## F. BLANCHET-SADRI

# On the semidirect product of the pseudovariety of semilattices by a locally finite pseudovariety of groups

*Informatique théorique et applications*, tome 31, n° 3 (1997), p. 237-250

<http://www.numdam.org/item?id=ITA\_1997\_\_31\_3\_237\_0>

#### © AFCET, 1997, tous droits réservés.

L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Informatique théorique et Applications/Theoretical Informatics and Applications (vol 31, n° 3, 1997, pp 237-250)

### ON THE SEMIDIRECT PRODUCT OF THE PSEUDOVARIETY OF SEMILATTICES BY A LOCALLY FINITE PSEUDOVARIETY OF GROUPS (\*)

by F. Blanchet-Sadri  $\begin{pmatrix} 1 \end{pmatrix}$   $\begin{pmatrix} 2 \end{pmatrix}$ 

Abstract – In this paper, we give a sequence of identities defining the product pseudovariety  $J_1 * H$  generated by all semidirect products of the form M \* N with  $M \in J_1$  and  $N \in H$  (here  $J_1$  is the pseudovariety of semilattice monoids and H is a locally finite pseudovariety of groups) A sequence of sets of identities ultimately defining  $J_1 * G_p$  results (here  $G_p$  is the pseudovariety of p-groups)

Résumé – Dans cet article, nous donnons une suite d'identités définissant la pseudovariéte  $J_1 * H$  engendrée par les produits semidirects de la forme M \* N où  $M \in J_1$  et  $N \in H$  (ci  $J_1$  est la pseudovariété des demi-treillis et H une pseudovariété de groupes localement finie) Une suite d'ensembles d'identités définissant ultimement  $J_1 * G_p$  en résulte (ici  $G_p$  est la pseudovariété des p-groupes)

#### 1. INTRODUCTION

In this paper, we discuss a technique to produce identities for the semidirect product pseudovariety  $J_1 * H$  generated by all semidirect products of the form M \* N with  $M \in J_1$  and  $N \in H$ , where  $J_1$  is the pseudovariety of all semilattice monoids and H is a locally finite pseudovariety of groups.

The notion of congruence plays a central role in our approach. For any finite alphabet A denote by  $A^*$  the free monoid generated by A. We say that a monoid M is A-generated if there exists a congruence  $\beta$  on  $A^*$  such that M is isomorphic to  $A^*/\beta$ . A pseudovariety of monoids V is *locally finite* if

Informatique théorique et Applications/Theoretical Informatics and Applications 0988-3754/97/03/\$ 4 00/© AFCET-Gauthier-Villars

<sup>(\*)</sup> Received October 1995

<sup>(&</sup>lt;sup>1</sup>) Department of Mathematical Sciences, University of North Carolina, Greensboro, NC 27412, USA E-mail blanchet@iris uncg edu

<sup>(&</sup>lt;sup>2</sup>) This material is based upon work supported by the National Science Foundation under Grant No CCR-9300738 A Research Assignment from the University of North Carolina at Greensboro is gratefully acknowledged I thank Jean-Eric Pin and the referees of preliminary versions of this paper for their very valuable comments and suggestions

for any A there are finitely many A-generated monoids in V. Equivalently, there exists for each A a congruence  $\beta_A$  such that an A-generated monoid M is in V if and only if M is a morphic image of  $A^*/\beta_A$ .

Let **H** be a locally finite pseudovariety of groups. Let  $\gamma$  be the congruence generating **H** for the finite alphabet A. The idea is to associate with  $J_1 * H$ a congruence  $\sim_{\gamma}$  on  $A^*$ . Section 3 gives a criterion to determine when an identity on A is satisfied in  $J_1 * H$  with the help of  $\sim_{\gamma}$ . This leads to a proof that such  $J_1 * H$  are locally finite and hence decidable. This criterion follows from Almeida's semidirect product representation of the free objects in  $\mathbf{V} * \mathbf{W}$  in case both  $\mathbf{V}$  and  $\mathbf{W}$  have finite free objects [1] (Almeida's representation is stated in Section 2.1). In Section 5, we give a basis of identities for  $J_1 * H$  which follows mainly from a result on graphs due to Simon [8] (Simon's result is stated in Section 4) and the identity criterion of Section 3. In Section 6, we give a sequence of sets of identities ultimately defining the pseudovariety  $J_1 * G_p$ , where p is a prime number and  $G_p$  is the pseudovariety of all p-groups, that is the pseudovariety of all groups of order  $p^k$  for some nonnegative integer k.

Related known results include the following. The product  $J_1 * G$  is generated by the inverse monoids (Margolis and Pin [11]) and is the class of finite monoids in which the idempotents commute (Ash [4]) (here G is the pseudovariety of groups). Blanchet-Sadri and Zhang [6] give identities ultimately defining the product  $J_1 * G_{com}$  where  $G_{com}$  denotes the pseudovariety of commutative groups. Irastorza [10] shows that if the pseudovarieties V and W are finitely based, their product may not be.

The techniques in this paper were used in particular by Pin [13] to give a basis of identities for  $J_1 * J_1$ , by Almeida [2] to generalize Pin's result to iterated semidirect products of finite semilattices, and by Blanchet-Sadri [5] to give a basis of identities for  $J_1 * J_k$  where  $J_k$  denotes the pseudovariety of  $\mathcal{J}$ -trivial monoids of height k.

#### 2. PRELIMINARIES

We refer the reader to [3, 7, 8, 12] for terms not explicitly defined here.

#### 2.1. Pseudovarieties of monoids

A nonempty class of finite monoids is called a *pseudovariety* if it is closed under submonoids, morphic images, and finitary direct products. A nonempty

class of monoids is called a *variety* if it is closed under submonoids, morphic images, and direct products.

As the intersection of a class of pseudovarieties of monoids is again a pseudovariety, and as all finite monoids form a pseudovariety, we can conclude that for every class C of finite monoids there is a smallest pseudovariety containing C, called *the pseudovariety generated by* C. Now, if C is a class of monoids, the smallest variety containing C is called *the variety generated by* C.

For a pseudovariety V and a set A,  $F_{\mathbf{V}}(A)$  denotes the *free object* on A (or generated by A) in the variety generated by V. If A is finite, say  $A = \{a_1, \ldots, a_r\}$ , we often write  $F_{\mathbf{V}}(a_1, \ldots, a_r)$  for  $F_{\mathbf{V}}(A)$ . In case V is the pseudovariety of all finite semigroups (respectively all finite monoids), the semigroup (respectively monoid)  $F_{\mathbf{V}}(A)$  is usually denoted by  $A^+$  (respectively  $A^*$ ). Elements of  $A^+$  are viewed as nonempty words of elements of A, and the multiplication is given by concatenation of words. The monoid  $A^*$  includes also the empty word 1. For a word  $u \in A^*$ , let |u| denote the length of u. For words  $u_{\tilde{f}}^*v, w \in A^*$  satisfying w = uv, let  $w \setminus u$  denote the factor v.

#### 2.1.1. Semidirect products of pseudovarieties

Let M and N be monoids. It is convenient to write M additively, without however assuming that M is commutative. We denote by 0 (respectively 1) the unit element of M (respectively N). A *left action* of N on M is a morphism  $\varphi$  from N into the monoid of monoid endomorphisms of M, where endomorphisms of M are written on the left.

Given a left action  $\varphi$  of N on M, we define the semidirect product M \* N as follows. The elements of M \* N are pairs (m, n) with  $m \in M$ ,  $n \in N$ . Multiplication is given by the formula

$$(m,n)(m',n') = (m+nm',nn')$$

where nm' represents  $\varphi(n)(m')$ . (This is what Eilenberg [8] calls a "unitary" semidirect product.) The multiplication in M \* N is associative. Thus M \* N is a monoid with (0, 1) as unit element.

We now relate the notion of pseudovariety with that of a semidirect product. Given pseudovarieties of monoids  $\mathbf{V}$  and  $\mathbf{W}$ , we denote by  $\mathbf{V} * \mathbf{W}$  the pseudovariety generated by all semidirect products M \* N with  $M \in \mathbf{V}$ ,  $N \in \mathbf{W}$  and with any left action of N on M. The semidirect product of pseudovarieties of monoids is associative.

PROPOSITION 2.1: (Almeida [1]) Let V and W be pseudovarieties of monoids such that  $F_{\mathbf{V}}(A)$  and  $F_{\mathbf{W}}(A)$  are finite for all finite A. Then so is  $\mathbf{V} * \mathbf{W}$ . Moreover, for a finite set A, let  $N = F_{\mathbf{W}}(A)$  and  $M = F_{\mathbf{V}}(N \times A)$ . Consider the left action of N on M defined by n(n', a) = (nn', a) and the associated semidirect product M \* N. Then, there is an embedding from  $F_{\mathbf{V}*\mathbf{W}}(A)$  into M \* N that maps a into ((1, a), a).

#### 2.1.2. Pseudovarieties and sequences of identities

Let A be a set. A monoid *identity* on A is an expression of the form u = v where  $u, v \in A^*$ . A monoid M satisfies an identity u = v (or the identity is true in M, or holds in M), abbreviated by  $M \models u = v$ , if for every morphism  $\varphi : A^* \to M$  we have  $\varphi(u) = \varphi(v)$ .

A class C of monoids satisfies u = v, written  $C \models u = v$ , if each member of C satisfies u = v. If  $\Sigma$  is a set of identities, we say C satisfies  $\Sigma$ , written  $C \models \Sigma$ , if  $C \models u = v$  for each  $u = v \in \Sigma$ . An identity u = vis *deducible* from a set of identities  $\Sigma$ , abbreviated by  $\Sigma \vdash u = v$ , if for every monoid M we have  $M \models \Sigma$  implies  $M \models u = v$ . Here, letters can be erased in monoid identities.

Let  $u_i = v_i, i \ge 1$  be a sequence of identities. Put  $\Sigma = \{u_i = v_i \mid i \ge 1\}$ , and define  $\mathbf{V}(\Sigma)$  to be the class of finite monoids satisfying  $\Sigma$  or all the identities  $u_i = v_i$ . A class C of finite monoids is said to be *defined* by  $\Sigma$  (or by the identities  $u_i = v_i, i \ge 1$ ) if  $C = \mathbf{V}(\Sigma)$ ;  $\Sigma$  is said to be a *basis* for C. Eilenberg and Schützenberger [9] show that every pseudovariety generated by a single monoid is of the form  $\mathbf{V}(\Sigma)$  for some such  $\Sigma$ .

#### 2.2. Varieties of sets

Let L be a subset of  $A^*$ . We define a congruence  $\sim_L$  on  $A^*$  as follows:  $u \sim_L v$  holds if  $xuy \in L$  if and only if  $xvy \in L$  for all  $x, y \in A^*$ . The congruence  $\sim_L$  is called the *syntactic congruence* of L, and the quotient monoid  $A^*/\sim_L$ , which we denote by M(L), is called the *syntactic monoid* of L. The subset L of  $A^*$  is saturated for the congruence  $\sim_L$ , that is  $u \sim_L v$ and  $u \in L$  imply  $v \in L$ . Each pseudovariety of monoids is generated by the syntactic monoids that it contains. The set L is recognizable if and only if M(L) is a finite monoid.

Suppose that for each finite alphabet A, a family  $A^*\mathcal{V}$  of recognizable sets of  $A^*$  is given. We then say that  $\mathcal{V} = \{A^*\mathcal{V}\}$  is a \*-variety of sets if it satisfies the following conditions:

•  $A^*\mathcal{V}$  is closed under boolean operations;

• If  $L \in A^*\mathcal{V}$  and  $a \in A$ , then the sets  $a^{-1}L = \{w \in A^* \mid aw \in L\}$  and  $La^{-1} = \{w \in A^* \mid wa \in L\}$  are in  $A^*\mathcal{V}$ ;

• If  $\varphi : B^* \to A^*$  is a monoid morphism and if  $L \in A^*\mathcal{V}$ , then  $\varphi^{-1}(L) \in B^*\mathcal{V}$ .

Pseudovarieties of monoids and \*-varieties of sets are in 1-1 correspondence. If  $\mathcal{V}$  is a \*-variety of sets, then the pseudovariety of monoids generated by  $\{M(L) \mid L \in A^*\mathcal{V} \text{ for some } A\}$  defines the corresponding pseudovariety of monoids **V**. If **V** is a pseudovariety of monoids, then  $A^*\mathcal{V} = \{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$  defines the corresponding \*-variety of sets  $\mathcal{V}$ .

#### 3. CONGRUENCES FOR $J_1 * H$

In this section, we give a criterion to determine when an identity is satisfied in the semidirect product  $J_1 * H$  where H is a locally finite pseudovariety of groups. This criterion is used in Section 5 to obtain a basis of identities for  $J_1 * H$ .

Let A be a finite set. For a word  $u \in A^*$ , let  $\alpha(u)$  denote the set of elements of A that occur in u. Then the free object of  $\mathbf{J}_1$  on A is isomorphic to the quotient  $A^*/\alpha$  where the congruence  $\alpha$  on  $A^*$  is defined by  $u\alpha v$ if and only if  $\alpha(u) = \alpha(v)$ . Now, let  $\gamma$  be the congruence of finite index on  $A^*$  such that an A-generated monoid M belongs to **H** if and only if M is a morphic image of  $A^*/\gamma$ . The free object  $F_{\mathbf{H}}(A)$  is isomorphic to the quotient  $A^*/\gamma$ . The pseudovarieties  $\mathbf{J}_1$  and **H** have hence finite finitely generated free objects. We denote by  $\pi_{\gamma}$  the canonical projection from  $A^*$ into  $F_{\mathbf{H}}(A)$  that maps a onto the generator a of  $F_{\mathbf{H}}(A)$ . If  $u, v \in A^*$ , then  $\pi_{\gamma}(u) = \pi_{\gamma}(v)$  if and only if  $u\gamma v$ .

DEFINITION 3.1: Let  $w \in A^*$ . • Let  $\sigma_{\gamma} : A^* \to (F_{\mathbf{H}}(A) \times A)^*$  be the function defined by

 $\sigma_\gamma(a_1\ldots a_i)=(1,a_1)(\pi_\gamma(a_1),a_2)\ldots(\pi_\gamma(a_1\ldots a_{i-1}),a_i)$ 

if i > 0, 1 otherwise.

• Let  $\sigma_{\gamma}^w : A^* \to (F_{\mathbf{H}}(A) \times A)^*$  be the function defined by

$$\sigma_{\gamma}^w(a_1\ldots a_i) = (\pi_{\gamma}(w), a_1)(\pi_{\gamma}(wa_1), a_2)\ldots(\pi_{\gamma}(wa_1\ldots a_{i-1}), a_i)$$

if i > 0, 1 otherwise.

vol. 31, n° 3, 1997

The sequential function  $\sigma_{\gamma}$  is realized by the transducer whose states are the elements of  $F_{\mathbf{H}}(A)$  (1 being the initial state) and whose transitions are given by

$$n \xrightarrow{a/(n,a)} na$$

where  $n \in F_{\mathbf{H}}(A)$  and  $a \in A$ .

We define an equivalence relation on  $A^*$  by requesting that

$$u \sim_{\gamma} v$$
 if and only if  $\alpha(\sigma_{\gamma}(u)) = \alpha(\sigma_{\gamma}(v))$  and  $u\gamma v$ .

LEMMA 3.1: The equivalence relation  $\sim_{\gamma}$  is a congruence of finite index on  $A^*$ .

*Proof:* Assume  $u \sim_{\gamma} v$  and  $u' \sim_{\gamma} v'$ . We have

$$\alpha(\sigma_{\gamma}(u)) = \alpha(\sigma_{\gamma}(v))$$
 and  $u\gamma v$ 

and similarly with u and v replaced by u' and v'. Since  $\gamma$  is a congruence we have  $uu'\gamma vv'$ . The above and the fact that  $\pi_{\gamma}(u) = \pi_{\gamma}(v)$  imply that  $\alpha(\sigma_{\gamma}(uu')) = \alpha(\sigma_{\gamma}(u)\sigma_{\gamma}^{u}(u')) = \alpha(\sigma_{\gamma}(u)\sigma_{\gamma}^{v}(u')) = \alpha(\sigma_{\gamma}(v)\sigma_{\gamma}^{v}(v')) = \alpha(\sigma_{\gamma}(vv'))$ . Thus  $uu' \sim_{\gamma} vv'$  showing that  $\sim_{\gamma}$  is a congruence. This obviously is a finite congruence since  $\alpha$  and  $\gamma$  are finite.

LEMMA 3.2: If u = v is an identity on A, then the following conditions are equivalent:

- $\mathbf{J}_1 * \mathbf{H} \models u = v;$
- $u \sim_{\gamma} v$ .

Consequently, an A-generated monoid M belongs to  $\mathbf{J}_1 * \mathbf{H}$  if and only if M is a morphic image of  $A^* / \sim_{\gamma}$ .

*Proof:* Let u = v be an identity on A, say  $u = a_1 \dots a_i$  and  $v = b_1 \dots b_j$ . Let  $N = F_{\mathbf{H}}(A)$  and  $M = F_{\mathbf{J}_1}(N \times A)$ . Consider the left action of N on M defined by n(n', a) = (nn', a) and the associated semidirect product M \* N. The embedding of Proposition 2.1 from  $F_{\mathbf{J}_1 * \mathbf{H}}(A)$  into M \* N that maps a into ((1, a), a) maps u into

(1) 
$$((1, a_1) + (a_1, a_2) + \dots + (a_1 \dots a_{i-1}, a_i), a_1 \dots a_i),$$

and v into

(2) 
$$((1,b_1) + (b_1,b_2) + \dots + (b_1 \dots b_{j-1},b_j), b_1 \dots b_j)$$

Informatique théorique et Applications/Theoretical Informatics and Applications

242

Denote by u' (respectively v') the first component of (1) (respectively (2)). Then, we have  $\mathbf{J}_1 * \mathbf{H} \models u = v$  if and only if  $F_{\mathbf{J}_1*\mathbf{H}}(A) \models u = v$ . This is equivalent to the two conditions  $F_{\mathbf{J}_1}(F_{\mathbf{H}}(A) \times A) \models u' = v'$  and  $F_{\mathbf{H}}(A) \models u = v$ , or  $\alpha(\sigma_{\gamma}(u)) = \alpha(\sigma_{\gamma}(v))$  and  $u\gamma v$ .

#### 4. A RESULT ON GRAPHS

In the next section, we give a basis of identities for  $J_1 * H$ . In order to do this, we use a result on graphs due to Simon which we state in this section.

A (directed) graph G consists in a set V of vertices, a set E of edges and two mappings  $f, g: E \to V$  which to each edge e assigns the start vertex f(e) and the end vertex g(e) of that edge. Two edges  $e_1, e_2$  are consecutive if  $g(e_1) = f(e_2)$ . A path of length i, i > 0, is a sequence  $e_1 \dots e_i$  of i consecutive edges. The mappings f and g are extended to mappings  $f, g: P \to V$  by letting  $f(e_1 \dots e_i) = f(e_1)$  and  $g(e_1 \dots e_i) = g(e_i)$  (P denotes the set of all paths in G). For each vertex v we allow an empty path  $1_v$  of length 0 for which  $f(1_v) = g(1_v) = v$ . A loop about v is a path x such that f(x) = g(x) = v.

An equivalence relation  $\cong$  on P is called a *congruence* if it satisfies the following two conditions:

• If  $x \cong y$ , then x and y are coterminal (that is f(x) = f(y) and g(x) = g(y));

• If  $x \cong x'$ ,  $y \cong y'$  and g(x) = f(y), then  $xy \cong x'y'$ .

We agree that each path  $1_v$  is congruent only to itself.

PROPOSITION 4.1 (Simon [8]): Let  $\cong$  be the smallest congruence relation on P satisfying  $xx \cong x$ ,

$$xy \cong yx,$$

for any two loops x, y about the same vertex. Then any two coterminal paths traversing the same set of edges (without regard to order and multiplicity) are  $\cong$ -equivalent.

The graph  $G_{\gamma}$  of the transducer of the preceding section is useful in the proof of our main result. The set of vertices of  $G_{\gamma}$  is  $F_{\mathbf{H}}(A)$ , and its set of edges is  $F_{\mathbf{H}}(A) \times A$ . The start vertex of the edge (n, a) is n and its end vertex is na. We use the notation  $P_{\gamma}$  for the set of all paths in  $G_{\gamma}$ . To any path

$$x = (n_1, a_1) \dots (n_i, a_i)$$

in  $P_{\gamma}$ , we associate the word  $\overline{x} = a_1 \dots a_i$  in  $A^*$ .

vol. 31, nº 3, 1997

If  $u \sim_{\gamma} v$ , then  $\sigma_{\gamma}(u)$  and  $\sigma_{\gamma}(v)$  are coterminal paths (with start vertex 1 and end vertex  $\pi_{\gamma}(u) = \pi_{\gamma}(v)$ ) traversing the same set of edges.

Given a morphism  $\varphi : A^* \to M$  where M denotes a finite monoid, we can define a congruence  $\cong_{\gamma}$  on  $P_{\gamma}$  by  $x \cong_{\gamma} y$  if x and y are coterminal, and if for all paths z from the vertex 1 to the start vertex of x and y we have  $\varphi(\overline{z}\,\overline{x}) = \varphi(\overline{z}\,\overline{y})$ .

#### 5. IDENTITIES FOR $J_1 * H$

In this section, we give a basis of identities for  $J_1 * H$ .

Let A be a finite alphabet. Let  $\gamma$  be the congruence generating **H** for A and let q be a positive integer such that  $u^q \gamma 1$  for all words u on A.

DEFINITION 5.1: We call a list  $a_1, \ldots, a_i$  of elements of  $A \gamma$ -circular on Aif  $a_1 \ldots a_i \gamma 1$  but no nonempty proper prefix of  $a_1 \ldots a_i$  is  $\gamma$ -equivalent to 1. We write  $A_{\gamma}$  for the set of such  $\gamma$ -circular lists on A.

DEFINITION 5.2: We write  $\sum_{A,\gamma,q}$  for the set consisting of the identities

$$(3) x^{2q} = x^q,$$

(4) 
$$x^q y^q = y^q x^q,$$

together with all the identities of the form

(5) 
$$(y_1 z_1^q \dots y_{i-1} z_{i-1}^q y_i)^2 = y_1 z_1^q \dots y_{i-1} z_{i-1}^q y_i,$$

where  $y_1, \ldots, y_i$  is a list in  $A_{\gamma}$ .

The following definition and lemmas will be useful in the proof of Theorem 5.1.

Let us define recursively what we mean by "a  $\gamma$ -word w on A".

DEFINITION 5.3: Basis. The empty word 1 is a  $\gamma$ -word on A.

Recursive step. If there exists a list  $a_1, \ldots, a_i$  in  $A_{\gamma}$ , and there exist  $v_1, \ldots, v_{i-1}$  which are finite concatenations of  $\gamma$ -words on A satisfying  $w = a_1v_1 \ldots a_{i-1}v_{i-1}a_i$ , then we say that w is a  $\gamma$ -word on A.

Closure. A word w is a  $\gamma$ -word on A only if it can be obtained from the basis by a finite number of applications of the recursive step.

Note that if a word w is a  $\gamma$ -word on A, it is built only from elements of A which build the lists in  $A_{\gamma}$ .

LEMMA 5.1: We have  $\Sigma_{A,\gamma,q} \vdash (u_1^q \dots u_i^q)^2 = u_1^q \dots u_i^q$  and so  $\Sigma_{A,\gamma,q} \vdash (u_1^q \dots u_i^q)^q = u_1^q \dots u_i^q$ .

*Proof:* We have  $\Sigma_{A,\gamma,q} \vdash u_1^q \dots u_i^q = u_1^{2q} \dots u_i^{2q}$  since the identity  $x^{2q} = x^q$  belongs to  $\Sigma_{A,\gamma,q}$ , and so  $\Sigma_{A,\gamma,q} \vdash u_1^q \dots u_i^q = (u_1^q \dots u_i^q)^2$  by using Identity (4) repeatedly.

LEMMA 5.2 : 1. If w is a  $\gamma$ -word on A, then  $\Sigma_{A,\gamma,q} \vdash w^2 = w$  and so  $\Sigma_{A,\gamma,q} \vdash w^q = w$ ;

2. If w and w' are  $\gamma$ -words on A, then  $\sum_{A,\gamma,q} \vdash ww' = w'w$ .

*Proof:* Assertion 1 follows by induction on w. Trivially,  $\sum_{A,\gamma,q} \vdash 1^2 = 1$ and so  $\sum_{A,\gamma,q} \vdash 1^q = 1$ . If v is a finite concatenation of  $\gamma$ -words on A, say  $v = u_1 \dots u_j$ , then by using the inductive assumption on  $u_1, \dots, u_j$  as well as Lemma 5.1 we get  $\sum_{A,\gamma,q} \vdash v^2 = (u_1 \dots u_j)^2 = (u_1^q \dots u_j^q)^2 = u_1^q \dots u_j^q = v$ , and so  $\sum_{A,\gamma,q} \vdash v^q = v$ . Now, if there exists a list  $a_1, \dots, a_i$  in  $A_\gamma$ , and there exist  $v_1, \dots, v_{i-1}$  which are finite concatenations of  $\gamma$ -words on Asatisfying  $w = a_1v_1 \dots a_{i-1}v_{i-1}a_i$ , then by using an identity of the form (5) we get  $\sum_{A,\gamma,q} \vdash w^2 = (a_1v_1 \dots a_{i-1}v_{i-1}a_i)^2 = (a_1v_1^q \dots a_{i-1}v_{i-1}^q a_i)^2 = a_1v_1^q \dots a_{i-1}v_{i-1}^q a_i = w$  and so  $\sum_{A,\gamma,q} \vdash w^q = w$ .

Assertion 2 follows from  $\Sigma_{A,\gamma,q} \vdash ww' = w^q (w')^q = (w')^q w^q = w'w$ .  $\Box$ 

LEMMA 5.3: If  $u\gamma 1$ , then  $\alpha(\sigma_{\gamma}(u^2)) = \alpha(\sigma_{\gamma}(u))$ . As consequences,  $u^{2q} \sim_{\gamma} u^q$  and  $u^q v^q \sim_{\gamma} v^q u^q$ .

*Proof:* If  $u\gamma 1$ , then  $\sigma_{\gamma}(u^2) = \sigma_{\gamma}(u)\sigma_{\gamma}^u(u) = \sigma_{\gamma}(u)\sigma_{\gamma}(u)$  since  $\pi_{\gamma}(u) = 1$ . We have  $u^q\gamma 1$  and  $v^q\gamma 1$ , and so  $u^q, u^{2q}, u^qv^q$  and  $v^qu^q$  are  $\gamma$ -equivalent to 1. The equalities  $\alpha(\sigma_{\gamma}(u^{2q})) = \alpha(\sigma_{\gamma}(u^q))$  and  $\alpha(\sigma_{\gamma}(u^qv^q)) = \alpha(\sigma_{\gamma}(v^qu^q))$  are easy to check.

Now, let r be a positive integer and put  $A_r = \{x_1, \ldots, x_r\}$ . Let  $\gamma_r$  be the congruence generating **H** for  $A_r$  and let  $q_r$  be a positive integer such that  $u^{q_r}\gamma_r 1$  for all words u on  $A_r$ .

THEOREM 5.1: We have  $\mathbf{J}_1 * \mathbf{H} = \mathbf{V}(\bigcup_{r>1} \Sigma_{A_r, \gamma_r, q_r})$ .

*Proof:* We will show that an A-generated monoid M is in  $\mathbf{J}_1 * \mathbf{H}$  if and only if  $M \models \Sigma_{A,\gamma,q}$  where A abbreviates  $A_r$ ,  $\gamma$  abbreviates  $\gamma_r$  and q abbreviates  $q_r$ . By Lemma 3.2, A-generated monoids in  $\mathbf{J}_1 * \mathbf{H}$  satisfy identities u = v

where  $u \sim_{\gamma} v$  (that is  $\alpha(\sigma_{\gamma}(u)) = \alpha(\sigma_{\gamma}(v))$  and  $u\gamma v$ ). Lemma 5.3 implies that  $x^{2q} \sim_{\gamma} x^{q}$  and  $x^{q}y^{q} \sim_{\gamma} y^{q}x^{q}$ . We also have  $x^{2} \sim_{\gamma} x$  for all the identities  $x^{2} = x$  of the form (5). To see this, put  $x = y_{1}z_{1}^{q} \dots y_{i-1}z_{i-1}^{q}y_{i}$ with  $y_{1}, \dots, y_{i}$  a list in  $A_{\gamma}$ . Since x is  $\gamma$ -equivalent to 1, we get  $x^{2}\gamma x$ . The equality  $\alpha(\sigma_{\gamma}(x^{2})) = \alpha(\sigma_{\gamma}(x))$  follows from Lemma 5.3.

Conversely, let  $\varphi : A^* \to M$  be a surjective morphism satisfying  $\varphi(u) = \varphi(v)$  for every identity u = v in  $\sum_{A,\gamma,q}$ . We also denote by  $\varphi$  the (nuclear) congruence on  $A^*$  associated with  $\varphi$  and defined by  $u\varphi v$  if and only if  $\varphi(u) = \varphi(v)$ . We show the inclusion  $\sim_{\gamma} \subseteq \varphi$  which yields  $M = A^*/\varphi$  is a morphic image of  $A^*/\sim_{\gamma}$ . The membership of M to  $J_1 * H$  follows by Lemma 3.2.

We consider the graph  $G_{\gamma}$  and the congruence relation  $\cong_{\gamma}$  on its set of paths  $P_{\gamma}$  defined at the end of Section 4. Let x and y be two loops about the same vertex  $\pi_{\gamma}(w)$ , or

$$x = (\pi_{\gamma}(w), a_1) \dots (\pi_{\gamma}(wa_1 \dots a_{i-1}), a_i),$$
$$y = (\pi_{\gamma}(w), b_1) \dots (\pi_{\gamma}(wb_1 \dots b_{j-1}), b_j),$$

where  $wa_1 \ldots a_i \gamma w \gamma w b_1 \ldots b_j$ . We show the following two claims: Claim 1 or  $xx \cong_{\gamma} x$ , and Claim 2 or  $xy \cong_{\gamma} yx$ . Now if  $u \sim_{\gamma} v$ , then  $\sigma_{\gamma}(u)$  and  $\sigma_{\gamma}(v)$ are two coterminal paths traversing the same set of edges (the start vertex of  $\sigma_{\gamma}(u)$  and  $\sigma_{\gamma}(v)$  is 1 and their end vertex is  $\pi_{\gamma}(u) = \pi_{\gamma}(v)$ ). Hence, by Proposition 4.1,  $\sigma_{\gamma}(u) \cong_{\gamma} \sigma_{\gamma}(v)$ . Therefore,  $\varphi(\sigma_{\gamma}(u)) = \varphi(\sigma_{\gamma}(v))$  or  $\varphi(u) = \varphi(v)$  and the inclusion  $\sim_{\gamma} \subseteq \varphi$  follows.

Let us now prove Claim 1 and Claim 2. Since  $wa_1 \ldots a_i \gamma w$  and  $wb_1 \ldots b_j \gamma w$ , we have  $\overline{x} = a_1 \ldots a_i \gamma 1$  and  $\overline{y} = b_1 \ldots b_j \gamma 1$  since **H** is a pseudovariety of groups.

Proof of Claim 1: The condition  $xx \cong_{\gamma} x$  follows by showing that  $\varphi(\overline{z} \, \overline{xx}) = \varphi(\overline{z} \, \overline{x})$  for all paths z from the vertex 1 to the start vertex of x. Here we can show that  $\varphi(\overline{xx}) = \varphi(\overline{x})$  (and therefore  $\varphi(\overline{x}^q) = \varphi(\overline{x})$ ). The word  $\overline{x}$  has the property  $\mathcal{P}$  that "it is  $\gamma$ -equivalent to 1". The word  $\overline{x}$  can be factorized as follows: let  $u_1$  be the smallest nonempty prefix of  $\overline{x}$  with Property  $\mathcal{P}$ ; let  $u_2$  be the smallest nonempty prefix of  $\overline{x} \setminus u_1$  with Property  $\mathcal{P}$ ; .... So  $\overline{x}$  is a concatenation of factors  $u_1 \dots u_n$  with Property  $\mathcal{P}$ . Since no nonempty proper prefix of  $u_1$  has Property  $\mathcal{P}$ , let  $c_1v_1$  be the shortest prefix of  $u_1 \setminus c_1v_1 \dots c_{\ell-2}v_{\ell-2}$  such that  $\pi_{\gamma}(c_1v_1 \dots c_{\ell-2}v_{\ell-2}c_{\ell-1}v_{\ell-1}) = \pi_{\gamma}(c_1v_1 \dots c_{\ell-2}v_{\ell-2}c_{\ell-1})$ ; and let  $c_{\ell} = u_1 \setminus c_1 v_1 \dots c_{\ell-1} v_{\ell-1}$  satisfying  $\pi_{\gamma}(c_1 v_1 \dots c_{\ell-1} v_{\ell-1} c_{\ell}) = \pi_{\gamma}(1)$ . So  $u_1 = c_1 v_1 \dots c_{\ell-1} v_{\ell-1} c_{\ell}$  where  $c_1, \dots, c_{\ell} \in A_{\gamma}$  and where the *v*-factors have Property  $\mathcal{P}$  (similar statements hold for  $u_2, \dots, u_n$ ). Since the *v*-factors have Property  $\mathcal{P}$ , they can be factorized as above and the process can be repeated. Factors in  $\overline{x}$  are hence  $\gamma$ -words on A. We have  $\varphi(u_1) = \varphi(u_1^q), \dots, \varphi(u_n) = \varphi(u_n^q)$  (as in Lemma 5.2). Therefore  $\varphi(\overline{x}) = \varphi(u_1 \dots u_n) = \varphi(u_1^q \dots u_n^q) = \varphi((u_1^q \dots u_n^q)^2)$  (as in Lemma 5.1)  $= \varphi(\overline{x^2}) = \varphi(\overline{xx})$ .

Proof of Claim 2: The condition  $xy \cong_{\gamma} yx$  follows from  $\varphi(\overline{xy}) = \varphi(\overline{x}\,\overline{y}) = \varphi(\overline{x})\varphi(\overline{y}) = \varphi(\overline{x}^q)\varphi(\overline{y}^q) = \varphi(\overline{x}^q\overline{y}^q) = \varphi(\overline{y}^q\overline{x}^q) = \varphi(\overline{yx})$  (using Identity (4)).

#### 6. IDENTITIES FOR $J_1 * G_p$

In this section, we give a sequence of sets of identities ultimately defining  $J_1 * G_p$ .

Let A be a finite alphabet and let  $u, w \in A^*$  with  $u = a_1 \dots a_i$ . The binomial coefficient  $\binom{w}{u}$  is defined as the number of distinct factorizations of the form

$$w = v_0 a_1 v_1 \dots a_i v_i$$

with  $v_0, \ldots, v_i \in A^*$ . Thus the binomial coefficient counts the number of ways in which u is a subword of w. We adopt the convention that  $\binom{w}{1} = 1$ .

Let  $a, b \in A$  and  $u, w, w' \in A^*$ . The following formulas are easily verified:

- $\binom{a^i}{a^j} = \binom{i}{j}$  where  $i \ge j$ ;
- $\binom{1}{u} = \begin{cases} 1, & \text{if } u = 1, \\ 0, & \text{otherwise;} \end{cases}$
- $\binom{a}{u} = \begin{cases} 1, & \text{if } u = 1 \text{ or } u = a, \\ 0, & \text{otherwise;} \end{cases}$
- $\binom{wa}{ub} = \binom{w}{ub} + \delta_{a,b}\binom{w}{u}$  where  $\delta_{a,b} = \begin{cases} 1, & \text{if } a = b, \\ 0, & \text{otherwise;} \end{cases}$

• 
$$\binom{ww'}{u} = \sum_{u=vv'} \binom{w}{v} \binom{w'}{v'}$$
.

Given a word u on A, we define on  $A^*$  the equivalence relation  $\gamma_{p,u}$  by

 $w\gamma_{p,u}w'$  if and only if  $\binom{w}{v} \equiv \binom{w'}{v} \mod p$  whenever  $u \in A^*vA^*$ .

Now, given an integer  $k \ge 0$ , we define on  $A^*$  the equivalence relation  $\gamma_{p,k}$  by  $\gamma_{p,k} = \bigcap_{|u|=k} \gamma_{p,u}$ . Thus

 $w\gamma_{p,k}w'$  if and only if  $\binom{w}{v} \equiv \binom{w'}{v} \mod p$  whenever  $|v| \le k$ . Note that for all  $w, w' \in A^*$  we have  $w\gamma_{p,0}w'$ . LEMMA 6.1 (Eilenberg [8]): The equivalence relations  $\gamma_{p,u}$  and  $\gamma_{p,k}$  are congruences of finite index on  $A^*$ .

LEMMA 6.2 (Eilenberg [8]): Let k be a positive integer and  $u \in A^*$ . If  $w \in A^*$ , then  $w^{p^{|u|}}\gamma_{p,u}1$  and  $w^{p^k}\gamma_{p,k}1$ .

*Proof:* If  $w \in A^*$ , then the following conditions are equivalent:

- $w\gamma_{p,k}1;$
- $\binom{w}{v} \equiv 0 \mod p$  whenever  $0 < |v| \le k$ .

We show the  $\gamma_{p,k}$ -equivalence of  $w^{p^k}$  and 1. For k = 1, the result holds trivially. We proceed by induction and assume  $0 < |v| \le k + 1$ . Then

$$\binom{w^{p^{k+1}}}{v} = \sum \binom{w^{p^k}}{v_1} \cdots \binom{w^{p^k}}{v_p},$$

where the summation extends over all factorizations  $v = v_1 \dots v_p$  of v. If for some  $1 \leq i \leq p$  we have  $0 < |v_i| < k + 1$ , then by the inductive assumption  $\binom{w^{p^k}}{v_i} \equiv 0 \mod p$  and the summand may be omitted. There remain summands with  $v_i = v$ ,  $v_j = 1$  for  $j \neq i$ . Each such summand yields  $\binom{w^{p^k}}{v}$  and there are exactly p such summands. Thus  $\binom{w^{p^{k+1}}}{v} \equiv 0 \mod p$  as required.

The quotients  $A^*/\gamma_{p,u}$  and  $A^*/\gamma_{p,k}$  are finite monoids by Lemma 6.1. Lemma 6.2 implies that  $A^*/\gamma_{p,u}$  satisfies the identity  $x^{p^{|u|}} = 1$  and  $A^*/\gamma_{p,k}$  the identity  $x^{p^k} = 1$ . Note that  $A^*/\gamma_{p,0}$  is the trivial group. If  $A = \{a_1, \ldots, a_r\}, A^*/\gamma_{p,1}$  is isomorphic to the set of all words of the form  $a_1^{e_1} \ldots a_r^{e_r}$  with  $0 \le e_i < p$  multiplying two such words through the addition of the respective exponents.

We now describe the \*-variety  $\mathcal{G}_p$  of sets defined by the pseudovariety  $\mathbf{G}_p$ .

LEMMA 6.3 (Eilenberg [8]): • The pseudovariety  $\mathbf{G}_p$  is generated by the groups  $A^*/\gamma_{p,k}$  for all integers  $k \ge 0$  and all finite alphabets A, or by the groups  $A^*/\gamma_{p,u}$  for all elements  $u \in A^*$  and all finite alphabets A.

•  $A^*\mathcal{G}_p$  is the boolean closure of the sets

$$\{w \in A^* \mid {w \choose u} \equiv i \bmod p\}, \ u \in A^*, \ 0 \le i < p.$$

Let k be a nonnegative integer and define the pseudovariety  $\mathbf{H}_{p,k}$  as the locally finite pseudovariety of groups generated by  $A^*/\gamma_{p,k}$  for all finite alphabets A. The \*-variety  $A^*\mathcal{H}_{p,k}$  is then the boolean closure of the sets

$$\{w \in A^* \mid {w \choose u} \equiv i \mod p\}, u \in A^* \text{ with } |u| \leq k, 0 \leq i < p.$$

Informatique théorique et Applications/Theoretical Informatics and Applications

The pseudovariety  $\mathbf{H}_{p,0}$  is the trivial pseudovariety  $\mathbf{I} = \mathbf{V}(x = 1)$ . Since  $\mathbf{I}$  is the unit element for the semidirect product operation on pseudovarieties of monoids, we have  $\mathbf{J}_1 * \mathbf{H}_{p,0} = \mathbf{J}_1 = \mathbf{V}(x^2 = x, xy = yx)$ .

Now, let k be a positive integer. A list  $a_1, \ldots, a_i$  of elements of A is  $\gamma_{p,k}$ -circular on A if  $\binom{a_1 \ldots a_i}{v} \equiv 0 \mod p$  whenever  $0 < |v| \leq k$ , but no nonempty proper prefix w of  $a_1 \ldots a_i$  satisfies  $\binom{w}{v} \equiv 0 \mod p$  for every  $0 < |v| \leq k$ . For example, a, b, b, a, a, b, b, a is a list in  $\{a, b\}_{\gamma_{2,2}}$ .

If k and r are positive integers, we write  $\Sigma_{p,k}^r$  for the set consisting of the identities

$$x^{2p^k} = x^{p^k},$$

(7) 
$$x^{p^k}y^{p^k} = y^{p^k}x^{p^k},$$

together with all the identities of the form

(8) 
$$(y_1 z_1^{p^k} \dots y_{i-1} z_{i-1}^{p^k} y_i)^2 = y_1 z_1^{p^k} \dots y_{i-1} z_{i-1}^{p^k} y_i,$$

where  $y_1, \ldots, y_i$  is a list in  $\{x_1, \ldots, x_r\}_{\gamma_{p,k}}$ . We write  $\Sigma_{p,k}$  for  $\bigcup_{r \ge 1} \Sigma_{p,k}^r$ .

Continuing with the above example, the identity  $x^2 = x$  where

$$x = x_1 z_1^{2^2} x_2 z_2^{2^2} x_2 z_3^{2^2} x_1 z_4^{2^2} x_1 z_5^{2^2} x_2 z_6^{2^2} x_2 z_7^{2^2} x_1,$$

belongs to  $\Sigma_{2,2}^2$ .

For  $r \geq 1$ ,  $\Sigma_{p,k}^r \subseteq \Sigma_{p,k}^{r+1}$ . This follows from the fact that if  $A \subseteq B$ , then  $A_{\gamma_{p,k}} \subseteq B_{\gamma_{p,k}}$ .

COROLLARY 6.1: The pseudovariety  $\mathbf{J}_1 * \mathbf{G}_p$  is ultimately defined by  $\Sigma_{p,k}, k \geq 1$  or a monoid is in  $\mathbf{J}_1 * \mathbf{G}_p$  if and only if it satisfies  $\Sigma_{p,k}$  for all k sufficiently large.

*Proof:* By Theorem 5.1, the pseudovariety  $\mathbf{J}_1 * \mathbf{H}_{p,k}$  is defined by  $\Sigma_{p,k}$ . Now, the semidirect product operation on pseudovarieties commutes with directed unions [3]. We get  $\mathbf{J}_1 * \mathbf{G}_p = \mathbf{J}_1 * \bigcup_{k \ge 0} \mathbf{H}_{p,k} = \bigcup_{k \ge 0} \mathbf{J}_1 * \mathbf{H}_{p,k} = \bigcup_{k \ge 1} \mathbf{J}_1 * \mathbf{H}_{p,k}$  and the result follows.

#### REFERENCES

1. J. ALMEIDA, Semidirect products of pseudovarieties from the universal algebraist's point of view, *Journal of Pure and Applied Algebra*, 1989, *60*, pp. 113-128.

#### F. BLANCHET-SADRI

- 2. J. ALMEIDA, On iterated semidirect products of finite semilattices, *Journal of Algebra*, 1991, *142*, pp. 239-254.
- 3. J. ALMEIDA, Semigrupos Finitos e Álgebra Universal (Institute of Mathematics and Statistics of the University of São Paulo, 1992), Finite Semigroups and Universal Algebra (World Scientific, Singapore, 1994).
- 4. C.J. ASH, Finite semigroups with commuting idempotents, *Journal of the Australian Mathematical Society*, 1987, 43, pp. 81-90.
- 5. F. BLANCHET-SADRI, Equations on the semidirect product of a finite semilattice by a  $\mathcal{J}$ -trivial monoid of height k, RAIRO Informatique Théorique et Applications, 1995, 29, pp. 157-170.
- 6. F. BLANCHET-SADRI and X.H. ZHANG, Equations on the semidirect product of a finite semilattice by a finite commutative monoid, *Semigroup Forum*, 1994, 49, pp. 67-81.
- 7. S. BURRIS and H.P. SANKAPPANAVAR, A Course in Universal Algebra (Springer-Verlag, New York, 1981).
- 8. S. ELLENBERG, Automata, Languages, and Machines, A (Academic Press, New York, 1974), B (Academic Press, New York, 1976).
- 9. S. EILENBERG and M.P. SCHUTZENBERGER, On pseudovarieties, Advances in Mathematics, 1976, 19, pp. 413-418.
- 10. C. IRASTORZA, Base non finie de variétés, in STACS'85, Lecture Notes in Computer Science (Springer-Verlag), Berlin, 1985, 182, pp. 180-186.
- 11. S. W. MARGOLIS and J. E. PIN, Inverse semigroups and varieties of finite semigroups, *Journal of Algebra*, 1987, *110*, pp. 306-323.
- 12. J.E. PIN, Variétés de Langages Formels. (Masson, Paris, 1984), Varieties of Formal Languages, (North Oxford Academic, London, 1986 and Plenum, New York, 1986).
- 13. J.E. PIN, On semidirect products of two finite semilattices, *Semigroup Forum*, 1984, 28, pp. 73-81.