The graph product is an operator mixing direct and free products. It is already known that free products and direct products of automatic monoids are automatic. The main aim of this paper is to prove that graph products of automatic monoids of finite geometric type are still automatic. A similar result for prefix-automatic monoids is established.
@article{ITA_2001__35_5_403_0, author = {Veloso Da Costa, A.}, title = {On graph products of automatic monoids}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {403--417}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1908863}, zbl = {1019.20028}, language = {en}, url = {http://www.numdam.org/item/ITA_2001__35_5_403_0/} }
TY - JOUR AU - Veloso Da Costa, A. TI - On graph products of automatic monoids JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 403 EP - 417 VL - 35 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2001__35_5_403_0/ LA - en ID - ITA_2001__35_5_403_0 ER -
%0 Journal Article %A Veloso Da Costa, A. %T On graph products of automatic monoids %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 403-417 %V 35 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2001__35_5_403_0/ %G en %F ITA_2001__35_5_403_0
Veloso Da Costa, A. On graph products of automatic monoids. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 5, pp. 403-417. http://www.numdam.org/item/ITA_2001__35_5_403_0/
[1] Automatic Semigroups. Theoret. Comput. Sci. (to appear). | MR | Zbl
, , and ,[2] Automatic monoids and change of generators. Math. Proc. Cambridge Philos. Soc. 127 (1999) 403-409. | MR | Zbl
, and ,[3] Graph Products of Groups, Ph.D. Thesis. The University of Leeds (1990).
,[4] Introduction to Automata Theory, Languages and Computation. Addison-Wesley (1979). | MR | Zbl
and ,[5] Algorithms and Geometry for Graph Products of Groups. J. Algebra 171 (1995) 230-257. | MR | Zbl
and ,[6] An Introduction to Semigroup Theory. Academic Press (1976). | MR | Zbl
,[7] A Geometric Characterization of Automatic Monoids. Universidade do Porto (preprint). | MR | Zbl
and ,[8] Extensions and Submonoids of Automatic Monoids. Universidade do Porto (preprint). | MR | Zbl
and ,[9] Graph Products of Monoids. Semigroup Forum 63 (2001) 247-277. | MR | Zbl
,