A morphism is -power-free if and only if is -power-free whenever is a -power-free word. A morphism is -power-free up to if and only if is -power-free whenever is a -power-free word of length at most . Given an integer , we prove that a binary morphism is -power-free if and only if it is -power-free up to . This bound becomes linear for primitive morphisms: a binary primitive morphism is -power-free if and only if it is -power-free up to
Mots-clés : combinatorics on words, $k$-power-free words, morphisms, test-sets
@article{ITA_2001__35_5_437_0, author = {Wlazinski, F.}, title = {A test-set for $k$-power-free binary morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {437--452}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1908865}, zbl = {1010.68102}, language = {en}, url = {http://www.numdam.org/item/ITA_2001__35_5_437_0/} }
TY - JOUR AU - Wlazinski, F. TI - A test-set for $k$-power-free binary morphisms JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 437 EP - 452 VL - 35 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2001__35_5_437_0/ LA - en ID - ITA_2001__35_5_437_0 ER -
%0 Journal Article %A Wlazinski, F. %T A test-set for $k$-power-free binary morphisms %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 437-452 %V 35 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2001__35_5_437_0/ %G en %F ITA_2001__35_5_437_0
Wlazinski, F. A test-set for $k$-power-free binary morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 437-452. http://www.numdam.org/item/ITA_2001__35_5_437_0/
[1] Axel thue's work on repetitions in words, edited by P. Leroux and C. Reutenauer, Séries formelles et combinatoire algébrique. LaCIM, University of Québec at Montréal (1992) 65-80.
,[2] Axel thue's papers on repetitions in words: A translation, Technical Report 20. LaCIM, University of Québec at Montréal (1995).
,[3] A characterization of overlap-free morphisms. Discrete Appl. Math. 46 (1993) 275-281. | MR | Zbl
and ,[4] Sharp characterizations of squarefree morphisms. Theoret. Comput. Sci. 18 (1982) 221-226. | MR | Zbl
,[5] On cube free -words generated by binary morphisms. Discrete Appl. Math. 5 (1983) 279-297. | MR | Zbl
,[6] On the -repetition freeness of length uniform morphisms over a binary alphabet. Discrete Appl. Math. 9 (1984) 297-300. | MR | Zbl
,[7] On the -freeness of morphisms on free monoids. Ann. Acad. Sci. Fenn. 61 (1986). | MR | Zbl
,[8] A characterization of power-free morphisms. Theoret. Comput. Sci. 38 (1985) 117-122. | MR | Zbl
,[9] Codes sans répétition, Ph.D. Thesis. LITP Université P. et M. Curie (1985).
,[10] A combinatorial problem in the theory of free monoids, edited by R.C. Bose and T.E. Dowling. Chapell Hill, North Carolina Press edition, Comb. Math. (1945) 112-144. | Zbl
and ,[11] Combinatorics on words, Vol. 17 of Encyclopedia of Mathematics, Chap. 9, Equations on words. Addison-Wesley (1983). Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical Library. | Zbl
,[12] Algebraic combinatorics on words. Cambridge University Press (to appear). | MR | Zbl
,[13] Primitive morphisms. Inform. Process. Lett. 64 (1997) 277-281. | MR
,[14] Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22 (1921) 84-100. | JFM | MR
,[15] Characterization of test-sets for overlap-free morphisms. Discrete Appl. Math. 98 (1999) 151-157. | MR | Zbl
and ,[16] About cube-free morphisms, edited by H. Reichel and S. Tison, STACS 2000. Springer-Verlag, Lecture Notes in Comput. Sci. 1770 (2000) 99-109. | MR | Zbl
and ,[17] Some results on -power-free morphisms. Theoret. Comput. Sci. 273 (2002) 119-142. | MR | Zbl
and ,[18] Sequences generated by infinitely iterated morphisms. Discrete Appl. Math. 11 (1985) 255-264. | MR | Zbl
,[19] Uber unendliche Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1906) 1-22. | JFM
,[20] Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1912) 1-67. | JFM
,