Local transition functions of quantum Turing machines
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 5, pp. 379-402.
@article{ITA_2000__34_5_379_0,
     author = {Ozawa, Masanao and Nishimura, Harumichi},
     title = {Local transition functions of quantum {Turing} machines},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {379--402},
     publisher = {EDP-Sciences},
     volume = {34},
     number = {5},
     year = {2000},
     mrnumber = {1829234},
     zbl = {0987.68035},
     language = {en},
     url = {http://www.numdam.org/item/ITA_2000__34_5_379_0/}
}
TY  - JOUR
AU  - Ozawa, Masanao
AU  - Nishimura, Harumichi
TI  - Local transition functions of quantum Turing machines
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2000
SP  - 379
EP  - 402
VL  - 34
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_2000__34_5_379_0/
LA  - en
ID  - ITA_2000__34_5_379_0
ER  - 
%0 Journal Article
%A Ozawa, Masanao
%A Nishimura, Harumichi
%T Local transition functions of quantum Turing machines
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2000
%P 379-402
%V 34
%N 5
%I EDP-Sciences
%U http://www.numdam.org/item/ITA_2000__34_5_379_0/
%G en
%F ITA_2000__34_5_379_0
Ozawa, Masanao; Nishimura, Harumichi. Local transition functions of quantum Turing machines. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 5, pp. 379-402. http://www.numdam.org/item/ITA_2000__34_5_379_0/

[1] P. Benioff, The computer as a physical System: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Statist. Phys. 22 (1980) 563-591. | MR

[2] E. Bernstein and U. Vazirani, Quantum complexity theory. SIAM J. Comput. 26 (1997) 1411-1473. | MR | Zbl

[3] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400 (1985) 97-117. | MR | Zbl

[4] D. Deutsch, Quantum computational networks. Proc. Roy. Soc. London Ser. A 425 (1989) 73-90. | MR | Zbl

[5] R. P. Feynman, Simulating physics with computers. Internat J. Theoret. Phys. 21 (1982) 467-488. | MR

[6] J. Gruska, Quantum Computing. McGraw-Hill, London (1999). | MR

[7] M. Hirvensalo, On quantum computation. Ph.D. Thesis, Turku Center for Computer Science, Finland (1997).

[8] H. Nishimura and M. Ozawa, Computational complexity of uniform quantum circuit families and quantum Turing machines. Theoret. Comput. Sci. (to appear). Available at the LANL quantum physics e-print archive at http://xxx.lanl.gov/archive/quant-ph/9906095 | MR

[9] C. H. Papadimitriou, Computational Complexity. Addison-Wesley, Reading, MA (1994). | MR | Zbl

[10] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in in Proc. 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser. IEEE Computer Society Press, Los Alamitos, CA (1994) 124-134. | MR

[11] A. Yao, Quantum circuit complexity, in Proc. 34th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA (1993) 352-361. | MR