ambiguous 1-NAuxPDA accepting L and working
in polynomial time. Moreover, assume p(n) is a polynomial such that dps(n)
< p(n), for every n. Then a u.r.g. for L can be designed that, on input n € N, first
computes the grammar G,, = G,,(M) and then it applies procedure Gen_amb(G,,)
where, however, the constant D is replaced by the value p(n). Recall that, by
Proposition 3.2, the ambiguity of G,, is not greater than p(n). Also observe the
number of leftmost derivations of a terminal string « in G,, can be computed in
time polynomial in |z| and |G,,|. Therefore, reasoning as in Section 2 and applying
Lemma A.1 given in the Appendix, it is easy to show that the overall algorithm
works in polynomial time. o

APPENDIX A. TECHNICAL LEMMAS

Here, we show some complexity bounds we have used in our proofs.

Lemma A.1. The least common multiple (lem) of {1,...,n} is an integer of
O(n) bits and can be computed in time O(n?) by a RAM under logarithmic cost
criterion.

Proof. First, we recall that lem{1,... ,n} < n™™ where 7(n) is the number of
primes less than n ([22], Lem. 4.1.2). As a consequence, lem{1,... ,n} has O(n)
bits since it is well-known that 7(n) ~ n/logn. Now, to compute lem{1,... ,n}, a
naive iterative procedure LCM(n) can be designed that first calculates recursively
the value a = LCM(n — 1) and then determines the least common multiple of a
and n by using Euclid’s algorithm for computing the GCD. Since computing such
a GCD requires O(n) time, the overall computation can be executed in O(n?)
time. O

Lemma A.2. The value [log N can be computed on input N > 1 in O(log N
loglog N) time by a RAM under logarithmic cost criterion.

Proof. To compute [log N in our model of computation, a recursive procedure
can be designed that, on input N > 1, returns 0 if N = 1; otherwise, it first
computes the largest power k = 2" (h € N) such that 2 < N in O(h2") time,
then it recursively calculates a = [log| N/2*]] and returns a+k. Such a procedure,
for an input N of r bits, works in time T'(r) = O(rlogr) + T'(|r/2]) and hence
T(r) = O(X)87 h2h) = O(log N loglog N). 0
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