We prove that for each positive integer the finite commutative language possesses a test set of size at most Moreover, it is shown that each test set for has at least elements. The result is then generalized to commutative languages containing a word such that (i) and (ii) each symbol occurs at least twice in if it occurs at least twice in some word of : each such possesses a test set of size , where . The considerations rest on the analysis of some basic types of word equations.
@article{ITA_2001__35_5_453_0, author = {Holub, \v{S}t\v{e}p\'an and Kortelainen, Juha}, title = {Linear size test sets for certain commutative languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {453--475}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1908866}, zbl = {1010.68103}, language = {en}, url = {http://www.numdam.org/item/ITA_2001__35_5_453_0/} }
TY - JOUR AU - Holub, Štěpán AU - Kortelainen, Juha TI - Linear size test sets for certain commutative languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 453 EP - 475 VL - 35 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2001__35_5_453_0/ LA - en ID - ITA_2001__35_5_453_0 ER -
%0 Journal Article %A Holub, Štěpán %A Kortelainen, Juha %T Linear size test sets for certain commutative languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 453-475 %V 35 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2001__35_5_453_0/ %G en %F ITA_2001__35_5_453_0
Holub, Štěpán; Kortelainen, Juha. Linear size test sets for certain commutative languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 453-475. http://www.numdam.org/item/ITA_2001__35_5_453_0/
[1] On test sets, checking sets, maximal extensions and their effective constructions. Habilitationsschirft, Fakultät für Wirtschaftswissenschaften der Universität Karlsruhe (1968).
,[2] A proof of Ehrenfeucht‘s Conjecture. Theoret. Comput. Sci. 41 (1985) 121-123. | Zbl
and ,[3] Checking sets, test sets, rich languages and commutatively closed languages. J. Comput. System Sci. 26 (1983) 82-91. | MR | Zbl
and ,[4] Combinatorics on words, in Handbook of Formal Languages, Vol. I, edited by G. Rosenberg and A. Salomaa. Springer-Verlag, Berlin (1997) 329-438. | MR
and ,[5] On binary equality sets and a solution to the test set conjecture in the binary case. J. Algebra 85 (1983) 76-85. | MR | Zbl
, and ,[6] A combinatorial problem in geometry. Compositio Math. 2 (1935) 464-470. | JFM | Numdam | MR
and ,[7] On word equations and the morphism equivqalence problem for loop languages. Academic dissertation, Faculty of Science, University of Oulu (1997). | MR | Zbl
,[8] On the system of word equations in a free monoid. Theoret. Comput. Sci. 225 (1999) 149-161. | MR | Zbl
and ,[9] Linear size test sets for commutative languages. RAIRO: Theoret. Informatics Appl. 31 (1997) 291-304. | Numdam | MR | Zbl
and ,[10] Morphisms, in Handbook of Formal Languages, Vol. I, edited by G. Rosenberg and A. Salomaa. Springer-Verlag, Berlin (1997) 439-510. | MR | Zbl
and ,[11] Introduction to Formal Language Theory. Addison-Wesley, Reading, Reading Massachusetts (1978). | MR | Zbl
,[12] Local and global cyclicity in free monoids. Theoret. Comput. Sci. 262 (2001) 25-36. | MR | Zbl
,[13] On the size of independent systems of equations in semigroups. Theoret. Comput. Sci. 168 (1996) 105-119. | MR | Zbl
and ,[14] On the system of word equations in a free monoid. J. Autom. Lang. Comb. 3 (1998) 43-57. | MR | Zbl
,[15] Combinatorics on Words. Addison-Wesley, Reading Massachusetts (1983). | MR | Zbl
,[16] The Ehrenfeucht conjecture: A proof for language theorists. Bull. EATCS 27 (1985) 71-82.
,