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POLYNOMIAL SIZE TEST SETS FOR
COMMUTATIVE LANGUAGES (*)

b y I s m o H A K A L A a n d J u h a K O R T E L A I N E N (l)

Communicated by J. BERSTEL

Abstract. - It is proved that any commutative language over an alphabet of n symbols possesses
a test set ofsize O (n2). ff the Parikh-map of the language is a linear set, then the minimum size of
the test set is O (n log n). A finite commutative language over an alphabet of n symbols such that
the smallest test set for the language is of size Çt (n2) is shown to exist.

Résumé. - On prouve que tout langage commutatif sur un alphabet à n lettre possède un ensemble
test de taille O (n2). Si l'image de Parikh du langage est un ensemble linéaire, la taille minimale de
l'ensemble test est O (n log ra). On prouve V existence d'un langage commutatif fini sur un alphabet
à n lettres pour lequel la taille du plus petit ensemble test est Q (n2).

0. INTRODUCTION

A subset T of a language L is defined to be a test set of L if for each
pair of morphisms h and g the following hold:

V x £ T : h(x) = g (x) ^ V x e L : h(x) = g (x).

The famous Ehrenfeucht Conjecture states that each language L has a
finite test set. The conjecture was proved in [3]. Since then the effectiveness
and sizes of the test sets of languages belonging to certain language families
have been an important subject of considération.

Test sets for context-free languages are studied in [1], [2], [8], [9] and [10].
The research culminâtes in [9] where, among other things, it is proved that
(i) any context-free language L over an alphabet of n symbols possesses a
test set of size O (n6); and (ii) there exist a finite context-free language over
n letter alphabet such that its smallest test set is of size Q (n3). Test sets
for context-sensitive languages with a strong pumping property are studied
in [5] and [6],
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In [4] it is proved that each commutative language over an alphabet of n
letters possesses a test set the size of which is at most 2n (n! + n) + 5n2.
This upper bound is improved to O (n2) and this order of magnitude is
shown to be the best possible. At last it is proved that for each commutative
language with a linear Parikh-map a test set of size O (n log n) can be
effectively found.

This paper is organized as follows. In the first section some prerequisites
in the theory of formai languages and combinatorics on words are given.

In section 2, after some simple results on Systems of word équations, it
is verified that each commutative language over an alphabet of n symbols
possesses a test set of size at most 3n2 — 2n.

In the third section we introducé a finite language F over 3n letter
alphabet such that each test set of F is at least of the size n2.

In section 4 we prove that each commutative language L over an n letter
alphabet such that the Parikh-map of L is a linear set has a test set of
size at most 2 n [log (n — 1)~| + 9 n. The procedure to construct the test set
is effective.

1. PRELIMINAIRES

We assume that the reader is familiar with the basic notions of formai
language theory and combinatorics on words as presented in [7] and [11].

Let Z be any (finite) alphabet. As usual, Z* (Z + , resp.) dénotes the free
monoid (free semigroup, resp.) generated by Z. Let w £ Z*. Then \w\
dénotes the length of the word w and, for each a e Z, \w\a is the number
of occurrences of the symbol a in w. Let alph(u?) = {a G Z\ \w\a > 0}
and c(w) — {u G Z*| \u\a — \w\a for each a G Z}, The empty word (Le.
the word with length zero) is denoted by e. The word w is primitive if it
is nonempty and for each u £ Z* and n G N the equality w — un implies
w — u (and, of course, n — 1). The words w and u are conjugate (words
of each olhef) if there exist words wi and W2 such that w = w\ W2 and
u = u>2 w\. For each nonempty word u G Z* there exist a unique primitive
word t e Z* (the primitive root of u) such that u G t+ . The morphisms h
and g on Z* are length equivalent on w if \h (w)\ = \g (w)\.

For each language L C Z*, let alph(L) = \JweL alph(w). The
commutative closure of the language L Ç Z* is the set c (L) = [JweL c (w)-
We say that L is commutative if L — c(L). The morphisms h and g on
Z* are length equivalent on a language L if they are length equivalent on
each word of L.
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Let N be the set of all natural numbers and N + = N\{0}. For each
n G N+, let ai, a2,..., an be distinct symbols. The traditional Parikh-map
tyn (*, when n is understood) from {ai, a2,..., an}* onto Nn is defined
by *ra(w) = ( k k , |^k)-ï \w\aJ-

Let n G N+ and P a language over the alphabet {ai, a2,..., a n } . A fcasis
of P is any finite subset F of P such that (i) in the set {$n (v)\v G F}
there are |F | éléments that are linearly independent (over Q, the rationals);
and (ii) for each w G P, * n (IÜ) is a linear combination of some vectors
in {Vn(v)\v G F}.

A set T Ç N" is linear if there exist a number m G N and vectors
v, vi,..., üm G NT such that T = {v + fci ü i + ... + &m üm|A;i,..., fcm G N}.
A semilinear set is a finite union of linear sets.

Call a commutative language with a linear (semilinear, resp.) Parikh map
a CLÏÏ-language (a CSLIP-Zangwage, resp.).

For each finite set S, let |S| be the cardinality of 5. For each nonnegative
rational number q9 let \q] be the smallest integer k G N such that q < k.

The following theorem is a reformulation of some basic results in the
theory of combinatorics on words. For the proof, see for instance [11].

THEOREM 1: Let x and y be nonempty words over the alphabet X. The
following three conditions are equivalent,

(i) The words x and y are conjugate.

(ii) The words x and y are of equal length and there exist unique words
t\ G X*, Î2 G X+ such that t = t\Ï2 is primitive and x G (tit2)+

and y G (t2ti)+;

(iii) There exists a word z G X* such that xz = zy.

Furthermore, if (ii) holds, then for each w G X* we have xw = wy if
and only if w G {t\t2)* t\.

We next prove a simple resuit concerning solutions of a System of two word
équations with a certain commutation property. It implies three corollaries
which are useful later.

THEOREM 2: Let x and x be distinct nonempty words over the alphabet X.
The following two conditions are equivalent.

(i) There exist words y and y in X* such that xy ~x~y and yx = yx.
(ii) There exist unique words t\ G X* and £2 G X+ such that t\t2 is

primitive and x, x £ (£1^2)* *l-
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Furthermore, if (ii) holds, thenfor each i6>, w G X* we have xw — xw
and wx = wx if and only if \xw\ = |xü;| and w, w £ (£2^1)* £2 U {^}-

Proof: Obviously (ii) implies (i).
Assume that (i) holds, and, without loss of generality, that \x\ > \x\. There

then exists words d\, d2 G X+ such that x — xd>2 = di x. By Theorem 1
there exist unique words t\ G X* and £2 G X + such that d\ G
d% G ( t 2 t i ) + andx G (£1*2)* *i- Then x G (t^f h (in fact x G

Let now w,w£ X* be any words such that xw = x~w and wx — wx.
Then certainly w — ^2 w = ^di (since x = xcfc = di^) . If £1 = e
(z.̂ . di — d2), the words w, w are clearly in (£2^1)* £2 U {e}. Assume
that ti 7̂  e. Then, again by Theorem 1, we have w G (£2^1)* £2 and also
w = wdi e (t2ti)*t2. •

COROLLARY 3: Let x, y, z, x, y, z fee words swc/z //zotf |x| ^ |x|, \y\ — \z\ and

( xy — x~y xz — x~z

y — z and y = z.

Proof: If x = e or x = e, then certainly all the words x, y, 2;, x, y and
z are powers of the same (primitive) word. Since \y\ = \z\ (and \y\ = |^|),
the equalities y — z and y = J hold.

Assume that , x / e and 3; / e. By Theorem 2, there exist unique words
£1 E X* and £2 e X + such that y, z,y,z e (£2*1)* ̂ 2 U {e}. Since |y| = |z|
(and \y\ = |z|), we have y — z and y — ~z. D

CoROLLARY 4: L^£ x, y, z, x, y and z fee words such that

{ xy = xy xz — xz yz = ljz

yx —~yx zx = ~zx zy = zy.
r ^ / i either x — xt y — y and z = ~z or all the words x, y, z, x, y and ~z
are powers of the same primitive words.

Proof: Assume that x ^ x (and that y ^ y and z ^ ~z).
If any of the words rr, y, z, x, y, z is empty we are certainly through.
Assume that all the words x, y, z, x, y, z are nonempty. By .Theorem 2

there exist unique words t\ G X* and £2 G -X+ such that £i£2 is primitive
and x, x G (£i£2)*^i and y, y, z, ~z £ (£2^1)* ̂ 2- Since yz ~ yz and
y ^ y, there exist integers r i , r2, si , S2 £ N, n / r2, si / S2 such
that y = (£2£i)ri£2, y = (£2*1)^2, z - (£i£2)5l^i, z = (tit2)

32 h and
(t2ti)ri t2 (t2ti)Sl t2 = (t2ti)r2t2(t2ti)S2t2. Since n / r2, the équation
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= t%t\ holds. Since t\t2 is primitive, the word t\ is empty. Thus
x} y, z, x, y, z G t\. D

Note: The équation zy = ~zy is not necessary in the previous corollary.

COROLLARY 5: Let x, y, z, x, y and ~z be words such that xx / e, y y / e
and zz ^ e and

r xyz — xyz zyx = ~zyx

< yzx — yzx yxz — yxz
L xzy = xzy zxy — zxy.

Then either x — x, y = y and z = ~z or all the words x, y, z,x, y and z~
are powers of the same primitive word.

Proof: Assume that either x / x or y ^ y or z ^ ~z. Suppose without
loss of generality that x / ï Then, by Corollary 3, we have yz — zy and
~yz — Jy. There thus exist primitive words t and / such that y, z G t* and
2/, ~z G /*. Since x ^ x, we have yz ^ 'yz implying that either y ^ y
or z / ï Assume without loss of generality that y / y. Then, again by
Corollary 3, the equalities xz — zx and ~xz — ~zx hold implying x G t* and
ï G l * . Since xyz = xy^ and t and £ are primitive, we have t — L Thus
x, y, z, x, y, z <E t* and the proof is complete. D

The last auxiliary result of this section tells that to guarantee that two
morphsims h and g are length equivalent on a language L it suffices to
consider the length équivalence of h and g on some basis of L.

LEMMA 6: Let L be a language over the alphabet X, F a basis of L and
h and g two morphisms on X*. Then h and g are length equivalent on L if
and only if they are length equivalent on F.

Proof: Assume without loss of generality that X — {ai , a2,. . . , an} for
some n G N+. If h and g are length equivalent on L, they certainly are
length equivalent on a subset F of L.

Assume that h and g are length equivalent on F. Let r% — \h(a%)\ and
Si = \g (a,i)\ for each i = 1, 2,. . . , n. Let z e L. Since F is a basis of L,
there exist an integer m G N+, (distinct) words x i , X2,..., x m G F and
rational numbers a i , a2, .- . , otm such that

tf (z) = ai * (m) + a2
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Thus

where (ri, . . . , rn)
T ((51,..., sn)

T, resp.) is the vector transpose of
(n, . . . , rn) ((si.,..., 5n), resp.) and vector multiplication is applied. Above
the third equality holds since \h(xi)\ — \g{xi)\ implies

\h {Xi)\ = tf (Xi) ( n , ..., Tnf = * (Xi) (51, ..., 5n)T = \g (xi)\

for each i = 1, 2,..., n. D

Afote: The previous lemma implies (see also [4]) that if a language
L C {ai, Û2Ï •••? ÛW}* has a basis F such that \F\ = n, then F necessarily
is a test set for L.

2. CONSTRUCTING TEST SETS FOR COMMUTATIVE LANGUAGES

Let L be a commutative language over the alphabet X.

For each unordered pair {a, 6} of two distinct symbols in X construct

the language £{a,6} a s follows.

If L n abX* = 0, then L{ a ) 6 } = 0.

Assume that Lflaè X* / 0. We have three possibilities: 1° L n a2 6 X* ̂  0;

2° Lf1a 26X* - 0 a n d L n a 6 2 X * 7̂  0; 3° Lr\a2bX* = LHa62X* = 0.

1°. Let x 6 X* be a word such that a2 bx G L. Then

•L{a,b} = {ö6(ax), ba(ax), a(ax)by b(ax)a, (ax)ab, (ax)ba}.

Case 2°. Let y G X* be a word such that a&2 y E L. Then

^{a^} = {ab(by)i ba(by), a(by)b, b(by)a, (by)ab, (by)ba}.

Case 3°. Let z G X* be a word such that abz E L. Then

Let B be a basis of L such that, for each a G X, if L n a+ / 0, then
ar £ B where r is the smallest number m G N+ such that am G L. Let

T I I r i t E?

a,beX

Obviously \TL\ < 6 (^) + n = 3n2 - 2n, where n = |X|.

Informatique théorique et Applications/Theoretical Informaties and Applications



POLYNOMIAL SIZE TEST SETS .FOR COMMUTATTVE LANGUAGES 297

We shall next prove that TL is a test set for L.

THEOREM 7: Let L be a commutative language over the alphabet X. Then
Ti is a test set for L.

Proof: Let h and g be morphisms on X* such that h (x) = g (x) for each
x E TL. Let Y dénote {a G X\h (a) ^ e or g(a) ^ e}. Let z e L.

If alph (z) n Y = 0, then certainly h{z) — g (z) — e.

Suppose that alph (z)C\Y ^ 0. Consider three cases: 1° |alph O)nY| = 1;
2° | a l p h ( z ) n r | = 2; and 3° |alph(,z)nY| > 2.

Case 1°. Let a G X be such that a l p h ( ^ f l Y - {a}. There surely exists
a word v such that av £ T^. Then /i (av) = # (av) by the assumption. By
Lemma 6, \h (aW*)\ = \h (z)\ = \g (z)\ = \g (a^- ) | . Thus |/i(a)| = | 5 ( a ) |
which implies that /i (a) = g (a).

Case 2°. Let a, b G X, a / 6, be such that alph(2) DY = {a, 6}. If
h (a) — g (a) and h(b) = g (6), then clearly h(z) = g (z). Assume without
loss of generality that /i(a) / 5 (a). Consider first the case that either
a2 bX* H L / 0 or a62 X* n L / 0. Assume without loss of generality that
a26X* n L / 0. By construction, there exists a word u G X* such that
abau, baau, aau6, èatm, cmaè, auba G Tx,. Then

h (a) h (b) h (au) = g (a) g (b) g (au) h (b) h (au) h (a) = g (b) g (au) g (a)
h (b) h (a) h (au) = g (b) g (a) g (au) h (au) h (a) h(b) — g (au) g (a) g (b)
h (a) h (au) h(b) = g (a) g (au) g (b) h (au) h (b) h (a) = g (au) g (b) g (a).

By Corollary 5, the words h (a), h(b), g (a) and g(b) are powers of the
same (primitive) word. By Lemma 6,

-&W*) | = | 5 ( a l * M * l > ) - \g(z)l

Then h(z) = g(z). Let us now turn to the case a H l * n L =
ab2 X* n L — 0. Then, by construction, there exists a word in X* such
that abuj) baw> awb, bwa> wab. wba G T^. Then

h (a) h (b) h(w) = g (a) g (b) g (w) h (b) h (w) h (a) = g (b) g (w) g (a)
h(b)h(a)h(w)=g(b)g(a)g(w) h (w) h (a) h (b) - g (w) g (a) g (b)
h (a) h (w) h (b) = g (a) g (w) g (b) h (w) h (b) h (a) = g (w) g (b) g (a).

If h (w) ^ e or g (w) ^ e then, just as above, the words h (a), h (b), g (a)
and g(b) are powers of the same primitive word and we are through.
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Assume that h (w) = g (w) = e. Then

h(a)h(b)=g(a)g(b)
h(b)h(a)=g(b)g(a).

and since either h(z) — h (ab) and g (z) — g (ab) or h(z) — h (ba) and
g (z) = g (ba), we must have h(z) — g(z)-

Case 3°. Assume now that jalph (z) D Y| > 2. If h (a) = # (a) for each
a G alph(^) n F , then /i (z) = 5(2;). Let a G alph (2) Pi F be such that
h (a) / #(&). Let 6 and c be any two symbols in alph(z) n Y such that
5 ̂  a 7̂  c. By construction, there exist words u\, u%^ uz G X* such that the
words abu\, bau\, au\b, bu\a, u\ab, u\ba, acu2, cau2, au2C

c, CU36, u^bc, u$cb are ail in Tj> Thus

f h (a) h (b) h (ui) = g (a) g (b) g (ux) h (c) h (u2) h (a) = g (b) g (u2) g (a)
h (b) h (a) h(u\) = g (b) g (a) g(u\) h (w2) /i (a) h(c) = g (m) g (a) g (c)
h(a)h(u\)h(b) = g (a) g (u\) g (b) h (112) h (c) h (a) ~ g (112) g (c) g (a)
h(b)h(u1)h(a) = g(b)g(u1)g(a) h (b) h (c) h (u^) = g (b) g (c) g fa)
h (m) h (a) h(b)=g fa )g(a)g (b) h (c) h (b) h fa) = g(c)g (b) g fa)
h fa) h (b) h{a) = g fa) g (b) g (a) h (b) h (1x3) h(c)=g (b) g fa) g (c)
h (a) h (c) h fa) =g(a)g (c) g fa) h (c) h fa) h(b) = g (c) g fa) g (b)
h (c) h (a) h fa) = g(c)g (a) g fa) h fa) h (b) h(c) = g fa) g (b) g (c)

Kh(a)h fa) h(c) = g (a) g fa) g (c) h fa) h (c) h(b) - g fa) g (c) g (b).

We show that all the words /i(a), /i(6), /i(c), 5 (a), p(6) and ^(c) are
powers of the same (primitive) word.

Assume first that h(u\)g(u\) ^ s, Then, by Corollary 5, there exists a
primitive word t such that h(a), h(b), g (a), g(b), h fa), g fa) G i*. If
either h (1*2) g (^2) ^ e or h fa) g (u$) ^ e, we have (again by Corollary 5)
that either h(a), h(c), g (a), g (c) G t* or h(b), h(c), g(b), g (c) G t*
and we are done. Suppose that h fa) g fa) = h fa) g fa) = e. Then the
previous System of équations implies

(h(a)h(c)=g(a)g(c)
\h(c)h(a) = g(c)g(a).

Since h (a), g (a) G t* and to (a) ̂  g (a), it is clear that h(c), g (c) G i*.

Let now h(u\)g(u\) — e. Then, since /t(a) ̂  5 (a), it must be
h(b) ^ g(b). If now either h fa) g fa) ^ e or h(us)gfa) / e, we
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are through as above. Assume thus that h{u2)g{u2) — h(u^)g(u^) = e,
Then we have

h (a) h (b) = g (a) g (b) h (c) h(a) = g (c) g (a)
h (b) h(a)=g (b) g (a) h (b) h(c)=g (b) g (c)
h (a) h(c)=g (a) g (c) h (c) h (b) = g (c) g (6).

By Corollary 4, h (a), h(b), h(c), g (a), g (b) and g (c) are powers of
the same primitive word. D

3. A LOWER BOUND OF SIZE H (n2)

Let n E N + and &i, &2,-" )6 r i, ci , C2,..., d i , ^25---, dn be distinct
symbols. Let Fi = {6«Cjdj|i, j = 1,2,..., n} and F = c(i*i). Thus
F is a commutative language such that | F | — 6n 2 .

Consider any subset F of F such that \Y\ < n2. There then exist
i, j G {1, 2,..., n} such that c (b{ Cj dj) n Y = 0. Without loss of generality
we may assume that i — j = n. Let a and b be distinct symbols. Define
two morphisms h\ and 51 on {b\, 62,—, &n, ci, C2,..., cn , d i , d2,..., d n }*
as follows:

h\ {h) = h\ (a) = hx (di) = gi (b{) = ^1 (ci) = gi (d^) = a

for each i E {1, 2,.. . , n — 1}, and

^1 (bn) = 51 (6n) = 6 ^1 (cn) = fli (dn) = a2 /ï-i (d„) = 51 (cn) = a.

Then certainly /ii (y) — g\ (y) for each y E y . On the other hand

hi (en bndn) = a2 ba ^ aba2 = gi (cn bn d n ) .

Thus Y is not a test set for F .

Consider the example above with erasing morphisms. Define the two
morphisms /12 and 52 on {61, 62, ---, &n, ci, C2,..., cn , d i , d2,.. . , d n } * as
follows. Let ^2 (&i) = 52 (bi) = e for i = 1, 2,. . . , n — 1 and /12 (6n) —
52 (6«) = a. Let

^2 (cj) = 52 (CJ) = /i2 (dj) = 52 (dj) for j = 1, 2,. . . , n - 1,

and /12 (cn) — {ab)2 a, 52 (cn) = (afc) a, /12 (dn) = (6a) 6, and
52 (dn) = (6a)2 6. Then ƒ12 (rc) = 52 (x) = a2 for each x E c({6i Cj dj})
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where i, j G {1, 2,..., n — 1}. For each y G c({bjcndn}) where
j E {1, 2,..., n - 1} we have fc2 (ï/) = S2 (y) € {(a6)4, (6a)4}. Certainly

^2 (cn 6?Ï cZn) — (a6)2 a2 (6a) 6 7̂  (a6) a2 (6a)2 b — g2 (cn 6n dra).

We have thus proved

THEOREM 8: The lower boundfor the size of a test set for languages front the

family of all commutative languages over an alphabet ofn symbols is Q {u).

Note: By construction, the previous theorem remains true if the string'
commutative languages' is substituted by the word 'CSLIP-languages'.

4. TEST SETS FOR COMMUTATIVE LANGUAGES WITH A LINEAR PARIKH-MAP

In the following we shall see that each CLIP-language over an alphabet
of n symbols possesses a test set of size O (nlogn).

For each m and j in N, j < m, define the function pmj from (X*)2m

into X* inductively as follows.

PmO

Pml

The classical result concerning the word équation xy = ya: can now be
generalized.

THEOREM 9: Let m G N + be a number and x \ , X2> •••, ^ 2 m words in X*

such that

/or j = 1, 2,..., m. rten ?/ze words x\, X2>..., ̂ 2m ̂ ^ powers of the same
(primitive) word.

Proof: By induction on m.
The case m = 1 is trivial: certainly #1 #2 = #2 ̂ 1 implies the claim.

Assume that the theorem is true for ra — k.
Consider the case m = k + 1. Since
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we notice that there exists a (primitive) word t such that x\...x%k^
G t*. Also, by assumption,

for each j E {1, ,..., &} implying

2
fc+l—#2fc+i = Phj

for each j G {1, 2,.. . , fc}. By induction, there exist (primitive) words t\
and t2 such that x i , . . . , x2k G tj and X2fe+i,..., X2^+I G t2. Since X1...X2&,
x2k+1...x2L+i G **, we have t\ — t2 — t. Thus x i , . . . , x2fc+i G t* and the
induction is extended.

We still give an example. Assume that m = 3. Then we have the following
system of équations

f X1X2X3X4X5X6X7X8 —

< XIX2XZX±X5X§X>JXZ = (x7Xg) (xo^o) (X3X4) (X1X2)

( = X8X7X6X5X4X3X2X1.

The last two équations imply that x i , X2 G p*, X3, X4 E p2, X5, XQ G p\
and X7, X8 G p\ where p i , P2, P3 and p± are primitive words. From the first
and the second équation we obtain that p\ = p2 and p$ — p^. Finally, the
first équation gives p\ = p2 — pz = P4- O

Let L b e a CLIP-language over the alphabet {ai , a2,.. . , a n } , where n > 2.
By définition, there exist a number p G N+ and words uo, u i , . . . , ^p such
that L = c(uo u*...«p).

Let u — UQu\...Up and m = |~log(n — 1)]. Thus m is the smallest
number k G N such that n - 1 < 2k. Let a n +i , . . . , a2^ be new symbols and
r, = |u|a j for each j G {1, 2,..., 2 m } .

Note that each symbol a% occurs exactly once (at least twice, resp.) in u
if and only if it occurs exactly once (at least twice, resp.) in some word
of in c(uou\...Up).

Using the words in c(u) we construct a test set (of size O (nlogn)) for
the language L — c{u$u\...u^)

For each i G {1, 2,.. . , n} , let the words w%\> wl2 and w%$ be defined
as follows.
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If Ti = 0, let Wil =
If rg = 1, let IÜ^ = aï1...^!^1, wl2 — ai and

If n > 2, let u ^ — Wi2 — ai and w^ = a\x . . . a^ 1 a[*~ a

Let A (tio; ui,. . . , up) be the set of all words Wia(1) wla{2) ^CT

any permutation of 1, 2, 3 and z = 1, 2, ..., n. Clearly
6n.

For each i G {1, 2,..., n} define the words vu. ^2, •••,

Let

Obviously .B (UQ]

Let C (uo] ui,.. . ,

T(uo; ui, . . . ,

) Ç

= 1, 2,..., n,

Ç L and

where a is

as follows.

wi,..., up)\ < 2 n ( m

be a base of L and

Then T(uo; ui,. . . , Up) Ç L and |T(uo; ui, ...,Up)| < 2nm -\- 9n <
2n ([log (n — 1)] + 9n. It is a bit tedious but straightforward to prove the
following.

THEOREM 10: Let p G N be a number and uo> ui,..., up be words over the
alphabet {ai , a2, ---, an}» where n > 2. J/z^n T (uo; u i , . . . , Wp) w a tes? sef
/or f/ze language c(uQu\...Up).

Proof: We use the notation preceding the theorem. Dénote L —
C{UQU\...U*P) and D = £>Oo; ui,..., up) for each D G {A, B} C, T}.

Consider two morphisms /i and p defined on {ai, 02,..-, an}* such that
^ (x) — p (x) for each x G T. We shall show that h(z) = g (z) for each
z G L.

If h (ai) — g (ai) for each i G {1, 2,..., n}, there remains nothing to prove.

Assume thus that h(a3) 7̂  g(aj) for some j G {1, 2,..., n}. Let y be
the set of all j G {1, 2,..., n} such that fe(aj) ^ 5(aj). Since T, by
construction, contains a base C of L, the morphisms h and p, by Lemma 6,
are length equivalent on L. This certainly implies that \Y\ > 2.
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Suppose, without loss of generality, that there exists s £ Y, 1 < s < n
such that both h{w$\)g(ws\) and h(ws^)g(wS3) are nonempty. By the
construction of A, we have wsa(\) wsa^) Wsa(2>) £ T f° r e a c r i permutation
a of 1, 2, 3. Then

(ws a(l)) h (Wsa(2)) h (Wsa(3)) = 9 (Ws<r(l)) 9 (wsa(2)) 9 (™sa(S))

for each permutation a of 1, 2, 3. By Corollary 5, there exists a primitive
word t such that all the words h(wsi), h(wS2)> h{ws$), g(wsi), g{fws2)
and g{wsz) are in t*. Since w$2 — aSj we have h(as), g(as) G t* as
well as the words h (a]1 • • • a/Si), h (a/^ • • • a^1), g (a^1 • - • a ^ 1 ) and
5 ( Ö ^ I * * * ö̂ n71) respectively. By the construction of B the words

are in T for fc = 0, 1,..., m. By assumption

h (ar
s
a)pmk {h (vsi),..., fc K 2 - ) ) = 9 {arss)Pmk {9 ( ^ l ) , -•-, 9 (vS2™))

Pmk (h (Vsl): ..., /l K 2 - ) ) ̂  (a5S) = Pmk {9 K l ) , .», 9 (Vs2™ )) fl (^ s )

for k — 0, 1,..., m. Since /i (ar
s
s) / ^ ( ^ s ) ' w e have, by Corollary 3, that

h (vsl)...h

for A; = 0. 1,..., m. By Theorem 9 there exist primitive words t\ and
<2 such that h(vsl),..., h(vS2^) E tf and #(^1), . . . , ^(vS2m) G ̂ - T h i s

means that the words h (ai),..., h (a5_i), /i (a5+i),..., /i (a2«) are in t± and
5 ( a i ) , - , 3(a«-i)» flfas+i),-, ff (Û2«) are in t | . Then ti = t2 = *• Now
all the words /i(ai),..., h(an), ff (ai),..., g(an) are powers of t. Since /i
and g are length equivalent on L, the set T is a test set of L. D

COROLLARY 11: For each ChlP-language over an alphabet of n symbols,
n G N+, there exists a test set of the size O(nlogn).

The following question remains open.

OPEN PROBLEM: Does each CLIP-language over an alphabet of n symbols
possess a test set of size O (n) ?

We do not even know whether or not the language c(ai...an) has a test
set of size O(n).
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