@article{ITA_2000__34_4_257_0, author = {Hagenah, Christian and Muscholl, Anca}, title = {Computing $\varepsilon $-free {NFA} from regular expressions in $O(n \log ^2 (n))$ time}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {257--277}, publisher = {EDP-Sciences}, volume = {34}, number = {4}, year = {2000}, mrnumber = {1809860}, zbl = {0971.68091}, language = {en}, url = {http://www.numdam.org/item/ITA_2000__34_4_257_0/} }
TY - JOUR AU - Hagenah, Christian AU - Muscholl, Anca TI - Computing $\varepsilon $-free NFA from regular expressions in $O(n \log ^2 (n))$ time JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2000 SP - 257 EP - 277 VL - 34 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_2000__34_4_257_0/ LA - en ID - ITA_2000__34_4_257_0 ER -
%0 Journal Article %A Hagenah, Christian %A Muscholl, Anca %T Computing $\varepsilon $-free NFA from regular expressions in $O(n \log ^2 (n))$ time %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2000 %P 257-277 %V 34 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/ITA_2000__34_4_257_0/ %G en %F ITA_2000__34_4_257_0
Hagenah, Christian; Muscholl, Anca. Computing $\varepsilon $-free NFA from regular expressions in $O(n \log ^2 (n))$ time. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 4, pp. 257-277. http://www.numdam.org/item/ITA_2000__34_4_257_0/
[1] From regular expressions to deterministic automata. Theoret. Comput. Sci. 48 (1986) 117-126. | MR | Zbl
and ,[2] Local languages and the Berry-Sethi algorithm. Theoret. Comput. Sci. 155 (1996) 439-446. | MR | Zbl
and ,[3] Regular expressions into finite automata. Theoret. Comput. Sci. 120 (1993) 197-213. | MR | Zbl
,[4] Complexity measures for regular expressions. J. Comput. System Sci. 12 (1976) 134-146. | MR | Zbl
and ,[5] Efficient parallel algorithms. Cambridge University Press (1989). | MR | Zbl
and ,[6] The abstract theory of automata. Russian Math. Surveys 16 (1961) 1-53. | MR | Zbl
,[7] Computing ε-free NFA from regular expressions in O(n log2(n)) time, in Proc. of the 23rd Symposium on Mathematical Foundations of Computer Science (MFCS'98, Brno, Czech Rep.), edited by L. Brim et al Springer, Lecture Notes in Comput. Sci. 1450 (1998) 277-285. | MR | Zbl
and ,[8] Translating regular expressions into small ε-free nondeterministic finite automata, in Proc. of the 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS'97, Lübeck, Germany), edited by R. Reischuk et al. Springer, Lecture Notes in Comput. Sci. 1200 (1997) 55-66. | MR
, and ,[9] An introduction to parallel algorithms. Addison-Wesley, Reading, MA (1992). | Zbl
,[10] Regular expressions and state graphs for automata. IRE Trans. Electron. Comput. EC-9 (1960) 39-47. | Zbl
and ,[11] A new quadratic algorithm to convert a regular expression into an automaton, in Proc. of the First International Workshop on Implementing Automata, WIA'96, edited by D. Raymond et al. Springer, Lecture Notes in Comput. Sci. 1260 (1997) 109-119. | MR
, and ,[12] An optimal parallel algorithm to convert a regular expression into its Glushkov automaton. Theoret. Comput. Sci. 215 (1999) 69-87. | MR | Zbl
and ,[13] Passage d'une expression rationnelle à un automate fini non-déterministe. Bull. Belg. Math. Soc. 4 (1997) 177-203. | MR | Zbl
, and ,