Topologies, continuity and bisimulations
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 357-381.
@article{ITA_1999__33_4-5_357_0,
     author = {Davoren, J. M.},
     title = {Topologies, continuity and bisimulations},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {357--381},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {4-5},
     year = {1999},
     mrnumber = {1748661},
     zbl = {0940.03021},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1999__33_4-5_357_0/}
}
TY  - JOUR
AU  - Davoren, J. M.
TI  - Topologies, continuity and bisimulations
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1999
SP  - 357
EP  - 381
VL  - 33
IS  - 4-5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1999__33_4-5_357_0/
LA  - en
ID  - ITA_1999__33_4-5_357_0
ER  - 
%0 Journal Article
%A Davoren, J. M.
%T Topologies, continuity and bisimulations
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1999
%P 357-381
%V 33
%N 4-5
%I EDP-Sciences
%U http://www.numdam.org/item/ITA_1999__33_4-5_357_0/
%G en
%F ITA_1999__33_4-5_357_0
Davoren, J. M. Topologies, continuity and bisimulations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 357-381. http://www.numdam.org/item/ITA_1999__33_4-5_357_0/

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The algorithmic analysis of hybrid Systems. Theoret. Comput. Sci. 138 (19953-34. | MR | Zbl

[2] S. Ambler, M. Z. Kwiatkowska and N. Measor, Duality and the completeness of the modal μ-calculus. Theoret Comput. Sci. 151 (1995) 3-27. | MR | Zbl

[3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). | MR | Zbl

[4] M. Bonsangue and M. Kwiatkowska, Reinterpreting the modal μ-calculus, A. Ponse, M. de Rijke and Y. Venema, Eds., Modal Logic and Process Algebra. CLSI Publications, Stanford (1995) 65-83. | MR

[5] J. Davoren, Modal Logics for Continuous Dynamics. Ph. D. Thesis, Department of Mathematics Cornell University (1998). | MR

[6] J. M. Davoren, On hybrid Systems and the modal μ-calculus, P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode and S. Sastry, Eds., Hybrid Systems V. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1567 (1999) 38-69. | Zbl

[7] C. Daws, A. Olivero, S. Tripakis and S. Yovine, The tool KRONOS, R. Alur, T. Henzinger and E. D. Sontag, Eds., Hybrid Systems III. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1066 (1996) 208-219.

[8] T. Henzinger, The theory of hybrid automata, in Proc. of 11th Annual IEEE Symposium on Logic in Computer Science (LICS'96). IEEE Computer Society Press (1996) 278-292. | MR

[9] T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's decidable about hybrid automata? J. Comput. System Sci. 57 (1998) 94-124. | MR | Zbl

[10] M. Hollenberg, Logic and Bisimulation. Ph. D. Thesis, Department of Philosophy, Utrecht University (1998).

[11] B. Jónsson and A. Tarski, Boolean algebras with operators, part i. Amer. J. Math. 73 (1951) 891-939. | MR | Zbl

[12] D. Kozen, Results on the propositional µ-calculus. Theoret Comput. Sci. 27 (1983) 333-354. | MR | Zbl

[13] G. Lafferriere, G. Pappas and S. Sastry, O-minimal hybrid Systems. Technical Report UCB/ERL M98/29, Dept. EECS, UC Berkeley (1998). | MR

[14] G. Lafferriere, G. Pappas and S. Yovine, Decidable hybrid Systems. Technical Report UCB/ERL M98/39, Dept. EECS, UC Berkeley (1998).

[15] A. Nerode and W. Kohn, Models for hybrid Systems: Automata, topologies, controllability, observability, R. Grossman, A. Nerode, A. Ravn and H. Rischel, Eds., Hybrid Systems. Springer-Verlag, Berlin, Lecture Notes in Comput Sci. 736 (1993297-316.

[16] M. B. Smyth, Topology, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 1 (1992) 641-761. | MR

[17] C. Stirling, Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 2 (1992) 477-563. | MR

[18] L. Van Den Dries, Tame Topology and O-minimal Structures. Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser. 248 (1998). | MR | Zbl

[19] I. Walukiewicz, A note on the completeness of Kozen's axiomatization of the propositonal µ-calculus. Bull. Symbolic Logic 2 (1996349-366. | MR | Zbl