@article{ITA_1999__33_4-5_341_0, author = {Bradfield, J. C.}, title = {Fixpoint alternation : arithmetic, transition systems, and the binary tree}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {341--356}, publisher = {EDP-Sciences}, volume = {33}, number = {4-5}, year = {1999}, mrnumber = {1748660}, zbl = {0945.68126}, language = {en}, url = {http://www.numdam.org/item/ITA_1999__33_4-5_341_0/} }
TY - JOUR AU - Bradfield, J. C. TI - Fixpoint alternation : arithmetic, transition systems, and the binary tree JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 341 EP - 356 VL - 33 IS - 4-5 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_1999__33_4-5_341_0/ LA - en ID - ITA_1999__33_4-5_341_0 ER -
%0 Journal Article %A Bradfield, J. C. %T Fixpoint alternation : arithmetic, transition systems, and the binary tree %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 341-356 %V 33 %N 4-5 %I EDP-Sciences %U http://www.numdam.org/item/ITA_1999__33_4-5_341_0/ %G en %F ITA_1999__33_4-5_341_0
Bradfield, J. C. Fixpoint alternation : arithmetic, transition systems, and the binary tree. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 341-356. http://www.numdam.org/item/ITA_1999__33_4-5_341_0/
[1] The µ-calculus alternation-depth hierarchy is strict on binary trees, this volume, p. 329. | Numdam | MR | Zbl
,[2] Verifying Temporal Properties of Systems. Birkhäuser, Boston (1991). | MR | Zbl
,[3] On the expressivity of the modal mu-calculus, C. Puech and R. Reischuk, Eds., in Proc. STACS '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1046 (1996) 479-490. | MR
,[4] The modal mu-calculus alternation hierarchy is strict. Theoret. Comput. Sci. 195 (1997) 133-153. | MR | Zbl
,[5] Simplifying the modal mu-calculus alternation hierarchy, M. Morvan, C. Meinel and D. Krob, Eds., in Proc. STACS 98. Springer, Berlin, Lecture Notes in Comput. Sci. 1373 (1998) 39-49. | MR | Zbl
,[6] Fixpoint alternation on the binary tree, Workshop on Fixpoints in Computer Science (FICS). Brno (1998).
,[7] Tree automata, mu-calculus and determinacy, in Proc. FOCS 91 (1991).
and ,[8] Efficient model checking in fragments of the propositional mu-calculus, in Proc. 1st LICS. IEEE, Los Alamitos, CA (1986) 267-278.
and ,[9] Automata for the µ-calculus and related results, in Proc. MFCS '95. Springer, Berlin, Lecture Notes in Comput. Sci. 969 (1995) 552-562. | MR | Zbl
and ,[10] Models of Peano Arithmetic. Oxford University Press, Oxford (1991). | MR | Zbl
,[11] Results on the propositional mu-calculus. Theoret Comput. Sci. 27 (1983) 333-354. | MR | Zbl
,[12] A hierarchy theorem for the mu-calculus, F. Meyer auf der Heide and B. Monien, Eds., in Proc. ICALP '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1099 (1996) 87-109. | MR | Zbl
,[13] µ-definable sets of integers, J. Symbolic Logic 58 (1993) 291-313. | MR | Zbl
,[14] On fixed point clones, L. Kott, Ed., in Proc. 13th ICALP. Springer, Berlin, Lecture Notes in Comput. Sci. 226 (1986) 464-473. | MR | Zbl
,[15] Fixed point characterization of infinite behavior of finite state systems. Theoret. Comput. Sci. 189 (1997) 1-69. | MR | Zbl
,[16] Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Handb. Log. Comput. Sci. 2 (1991) 477-563. | MR
,[17] Monadic second order logic on tree-like structures, C. Puech and Rüdiger Reischuk, Eds., in Proc. STACS '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1046 (1996) 401-414. | MR
,