We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under . This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.
@article{ITA_2001__35_4_389_0, author = {Kuich, Werner and Sauer, N. W.}, title = {Atoms and partial orders of infinite languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {389--401}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1880807}, zbl = {1112.68435}, language = {en}, url = {http://www.numdam.org/item/ITA_2001__35_4_389_0/} }
TY - JOUR AU - Kuich, Werner AU - Sauer, N. W. TI - Atoms and partial orders of infinite languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 389 EP - 401 VL - 35 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2001__35_4_389_0/ LA - en ID - ITA_2001__35_4_389_0 ER -
%0 Journal Article %A Kuich, Werner %A Sauer, N. W. %T Atoms and partial orders of infinite languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 389-401 %V 35 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2001__35_4_389_0/ %G en %F ITA_2001__35_4_389_0
Kuich, Werner; Sauer, N. W. Atoms and partial orders of infinite languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 4, pp. 389-401. http://www.numdam.org/item/ITA_2001__35_4_389_0/
[1] Finiteness and Regularity in Semigroups and Formal Languages. Springer (1999). | MR | Zbl
and ,[2] Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981). | MR | Zbl
,[3] Edge partitions of the Rado graph. Combinatorica 16 (1996) 1-16. | MR | Zbl
and ,[4] On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264-286. | JFM
,[5] Coloring finite substructures of countable structures. The Mathematics of Paul Erdős, X. Bolyai Mathematical Society (to appear). | MR | Zbl
,[6] Regular Languages. In: Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR
,