@article{ITA_2000__34_5_357_0, author = {Geffert, Viliam and Pop\'ely, Norbert}, title = {A space lower bound for acceptance by one-way $\Pi _2$-alternating machines}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {357--372}, publisher = {EDP-Sciences}, volume = {34}, number = {5}, year = {2000}, mrnumber = {1829232}, zbl = {0987.68038}, language = {en}, url = {http://www.numdam.org/item/ITA_2000__34_5_357_0/} }
TY - JOUR AU - Geffert, Viliam AU - Popély, Norbert TI - A space lower bound for acceptance by one-way $\Pi _2$-alternating machines JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2000 SP - 357 EP - 372 VL - 34 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2000__34_5_357_0/ LA - en ID - ITA_2000__34_5_357_0 ER -
%0 Journal Article %A Geffert, Viliam %A Popély, Norbert %T A space lower bound for acceptance by one-way $\Pi _2$-alternating machines %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2000 %P 357-372 %V 34 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2000__34_5_357_0/ %G en %F ITA_2000__34_5_357_0
Geffert, Viliam; Popély, Norbert. A space lower bound for acceptance by one-way $\Pi _2$-alternating machines. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 5, pp. 357-372. http://www.numdam.org/item/ITA_2000__34_5_357_0/
[1] Space complexity of alternating Turing machines, in Proc. Fund. Comput. Theory. Springer-Verlag, Lecture Notes in Comput Sci. 199 (1985) 1-7. | MR | Zbl
,[2] A language over a one symbol alphabet requiring only O (log log n) space. SIGACT News 7 (1975) 31-33.
and ,[3] Strong optimal lower bounds for Turing machines that accept nonregular languages, in Proc. Math. Found. Comput. Sci. Springer-Verlag, Lecture Notes in Comput. Sci. 969 (1995) 309-18. | MR | Zbl
, and ,[4] Space and reversal complexity of nonregular languages, Technical Report, University of Milano (1998).
, and ,[5] Alternation. J. Assoc. Comput. Math. 28 (1981) 114-33. | MR | Zbl
, and ,[6] Machine models and simulations, edited by J. van Leeuwen, Handbook of Theoretical Computer Science. Elsevier Science (1989). | MR | Zbl
,[7] On the work time of deterministic and nondeterministic Turing machines. Latv. Mat. Ezhegodnik 23 (1979) 158-65 (in Russian). | MR | Zbl
,[8] Nondeterministic computations in sublogarithmic space and space constructibility. SIAM J. Comput. 20 (1991) 484-98. | MR | Zbl
,[9] A hierarchy that does not collapse: Alternations in low level space. RAIRO: Theoret Informatics Appl. 28 (1994) 465-512. | Numdam | MR | Zbl
,[10] Sublogarithmic bounds on space and reversals. SIAM J. Comput. 28 (1999) 325-40. | MR | Zbl
, and ,[11] Hierarchies of memory limited computations, in IEEE Conf. Record on Switching Circuit Theory and Logical Design (1965) 179-90. | Zbl
, and ,[12] Memory bounds for recognition of context-free and context-sensitive languages, in IEEE Conf. Record on Switching Circuit Theory and Logical Design (1965) 191-202. | Zbl
, and ,[13] Some results on tape-bounded Turing machines. J. Assoc. Comput. Mach. 16 (1969) 168-77. | Zbl
and ,[14] Deterministic versus nondeterministic space in terms of synchronized alternating machines. Theoret Comput. Sci. 132 (1994) 319-36. | Zbl
, and ,[15] ASPACE(o(log log n)) is regular. SIAM J. Comput. 22 (1993) 136-46. | Zbl
,[16] Alternation bounded auxiliary pushdown automata. Inform. and Control 62 (1984) 93-108. | Zbl
, and ,[17] A remark on middle space bounded alternating Turing machines. Inform. Process. Lett. 56 (1995) 229-32. | Zbl
and ,[18] Optimal simulations between unary automata, in Proc. Symp. Theoret. Aspects Comput. Sci. Springer-Verlag, Lecture Notes in Comput Sci. 1373 (1998) 139-149 (to appear in SIAM J. Comput). | MR | Zbl
and ,[19] Relationships between nondeterministic and deterministic tape complexities. J. Comput. System Sci. 4 (1970) 177-92. | MR | Zbl
,[20] Efficient algorithms for path system problems and applications to alternating and time-space complexity classes, in Proc. IEEE Symp. Found, of Comput. Sci. (1980) 62-73.
,[21] Remarks on languages acceptable in log log n space. Inform. Process Lett. 27 (1988) 201-3. | MR | Zbl
,