Coalgebras for endofunctors can be used to model classes of object-oriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors . This extension allows the incorporation of binary methods into coalgebraic class specifications. The paper also discusses how to define bisimulation and invariants for coalgebras of extended polynomial functors and proves many standard results.
Mots-clés : binary method, coalgebra, bisimulation, invariant, object-orientation
@article{ITA_2001__35_1_83_0, author = {Tews, Hendrik}, title = {Coalgebras for binary methods : properties of bisimulations and invariants}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {83--111}, publisher = {EDP-Sciences}, volume = {35}, number = {1}, year = {2001}, mrnumber = {1845876}, zbl = {0983.68126}, language = {en}, url = {http://www.numdam.org/item/ITA_2001__35_1_83_0/} }
TY - JOUR AU - Tews, Hendrik TI - Coalgebras for binary methods : properties of bisimulations and invariants JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 83 EP - 111 VL - 35 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2001__35_1_83_0/ LA - en ID - ITA_2001__35_1_83_0 ER -
%0 Journal Article %A Tews, Hendrik %T Coalgebras for binary methods : properties of bisimulations and invariants %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 83-111 %V 35 %N 1 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2001__35_1_83_0/ %G en %F ITA_2001__35_1_83_0
Tews, Hendrik. Coalgebras for binary methods : properties of bisimulations and invariants. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 1, pp. 83-111. http://www.numdam.org/item/ITA_2001__35_1_83_0/
[1] A final coalgebra theorem, in Proc. of the Conference on Category Theory and Computer Science, edited by D.H. Pitt, D.E. Rydeheard, P. Dybjer, A.M. Pitts and A. Poigné. Springer, Lecture Notes in Comput. Sci. 389 (1989) 357-365. | MR
and ,[2] Lambda calculi with types, edited by S. Abramsky, D.M. Gabbay and T.S.E. Maibaum. Oxford Science Publications, Handb. Log. Comput. Sci. 2 (1992). | MR
,[3] The Hopkins Object Group, edited by G.T. Leavens and B. Pierce, On binary methods. Theory and Practice of Object Systems 1 (1995) 221-242.
, and ,[4] A coalgebraic equational approach to specifying observational structures, in Coalgebraic Methods in Computer Science '99, edited by B. Jacobs and J. Rutten. Elsevier, Amsterdam, Electron. Notes Theor. Comput. Sci. 19 (1999). | Zbl
,[5] A hidden agenda. Theoret. Comput. Sci. 245 (2000) 55-101. | MR | Zbl
and ,[6] The Java Language Specification. Addison-Wesley (1996). | Zbl
, and ,[7] -Logic: On the algebraic extension of coalgebraic specifications, in Coalgebraic Methods in Computer Science '99, edited by B. Jacobs and J. Rutten. Elsevier, Electron. Notes Theor. Comput. Sci. 19 (1999) 195-212. | Zbl
and ,[8] Definition and Proof Principles for Data and Processes, Ph.D. Thesis. University of Dresden, Germany (1999).
,[9] Reasoning about classes in object-oriented languages: Logical models and tools, in European Symposium on Programming, edited by Ch. Hankin. Springer, Berlin, Lecture Notes in Comput. Sci. 1381 (1998) 105-121.
, , and ,[10] Structural induction and coinduction in a fibrational setting. Inform. and Comput. (1998) 107-152. | MR | Zbl
and ,[11] Objects and classes, co-algebraically, in Object-Orientation with Parallelism and Peristence, edited by B. Freitag, C.B. Jones, C. Lengauer and H.-J. Schek. Kluwer Acad. Publ. (1996) 83-103.
,[12] Invariants, bisimulations and the correctness of coalgebraic refinements, in Algebraic Methodology and Software Technology, edited by M. Johnson. Springer, Berlin, Lecture Notes in Comput. Sci. 1349 (1997) 276-291.
,[13] Categorical Logic and Type Theory. North Holland, Elsevier, Stud. Logic Found. Math. 141 (1999). | MR | Zbl
,[14] A tutorial on (co)algebras and (co)induction. EATCS Bull. 62 (1997) 222-259. | Zbl
and ,[15] A small final coalgebra theorem. Theoret. Comput. Sci. 233 (2000) 129-145. | MR | Zbl
and ,[16] The Objective Caml system, release 3.01, March 2001. Available at URL http://caml.inria.fr/ocaml/htmlman/.
, , , and ,[17] Eiffel: The Language. Prentice Hall (1992). | Zbl
,[18] Communication and Concurrency. Prentice Hall (1989). | Zbl
,[19] PVS: Combining specification, proof checking, and model checking, in Computer Aided Verification, edited by R. Alur and T.A. Henzinger. Springer, Berlin, Lecture Notes in Comput. Sci. 1102 (1996) 411-414.
, , , and ,[20] From algebras and coalgebras to dialgebras, in Coalgebraic Methods in Computer Science '01, edited by A. Corradini, M. Lenisa and U. Montanari. Elsevier, Amsterdam, Electron. Notes Theor. Comput. Sci. 44 (2001).
and ,[21] Behavioural validity of conditional equations in abstract data types, in Contributions to General Algebra 3. Teubne, (1985); in Proc. of the Vienna Conference (June 21-24, 1984). | MR | Zbl
,[22] An approach to object semantics based on terminal co-algebras. Math. Structure Comput. Sci. 5 (1995) 129-152. | MR | Zbl
,[23] Hidden Logic, Ph.D. Thesis. University of California at San Diego (2000).
,[24] The coalgebraic class specification language CCSL. J. Universal Comput. Sci. 7 (2001) 175-193. | MR | Zbl
, and ,[25] Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249 (2000) 3-80. | MR | Zbl
,[26] The C++ Programming Language: Third Edition. Addison-Wesley Publishing Co., Reading, Mass. (1997). | Zbl
,[27] Coalgebras for binary methods, in Coalgebraic Methods in Computer Science '00, edited by H. Reichel. Elsevier, Amsterdam, Electron. Notes Theor. Comput. Sci. 33 (2000). | Zbl
,