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ON THE SEMIDIRECT PRODUCT OF THE
PSEUDOVARIETY OF SEMILATTICES BY A

LOCALLY FINITE PSEUDOVARIETY OF GROUPS (*)

by F. BLANCHET-SADRI (*) (2)

Abstract - In this paper, we give a séquence ofidentities defining the product pseudovariety J i *H
generaled by ail semidirect products of the form M * N with M £ J i and J V G H (hère 3i is the
pseudovariety of semdattice monoids and H is a locally finite pseudovanety ofgroups) A séquence
of sets ofidentities ultimately defining J i * G p results (hère Gp is the pseudovariety of p-groups)

Résumé - Dans cet article, nous donnons une suite d'identités définissant la pseudovariéte
J i * H engendrée par les produits semidirects de la forme M * TV où M E J i et N E H (ici
J i est la pseudovariété des demi-treillis et H une pseudovariété de groupes localement finie) Une
suite d'ensembles d'identités définissant ultimement J i * Gp en résulte (ici Gp est la pseudovariété
des p-groupes)

1. INTRODUCTION

In this paper, we discuss a technique to produce identifies for the semidirect
product pseudovariety J i * H generated by ail semidirect products of the
form M * N with M E J i and J V E H , where Ji is the pseudovariety of all
semilattice monoids and H is a locally finite pseudovariety of groups.

The notion of congruence plays a central rôle in our approach. For any
finite alphabet A dénote by A* the free monoid generated by A. We say that
a monoid M is A-generated if there exists a congruence j3 on A* such that
M is isomorphic to A* /f3. A pseudovariety of monoids V is locally finite if
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2 3 8 F. BLANCHET-SADRI

for any A there are finitely many A-generated monoids in V. Equivalently,
there exists for each A a congruence /3A such that an A-generated monoid
M is in V if and only if M is a morphic image of A* //3 A-

Let H be a locally finite pseudovariety of groups. Let 7 be the congruence
generating H for the finite alphabet A. The idea is to associate with J i * H
a congruence ~ 7 on ^4*. Section 3 gives a criterion to détermine when an
identity on A is satisfied in J i * H with the help of ~ 7 . This leads to a
proof that such J i * H are locally finite and hence decidable. This criterion
follows from Almeida's semidirect product représentation of the free objects
in V * W in case both V and W have finite free objects [1] (Almeida's
représentation is stated in Section 2.1). In Section 5, we give a basis of
identities for J i * H which follows mainly from a resuit on graphs due to
Simon [8] (Simon's resuit is stated in Section 4) and the identity criterion of
Section 3. In Section 6, we give a séquence of sets of identities ultimately
defining the pseudovariety J i * Gp> where p is a prime number and Gp is
the pseudovariety of ail p-groups, that is the pseudovariety of all groups of
order pk for some nonnegative integer fc.

Related known results include the following. The product J i * G is
generated by the inverse monoids (Margolis and Pin [11]) and is the
class of finite monoids in which the idempotents commute (Ash [4]) (hère
G is the pseudovariety of groups). Blanchet-Sadri and Zhang [6] give
identities ultimately defining the product J i * Gcom where Gcom dénotes
the pseudovariety of commutative groups. Irastorza [10] shows that if the
pseudovarieties V and W are finitely based, their product may not be.

The techniques in this paper were used in particular by Pin [13] to give a
basis of identities for J i * J i , by Almeida [2] to generalize Pin's resuit to
iterated semidirect products of finite semilattices, and by Blanchet-Sadri [5]
to give a basis of identities for J i * Jk where Jj* dénotes the pseudovariety
of ^-trivial monoids of height k.

2. PRELIMINAIRES

We refer the reader to [3, 7, 8, 12] for terms not explicitly defined hère.

2.1. Pseudovarieties of monoids

A nonempty class of finite monoids is called a pseudovariety if it is closed
under submonoids, morphic images, and finitary direct products. A nonempty
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class of monoids is called a variety if it is closed under submonoids, morphic
images, and direct products.

As the intersection of a class of pseudovarieties of monoids is again
a pseudovariety, and as all finite monoids form a pseudovariety, we can
conclude that for every class C of finite monoids there is a smallest
pseudovariety containing C, called the pseudovariety generated by C. Now,
if C is a class of monoids, the smallest variety containing G is called the
variety generated by C.

For a pseudovariety V and a set A9 Fy(A) dénotes the free object on
A (or generated by A) in the variety generated by V. If A is finite, say
A = {a i , . . . , a r }, we often write F v ( a i , . . . ,a r) for F\-(A). In case V is
the pseudovariety of all finite semigroups (respectively all finite monoids),
the semigroup (respectively monoid) Fy(A) is usually denoted by A+

(respectively A*). Eléments of A+ are viewed as nonempty words of
éléments of A, and the multiplication is given by concaténation of words.
The monoid A* includes also the empty word 1. For a word u G A*, let
|u| dénote the length of u. For words u}v,w G A* satisfying w — uv9 let
w \u dénote the factor v.

2.1.1. Semidirect products of pseudovarieties

Let M and N be monoids. It is convenient to write M additively, without
however assuming that M is commutative. We dénote by 0 (respectively
1) the unit element of M (respectively N). A left action of N on M is
a morphism ip from N into the monoid of monoid endomorphisms of M,
where endomorphisms of M are written on the left.

Given a left action ip of N on M, we define the semidirect product M*N
as follows. The éléments of M * N are pairs (m, n) with m G M, n G N.
Multiplication is given by the formula

(rn,, n)(m /,n /) = (m + nml\nn')

where nm! represents (p{n){m!). (This is what Eilenberg [8] calls a "unitary"
semidirect product.) The multiplication in M*N is associative. Thus M*N
is a monoid with (0,1) as unit element.

We now relate the notion of pseudovariety with that of a semidirect
product. Given pseudovarieties of monoids V and W, we dénote by V * W
the pseudovariety generated by ail semidirect products M * N with M G V,
N G W and with any left action of N on M. The semidirect product of
pseudovarieties of monoids is associative.
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PROPOSITION 2.1: (Almeida [1]) Let Y andWbe pseudovarieties ofmonoids
such that Fy(A) and Fy^(A) are finite for ail finite A. Then so is V * W.
Moreover, for a finite set A, let N — F\y(A) and M — Fy(Nx A). Consider
the left action of N on M defined by n(nf, a) = (nn', a) and the associated
semidirect product M * N. Then, there is an embedding from i*V*w(^) wio
M * N that maps a into ((l ,a),a).

2.1.2. Pseudovarieties and séquences of identifies

Let A be a set. A monoid identity on A is an expression of the form
u = v where u,v G A*. A monoid M satisfies an identity u = v (or the
identity is true in M, or holds in M), abbreviated by M (= u — v, if for
every morphism ip : A* —> M we have <p(u) = y>(v).

A class C of monoids satisfies u — v, written C \= u = v/if each member
of C satisfies u — v. If S is a set of identities, we say C satisfies E,
written C f= E, if C |= u = v for each u = v G S. An identity u = v
is deducible from a set of identities S, abbreviated by E h n = v, if for
every monoid M we have M |= E implies M \= u = v. Hère, letters can
be erased in monoid identities.

Let ui — Vi, i > 1 be a séquence of identities. Put E = {m — v% | % > 1},
and define V(S) to be the class of finite monoids satisfying E or all the
identities u% — Vi. A class C of finite monoids is said to be defined by E (or
by the identities u% = v^ i > 1) if C — V(E); S is said to be a basis for C.
Eilenberg and Schützenberger [9] show that every pseudovariety generated
by a single monoid is of the form V(S) for some such S.

2.2. Varieties of sets

Let L be a subset of A*. We define a congruence ~£ on A* as follows:
u ~L y holds if xuy G L if and only if xvy G L for ail rr,y G A*. The
congruence ~£ is called the syntactic congruence of L, and the quotient
monoid A*/~L, which we dénote by M(L), is called the syntactic monoid
of L. The subset L of A* is saturated for the congruence ~£, that is u ~L y
and u E L imply v E L. Each pseudovariety of monoids is generated by
the syntactic monoids that it contains. The set L is recognizable if and only
if M(L) is a finite monoid.

Suppose that for each finite alphabet A, a family A*V of recognizable
sets of A* is given. We then say that V — {A*V} is a *-variety of sets if
it satisfies the following conditions:

• A*V is closed under boolean opérations;

Informatique théorique et Applications/Theoretical Informaties and Applications



SEM1DIRECT PRODUCT OF THE PSEUDOVARIETY 241

• If L G A*V and a G A, then the sets a~lL = {w G A* | aw G L) and
La~l = {w G A* I wa G L} are in A*V',

• If tp : B* —» 4̂* is a monoid morphism and if L G A*V, then
if-^L) G £*V.

Pseudovarieties of monoids and *-varieties of sets are in 1-1
correspondence. If V is a *-variety of sets, then the pseudovariety of monoids
generated by {M(L) | L E i*V for some A} defines the corresponding
pseudovariety of monoids V. If V is a pseudovariety of monoids, then
A*V = {L Ç A* | M(L) G V} defines the corresponding *-variety of
sets V.

3. CONGRUENCES FOR JL * H

In this section, we give a criterion to détermine when an identity is satisfied
in the semidirect product J i * H where H is a locally finite pseudovariety
of groups. This criterion is used in Section 5 to obtain a basis of identities
for J i * H.

Let A be a finite set. For a word u G A*, let a(u) dénote the set of
éléments of A that occur in u, Then the free object of J i on A is isomorphic
to the quotient A* /a where the congruence a on A* is defined by uav
if and only if a(u) — a(v). Now, let 7 be the congruence of finite index
on A* such that an A-generated monoid M belongs to H if and only if
M is a morphic image of A*/j. The free object Fn(A) is isomorphic to
the quotient A* /y. The pseudovarieties J i and H have hence finite finitely
generated free objects. We dénote by ?r7 the canonical projection from A*
into Fn(A) that maps a onto the generator a of F H ( A ) . If u,v E A*, then
7T7(u) — 7T7(v) if and only if wyv.

DÉFINITION 3.1: Let w E A*.

• Let G1 : A* —> (Fu(A) x A)* be the function defined by

<T7(ai . . . a i ) = ( I , a i ) ( 7 r 7 ( a i ) , a 2 ) . . . ( 7 r 7 ( a i . . . a ^ i ) , a 2 )

if i > 0, 1 otherwise.

• Let a™ : A* - • ( J F H ( ^ ) X A)* be the function defined by

?ƒ i > 0, 1 otherwise.
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The sequential function G1 is realized by the transducer whose states are
the éléments of Fu(A) (1 being the initial state) and whose transitions are
given by

a/(n,a)
n — • na

where n G Fn(A) and a G A.

We define an équivalence relation on A* by requesting that

u ~ 7 v if and only if a(a7(u)) — a(cr7(i;)) and wyv.

LEMMA 3.1: The équivalence relation ^ 7 is a congruence of finite index
on A*.

Proof: Assume u ~ 7 v and uf ~ 7 v
f. We have

a(a^(u)) = a(a^(v)) and
and similarly with u and v replaced by v! and v*'. Since 7 is a congruence
we have uu'jvv1'. The above and the fact that TTJ(U) = TT7(V) imply that
a(a7(uu')) = a(a7{u)a«(v!)) = a(a7(u)a^(uf)) = a(a7(v)a^(vf)) =
« ( ^ ( t ; ^ ) ) . Thus ww; ~ 7 TO' showing that ~ 7 is a congruence. This
obviously is a finite congruence since a and 7 are finite. D

LEMMA 3.2: If u ~ v is an identity on A, then the following conditions

are equivalent:

• Ji * H \= u ~ v\

• u ~ 7 v.

Consequently, an A-generated monoid M belongs to J i * H if and only if
M is a morphic image of A* / ~ 7 .

Proof: Let u — v be an identity on A, say u = ai . . . ai and v — b\ .. .b3.
Let iV = FH(-A) and M = Fj^iV x A). Consider the left action of N
on M defined by n(n\a) = (nnf,a) and the associated semidirect product
M * N. The embedding of Proposition 2.1 from F J 1 + H ( ^ )

 i n t o M * AT that
maps a into ( ( l ,a) ,a) maps u into

(1) ( ( M i ) + (ai,a2) + ••• + (ai . . . a«_i,ai),ai . ..a*),

and 7; into

(2) ( ( l M ) + ( h , b 2 ) + '-' + ( b 1 . . . b j - U b j ) M . . . b j ) .
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Dénote by v! (respectively vf) the first component of (1) (respectively (2)).
Then, we have J i * H |= u — v if and only if Fj^n(A) (= u = v.
This is equivalent to the two conditions Fj1(Fn(A) x A) \= v! = vf and
Fn(A) (= u — v, or a(a7(u)) = a(a7(v)) and U77;. •

4. A RESULT ON GRAPHS

In the next section, we give a basis of identities for J i * H. In order to do
this, we use a resuit on graphs due to Simon which we state in this section.

A (directed) graph G consists in a set V of vertices, a set E of edges and
two mappings f.tg : E —> V which to each edge e assigns the start vertex
f (e) and the end vertex g(e) of that edge. Two edges ei, e% are consécutive
if g (ei) = /(e2). A path of length i,i > 0, is a séquence ei . . . e« of
% consécutive edges. The mappings ƒ and # are extended to mappings
f,g : P -+V by letting /(ei . . . e») = /(ei) and 5(ei . - - e,-) = g(e%) (P
dénotes the set of all paths in G). For each vertex v we allow an empty
path lv of length 0 for which f(lv) — p(lv) = v. A loop about v is a path
x such that /(x) = g(x) — v.

An équivalence relation = on P is called a congruence if it satisfies the
following two conditions:

• If x = y, then x and y are coterminal (that is f(x) — f (y) and

• If x = xf, y = yf and f̂(x) = f (y), then xy = xfyf.
We agrée that each path 1̂  is congruent only to itself.

PROPOSITION 4.1 (Simon [8]): Let = be the smallest congruence relation
on P satisfying _,

0 XX ~ X,

xy = yx:

for any two loops xy y about the same vertex. Then any two coterminal paths
traversing the same set of edges (without regard to order and multiplicity)
are =-equivalent.

The graph G7 of the transducer of the preceding section is useful in the
proof of our main resuit. The set of vertices of G7 is F^(A), and its set of
edges is Fn (A) x A. The start vertex of the edge (n, a) is n and its end vertex
is na, We use the notation P7 for the set of all paths in G7. To any path

x = ( n i , a i ) . . . (n*, a*)

in P1, we associate the word x — ai . . . â  in A*.
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If u ~ 7 v, then a7(u) and cr7(v) are coterminal paths (with start vertex 1
and end vertex ?r7(w) = TT7(V)) traversing the same set of edges.

Given a morphism ip : A* —> M where M dénotes a finite monoid, we
can define a congruence ~ 7 on P7 by x = 7 y if # and y are coterminal,
and if for ail paths z from the vertex 1 to the start vertex of x and y we
have ip^zx) =

5. IDENTITIES FOR Jx * H

In this section, we give a basis of identities for J i * H.

Let A be a finite alphabet. Let 7 be the congruence generating H for A

and let q be a positive integer such that uq^yl for ail words u on A.

DÉFINITION 5.1: We call a list a i , . . . , at of éléments o f A 7-circular on A
ifai... a z 7l to? wo nonempty proper prefix o / a i . . . a2 w j-equivalent to 1.
We wr/te A 7 /o r rte 5e? of such ^-circular lists on A,

DÉFINITION 5.2: Vfe vi/nïe S ^ ^ / o r tfie 5e? consisting of the identities

(3) x2g = z*,

(4) * V - yff^,

together with all the identities of the form

(5) {y\z\ . ..yi-iz^yi)2 =

where y i , . . . , Î/Î W a fe* m A7.

The following définition and lemmas will be useful in the proof of
Theorem 5.1.

Let us define recursively what we mean by "a 7-word w on A".

DÉFINITION 5.3: Basis. The empty word 1 is a j-word on A.

Recursive step. If there exists a list a i , . . . , a i in A7, and there exist
vi , . . . ,Vj_i which are finite concaténations of 7-words on A satisfying
w — a\v\ . . . di-ivi-idi, then we say that w is a j-word on A.

Closure. A word w is a q-word on A only if it can be obtained from the
basis by a finite number of applications of the recursive step.
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Note that if a word w is a 7-word on A, it is built only from éléments
of A which build the lists in A7.

LEMMA 5.1: We have £ A 7 q l~ (wf .. -uf)2 — u\.. .u\ and so £ 4 7 q ^

Proof: We have £U ) 7 )g h u\.. .uf = ux
C j f . . . u ^ since the identity

a;2^ = £« belongs to £4,7,3» and so £4,7,3 h i t^ . . . . it? = ( i t ^ . . . i t ? ) 2

by using Identity (4) repeatedly. D

LEMMA 5.2 : 1. If w is a ^y-word on A, then £A,7,3 l~ W2 = W and so
^>A,j:q \~ Wq = W;

2. Ifw and vJ are j-words on A, then ^A,j}q l~ wu/ = IÜ'IÜ.

Proof: Assertion 1 follows by induction on w. Trivially, SA,7,Q h l2 = 1
and so £.4,7,4 l~ 1̂  = 1- If ^ is a finite concaténation of 7-words on A, say
v = u\ .. .uj, then by using the inductive assumption on u\,..., UJ as well as
Lemma 5.1 we get ^A.j.q \~ v2 — (u\ . . . UJ)2 — {u\ ... uq-)2 — u\ . . . uq- =
v, and so £U)7.9 I" ^ = v. Npw, if there exists a list a\,..., a% in A7, and
there exist vi,. . . ,Wi-i which are finite concaténations of 7-words on A
satisfying w — a\v\ . . . ai-\Vi-\a%, then by using an identity of the form (5)
we get XU/Y^ \~ w2 = (aivi ... ai-ivi-idi)2 = (aiv^ ... dt-ivf^cii)2 =

.. a i - i ^ ^ a ï = ^ and so SA, 7 ) 9 H U;̂  = iu.

Assertion 2 follows from Yi^nA h IÜIÜ7 = wq(wf)q = (wf)qwq — wfw. D

LEMMA 5.3: If u^l, then a(a7(n2)) = a(a7(ii)). A5 conséquences,
u2q - 7 u« and u«v« ~ 7 ^w«.

Proof: If U7I, then cr7(u
2) — a7(u)a^(u) — a7(u)a7(u) since TT7(U) = 1.

We have uq^/l and v ^ l , and so uq,u2q,uqvq and t/̂ u^ are 7-equivalent to
1. The equalities a(a1{u2q)) - a(a7(u

q)) and a(a7(u
qvq)) = a(cr7(^u9))

are easy to check. D

Now, let r be a positive integer and put Ar — {xiy.. ..,xr}. Let j r be
the congruence generating H for Ar and let qr be a positive integer such
that uQrjrl for all words n on Ar.

THEOREM 5.1: We have 31 * H = V( | J r > 1 EA„7r,^).

Proof: We will show that an A-generated monoid M is in J i *H if and only
if M |= SA,7,4 where yl abbreviates Ar, 7 abbreviates j r and g abbreviates
qr. By Lemma 3.2, A-generated monoids in J i * H satisfy identities u — v
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where u ~ 7 v (that is a(a7(u)) — a(a7(v)) and wyv). Lemma 5.3 implies
that x2q ~ 7 x

q and xqyq ~ 7 yqxq. We also have x2 ~ 7 x for all the
identities x2 — x of the form (5). To see this, put x = y\z\ .. -yi-iz^^i
with 2/i,. . . , yi a list in A7. Since a: is 7-equivalent to 1, we get x2'yx. The
equality a(<77(:r

2)) = a(a7(x)) follows from Lemma 5.3.
Conversely, let tp : A* —• M be a surjective morphism satisfying

y?(w) = tp(v) for every identity u = v in E^.7.9. We also dénote by ip
the (nuclear) congruence on A* associated with (p and defined by utpv if
and only if cp(u) = tp(v). We show the inclusion ~ 7 Ç ip which yields
M = A*/y? is a morphic image of A*/~ 7 . The membership of M to J i *H
follows by Lemma 3.2.

We consider the graph G7 and the congruence relation = 7 on its set of
paths P 7 defined at the end of Section 4. Let x and y be two loops about
the same vertex TT7(W), or

where wa\ ... aijwywbi . . . 6j. We show the following two claims: Claim 1
or xa: = 7 a;, and Claim 2 or ay = 7 yx. Now if it ~ 7 u, then cr7(u) and ci1{v)
are two coterrrunal paths traversing the same set of edges (the start vertex
of a7(u) and <J7(V) is 1 and their end vertex is n7(u) = 7r7(v)). Hence,
by Proposition 4.1, a7(u) = 7 a7(v). Therefore, (p(a7(u)) = 99(cr7(t;)) or
y?(ii) = c^(f) and the inclusion ~ 7 Ç (/? follows.

Let us now prove Claim 1 and Claim 2. Since wa\ . . . a^w and
wb\ . . . bjjw, we have x = ai . . . a ^ l and |/ — &i • • • bj*yl since H is
a pseudovariety of groups.

Proof of Claim 1 : The condition xx =7 x follows by showing that
<p{z'xx) — (p(^z~x) for all paths z from the vertex 1 to the start vertex of x.
Here we can show that ip(~xx) — tp(x) (and therefore ip(xq) — (p(x)).
The word x has the property V that "it is 7-equivalent to 1". The
word x can be factorized as follows: let u\ be the smallest nonempty
prefix of x with Property V; let u% be the smallest nonempty prefix
of ~x\u\ with Property V\ So x is a concaténation of factors
u\ . . . un with Property V. Since no nonempty proper prefix of u\ has
Property V, let c\v\ be the shortest prefix of u\ such that 7T7(CI-ÜI) =
7T7(ci); . . . let Q _ I ^ _ I be the shortest prefix of u\ \ c\v\ . , . Q _ 2 ^ - 2

such that 7
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let ce = ui\ eivi . . . ce-ivc-i satisfying TT7(CIVI . . . ce-ive-ice) = TTT(1).

So ui — ci^i . . . ct-\vi-\C£ where ci,...,c<? G A7 and where the v-
factors have Property V (similar statements hold for U2,. • . , % ) . Since
the v-factors have Property P, they can be factorized as above and the
process can be repeated. Factors in x are hence 7-words on A We
have <p(ui) = <p(u\), . . . , y?(«n) = ^ ( 4 ) (as in Lemma 5.2). Therefore
tp(x) — <p(ui . . . un) = </?(Ï// . . . Un) = V?((̂ i • • • 4 ) 2 ) (as in Lemma 5.1)
= </>(̂ 2) = <p(xx).

Proof of Claim 2: The condition xy = 7 2/2; follows from (p(~öcy) = <p(%V) =
(p(x)(p(y) — (p(xq)(p(yq) — (f(xqyq) = tp(yqxq) — <p(yx) (using Identity
(4)). D

6. IDENTITIES FOR Jx * Gp

In this section, we give a séquence of sets of identities ultimately defining
Ji * Gp.

Let A be a finite alphabet and let uyw £ A* with u — a\ . ..al. The
binomial coefficient (^) is defined as the number of distinct factorizations
of the form

w = 'yo^i'^i • • • oJ%vl

with VQ,... ,vt e A*. Thus the binomial coefficient counts the number of
ways in which u is a sub word of w. We adopt the convention that (™) = 1.

Let a,b £ A and it,u;, w;' € i* . The following formulas are easily verified:

• c:) - G ) w h e r e % ^ r-
0, otherwise;
1, if u = 1 or u — a,

\J - I o, otherwise;

• (3) = B) + M 3 «•««.,=
V u ) Z^,u—vv' V u / V u ' / '

Given a word u on A, we define on A* the équivalence relation 7p>w by

wjp^w' if and only if (^) ^ (^') mod p whenever u G A*v^4*.

Now, given an integer k > 0, we define on A* the équivalence relation 7^^

only if (^) = (^') mod p whenever \v\ < k.

Note that for all w,w! G A* we have
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LEMMA 6.1 (Eilenberg [8]): The équivalence relations 7P;U and
congruences of finite index on A*.

LEMMA 6.2 (Eilenberg [8]): Let k be a positive integer and u G A*. If
G A*, then wpU 7P,t(l and wp Tp^l.

Proof: If it; G A*, then the following conditions are equivalent:

• (™) = Omodp whenever 0 < \v\ < k.

We show the 7 ^ -équivalence of wp and 1. For k = 1, the resuit holds
trivially. We proceed by induction and assume 0 < \v\ < k + 1. Then

where the summation extends over all factorizations v = v\ . . . vp of v. If
for some 1 < i < p we have 0 < \vi\ < k + 1, then by the inductive

assumption (™J ) = 0 mod p and the summand may be omitted. There
remain summands with v% = v, t;7 = 1 for j ^ i Each such summand yields

( ^ ) and there are exactly p such summands. Thus (w*v ) = 0 mod p as
required. •

The quotients A* fyp^u and A*/jp^ are finite monoids by Lemma 6.1.
Lemma 6.2 implies that A*/jp.u satisfies the identity xp M = 1 and
A* hPfr the identity xpk — 1. Note that A*/Y^O is the trivial group. If
A = { a i , . . . , a r } , T4*/7P;I is isomorphic to the set of ail words of the form
a\x . . . a^r with 0 < e% < p multiplying two such words through the addition
of the respective exponents.

We now describe the *-variety Qv of sets defined by the pseudovariety Gp.

LEMMA 6.3 (Eilenberg [8]): • The pseudovariety Gp is generated by the
groups A* /jpk for ail integers k > 0 and ail finite alphabets A, or by the
groups A* fyp.u for ail éléments u G A* and ail finite alphabets A.

• A*Çp is the boolean closure of the sets

{w E A* \ (^) EEzmodp}, u G A*, 0 < i < p.

Let fcbea nonnegative integer and define the pseudovariety HPjfc as the
locally finite pseudovariety of groups generated by A* /yPmk for ail finite
alphabets A. The *-variety A*7iPik is then the boolean closure of the sets

{w G A" | (^) EE i mod p}, u e A* with \u\ < k, 0 < i < p.
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The pseudovariety Hp.o is the trivial pseudovariety I — V(x = 1). Since
I is the unit element for the semidirect product opération on pseudovarieties
of monoids, we have J i * HP;o = J i = V(x2 = x, xy — yx).

Now, let k be a positive integer. A list a i , . . . , a% of éléments of A is
7^/2-circular on A if (ai'u'

ûîl) = Omodp whenever 0 < \v\ < k9 but no
nonempty proper prefix w of ai .. .ai satisfies (™) = 0 modp for every
0 < 1̂1 < k. For example, a, 6,6, a, a, 6,6, a is a list in {a, b}l2 2.

If fe and r are positive integers, we write ££ k for the set consisting of
the identities

(6) X*>"=3?\

y ' ) %, y — y x ^

together with all the identities of the form

where y i , . . . , yi is a list in {x\,..., xr}lpik. We write X!^ for | J r >i

Continuing with the above example, the identity x2 — x where

belongs to E2
 2-

For r > 1, 5 7 , C S ^ 1 . This follows from the fact that if A C B,
then Alpk ç £7 p f c .

COROLLARY 6.1: T/ze pseudovariety J i * G p ^ ultimately defined by
Sp,jfcj & ̂  1 or a monoid is in J i * Gp /ƒ and on/j if it satisfies £p;fc /<?r
all k sufficiently large.

Proof: By Theorem 5.1, the pseudovariety Ji. * H p ^ is defined by S^fc.
Now, the semidirect product opération on pseudovarieties commutes with
directed unions [3]. We get J i * Gp = J i * |Jfc>o Hp,fc = Ufc>o J i * H P , ^ =

i * HP;^ and the resuit follows. D
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