Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e., the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural assumptions that encompass all commonly used data models (and more), we obtain a precise average-case and probabilistic analysis of stack-size. Furthermore, we study the dependency between the stack-size and the ordering on symbols in the alphabet: we establish that, when the source emits independent symbols, the optimal ordering arises when the most probable symbol is the last one in this order.
Mots clés : average-case analysis of data-structures, information theory, trie, Mellin analysis
@article{ITA_2001__35_2_163_0, author = {Bourdon, J\'er\'emie and Nebel, Markus and Vall\'ee, Brigitte}, title = {On the stack-size of general tries}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {163--185}, publisher = {EDP-Sciences}, volume = {35}, number = {2}, year = {2001}, mrnumber = {1862461}, zbl = {1016.68064}, language = {en}, url = {http://www.numdam.org/item/ITA_2001__35_2_163_0/} }
TY - JOUR AU - Bourdon, Jérémie AU - Nebel, Markus AU - Vallée, Brigitte TI - On the stack-size of general tries JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 163 EP - 185 VL - 35 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2001__35_2_163_0/ LA - en ID - ITA_2001__35_2_163_0 ER -
%0 Journal Article %A Bourdon, Jérémie %A Nebel, Markus %A Vallée, Brigitte %T On the stack-size of general tries %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 163-185 %V 35 %N 2 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2001__35_2_163_0/ %G en %F ITA_2001__35_2_163_0
Bourdon, Jérémie; Nebel, Markus; Vallée, Brigitte. On the stack-size of general tries. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 2, pp. 163-185. http://www.numdam.org/item/ITA_2001__35_2_163_0/
[1] Dynamical Sources in Information Theory: A General Analysis of Trie Structures. Algorithmica 29 (2001) 307-369. | MR | Zbl
, and ,[2] An average-case analysis of the Gaussian algorithm for lattice reduction. Combina. Probab. Comput. 6 (1997) 397-433. | MR | Zbl
, and ,[3] The average height of planted plane trees, Graph Theory and Computing. Academic Press (1972) 15-22. | MR | Zbl
, and ,[4] On the Horton-Strahler number for Random Tries. RAIRO: Theoret. Informatics Appl. 30 (1996) 443-456. | Numdam | Zbl
and ,[5] On the performance of evaluation of extendible hashing and trie searching. Acta Informatica 20 (1983) 345-369. | MR | Zbl
,[6] Mellin transforms and asymptotics: Harmonic sums. Theoret. Comput. Sci. 144 (1995) 3-58. | MR | Zbl
, and ,[7] Partial match retrieval of multidimensional data. J. ACM 33 (1986) 371-407. | MR
and ,[8] Trie Memory. Comm. ACM 3 (1990) 490-500.
,[9] Handbook of Algorithms and Data Structures: in Pascal and C. Addison-Wesley (1991). | Zbl
and ,[10] Produit tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955). | MR | Zbl
,[11] La Théorie de Fredholm. Bull. Soc. Math. France 84, 319-384. | Numdam | MR | Zbl
,[12] Analytical Depoissonization and its Applications. Theoret. Comput. Sci. 201 in “Fundamental Study” (1998) 1-62. | Zbl
and ,[13] On the Recursion Depth of Special Tree Traversal Algorithms. Inform. and Comput. 74 (1987) 15-32. | MR | Zbl
and ,[14] The average height of -tuply rooted planted plane trees. Computing 25 (1980) 209-232. | MR | Zbl
,[15] The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-Wesley (1973). | MR | Zbl
,[16] M; Krasnoselskii, Positive solutions of operator equations. P. Noordhoff, Groningen (1964). | MR | Zbl
[17] Evolution of Random Search Trees. Wiley-Interscience Series (1992). | MR | Zbl
,[18] The Stack-Size of Tries, a Combinatorial Study. Theoret. Comput. Sci. (to appear). | MR | Zbl
,[19] The Stack-Size of Uniform Random Tries Revisited (submitted).
,[20] On the Horton-Strahler Number for Combinatorial Tries. RAIRO: Theoret. Informatics Appl. 34 (2000) 279-296. | Numdam | MR | Zbl
,[21] Trie hashing analysis, in Proc. 4th Int.Conf. Data Eng.. Los Angeles, CA (1988) 377-387.
,[22] On the average height of trees in in digital search and dynamic hashing. Inform. Process. Lett. 13 (1982) 64-66. | MR | Zbl
,[23] Partial match retrieval algorithms. SIAM J. Comput. 5 (1976) 19-50. | MR | Zbl
,[24] Algorithms. Addison-Wesley (1988). | Zbl
,[25] On the height of digital trees and related problem. Algorithmica 6 (1991) 256-277. | MR | Zbl
,[26] Some results on -ary asymmetric tries. J. Algorithms 9 (1988) 224-244. | Zbl
,[27] Set representation and set intersection, Technical Report. Stanford University (1998).
,[28] Dynamical Sources in Information Theory: Fundamental Intervals and Word Prefixes. Algorithmica 29 (2001) 162-306. | MR | Zbl
,[29] Trees Everywhere, in Proc. CAAP'90. Springer, Lecture Notes in Comput. Sci. 431 (1990) 18-41. | Zbl
,[30] A note on the analysis of extendible hashing. Inform. Process. Lett. 11 (1980) 84-86. | MR | Zbl
,