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A SYNTACTIC CHARACTERIZATION OF BOUNDED-RANK
DECISION TREES IN TERMS OF DECISION LISTS (*)

by Nicola GALESI (>

Abstract. - We define syntactically a sub-class of décision lists ftree-like décision lists) and we
show its équivalence wiîh the class ofbounded rank décision trees. As a by-product, the main theorem
provides an alternate and easier proof of the Blum 's containement Theorem [1]. Furthermore we give
an inversion procedure for Blum's dérivation of a décision listfrom a bounded rank décision tree.

Résumé. - Nous définissons syntactiquement une sous-classe de listes de décision (tree-like
décision lists) et nous montrons son équivalence avec la classe des arbres de décision de rang
borné. Comme sous-produit, le théorème principal fournit une preuve alternative et plus simple
du Théorème d'inclusion de Blum [1]. En plus, nous donnnons une procédure d'inversion pour la
dérivation de Blum d'une liste de décision à partir d'un arbre de décision de rang borné.

1. INTRODUCTION

Décision lists have been introduced by Rivest in [3] as a représentation
of boolean functions. He showed that ^-décision lists, Le. décision lists in
which any term has at most k literals, are (1) a generalization of k-CNF,
k-DNF and of depth-fc décision trees and (2) are polynomially learnable
under PAC model. [2] showed that constant rank décision trees are also
polynomially PAC learnable and [1] showed that rank-A; décision trees are a
sub-class of ^-décision lists, thus providing to an improvement of the resuit
of [2] since constant rank décision trees can be polynomially PAC-learned
using Rivest's algorithm for ^-décision lists as subroutine.

Hère we define a sub-class of décision lists - the class of tree-like décision
lists. For the lists of this class we define the rank measure and we show that
the class of rank-& décision trees is equivalent to the class of rank-& tree-like
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150 N. GALESI

décision lists. As a by-product of Theorem 3.1, we provide an alternate
proof of Blum's containement theorem.

In the final section we give an algorithm such that given a décision list
L it builds a corresponding décision tree. Also when L is the list that the
main Theorem of [1] produces when applied to a rank-A; reduced décision
tree T, it allows us to recover exactly T.

2. PRELIMINAIRES

Let Vn be a set of n boolean variables v\, V2,. . . , vn. A literal l{ dénotes a
variable Vi or its négation. Boolean constants are denoted by a, 6,. . . A term
or monomial t is a conjunction of literals. Terms are supposed to be strings of
literals and we refer to a prefix of length A: of a term t as the term built from
the conjunction of the first (from left to right) k literals of t, with k < \t\.

A décision list L on a family {F{} of boolean fonctions over n variables
is a séquence (Fi, 6i), •..., (jPm_i,6m_i), (1, 6m), with m > 0. On input
x e {0, l}n, it computes the boolean function fi defined as bj where j is
the least number less than m - 1 such that Fj{x) — 1, if such j exists,
and bm otherwise. Here we limit the boolean functions Ft to monomials on
Vn like in [3]. L is a k-decision list if for each monomial t, \t\ < k. The
length jLj of a décision list L is the number of monomials. A couple of the
form (t,a) will be called item and by (t,a)i we dénote the z-th item in L.
Given L — (ti, 6 i ) , . . . , (tm-i? fcm-i), (1, bm) and a literal £ we dénote by
(M L) the list (IA t i , b i ) , . . . , (M t m _ i , 6m_i), (£, 6m).

A décision tree T is a binary tree such that the internai nodes are labelled
with a variable of Vn , the leaves are labelled with boolean constants and
each right (respectively left) are is labelled with 1 (respectively 0). Note that
the same variable can label several internai nodes on the same path; if there
is no such répétition, then the tree is said to be reduced. The boolean function
JT computed by T is defined in the following way: if T is a constant a then
fT = a, otherwise if T = {vuTuT2), then fT - (ViA /rx)V (^A f T l ) .

The rank r(T) of a décision tree T is the height of the largest complete
binary tree that can be embedded in T. It is defined by:

{ 0 if T = a

max(r<ri),r<T2)) if T - K T x , ^ ) and r^) jL r(T2)
r(Ti) + 1 if T = (vi,TuT2) and r(Ti) = r(T2)

The size \T\ of a décision tree T is the number of its internai nodes. We
refer to 7/~ as the class of rank k décision trees.
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3. MAIN RESULT

First we define the class £*. of tree-like décision lists with rank k, proving
some key properties they satisfy. Then we show the équivalence between
Ck and Tjfc.

3.1. Tree-like décision lists

To reader's convenience we state the Lemma (proved below) that
guarantees the soundness of the définition of tree-like décision list.

LEMMA 3.1: Given a tree-like décision list L, with \L\ > 1, there exists a
unique décomposition of L in (£A Li) and L<i such that L — (£A LI) ,1,2,
and Li and L% are tree-like décision lists.

DÉFINITION 3.1: A tree-like décision list (tdl) is defined inductively by:

• (l,a) is a tdl for any a G {0,1};

• given two tdl's Li and L2, the décision list (£A Zi) , L2 is a tdl for
any literal L

The rank p(L) of a tdl L is 0 if L = (1, a), and is obtained from p{L\)
and p{L2)y as for the décision trees, otherwise. Ck is the class of tdl's
having rank k.

Observe that a rank-fc tdl is not necessarily a A;-decision list. For example,
the 3-decision list {{v\ A ̂ 2 A v$, 1), (vi A v2i 1), (vi, 1), (1,0)) has rank 1.

It is easy to see that in a tdl L of length greater than 1 there is always
a first item having a term t such that \t\ ~ 1 (so t = £) and all tj's in the
previous items of L, if any, start with £ and have length at least 2. This
observation allows us to prove the key property (Lemma 3.1) of the tdl's,
namely: from a tdl L, there is a unique way to recover the two sub-tdl's Li
and L2 and the literal £ that define it.

Proof of Lemma 3.1: The décomposition of L is as follows:

• Starting from the leftmost item of L, search for the first term t such
that |*| = 1;

• define (£A LI) by taking all the items of L up to i, define L2 as the
remaining items of L.

Suppose that this décomposition is not unique so that L can be written
as (£fA L j ) , ^ . By hypothesis, by the décomposition and by the previous
observation we have that £ and £! must be the same iiteral and they must be
in the same item of L. Since the items in {£!A L^^L^ and in (£A
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152 N. GALESI

are the same, it follows immediately that L'2 — L2 and therefore L[ — Li.
So the décomposition of L with respect to its sub-tdl's is unique. D

We define the boolean function </>/, associated with a tdl L in terms of the
tree structure as follows: <J>L = a if L ~ (1, a) and <J>L — (£A </>LX)V (IA (/>L2)

otherwise. Then the previous property allows us to show that the boolean
function / j , computed by L is <pL-

LEMMA 3.2: For any tree-like décision list L, f^ = <f>i,.

Proof: By induction on \L\. Suppose \L\ > 1, since if \L\ = 1 the
result is trivial. By Lemma 3.1 we find uniquely £,L\ and L2 such that
L = (£A L I ) , L 2 and by inductive hypothesis <^. = / L , for i — 1,2. If
£ = 1, then ƒ& — fLl = ^ j ^ , since the last term of Li is the true term.
On the other hand, if £ — 0, then all terms in (£A LI) are falsified and so
fL = h 2 = <f>L2. So fL = (£A 4>Ll)y {£A <j>L2) = <j>L. D

3.2. Equivalence result

THEOREM 3.1: For any décision tree T G Tu* there is an equivalent tdl
L G Ck> moreover L is k-decision list and and the size of L is equal to the
number of leaves of T.

Proof: By double induction on the height and on the rank of T. If r(T) = 0
and T — a, then L = (1, a) and the result is immédiate. Now, Let r(T) = k
and suppose that £ is the literal at the root of T and that T\ and T2 are
respectively the right and the left sub-trees of T. By définition of rank at
least one between T\ and T2 has rank at most k — 1. Assume without loss
of generality that T\ has this property. Let L\ and L2 be the two tdl's
associated respectively with T\ and T2, having their same rank and granted
by the inductive hypothesis. The list L we associate with T is therefore
(£A L I ) , L 2 . Thus r(T) = p(L) and fx = fh since by inductive hypothesis
we have r{Ti) = p(Li) and / r . = /£,i for i = 1,2. Observe that the role of
Li and L2 is compulsory if we want to obtain a fc-decision list. D

Observe that the proof of this Theorem, suggested by one of the Référées,
implicitly defines another way to obtain Theorem 1 of [BI]. Here we give a
sketch of its original proof since it will be useful in the next section.

THEOREM 3.2 ([1]): For any décision tree TET^ofm leaves there exists
an equivalent k-decision list of size at most ra.

Proof: By induction on ra, If m — 1 or ra = 2 the result is easy. Suppose
m > 2, observe that if r(T) = k, then there is a path of length at most k
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ending in a leaf a. Consider the item (t, a) where t is the term associated
to this path and consider the tree T — T -t obtained by by-passing T with
respect to t, Le. eliminating the node in T corresponding to the last variable
in t and attaching the brother sub-tree of the leaf a to the node above it.
Since T has at most m - 1 leaves, by inductive hypothesis we have that
L r̂ is the list associated to T. The list L is therefore (i, a ) , ! ^ . Since the
length of each term is bounded by the rank of T, L is a ^-décision list;
and, since we repeat the above procedure for each leaf in T, the length of
L is at most ra, D

The reverse inclusion is given by the following Theorem.

THEOREM 3.3: For any tdl L E £&, there is an equivalent décision tree
T e Tk:

Proof: By induction on |L|. If |L| = 1, then L = ( l ,a) so T = a.
If \L\ > 1, then by Lemma 3.1 we can identify uniquely £9 L\ and L2
such that L = (£A L\),1,2. Given T\ and T2 associated respectively with
Li and L2, we build the tree T = (^,Ti,T2) according to the sign of £.
Then r(T) = p(L) and / T = fh since by inductive hypothesis we have
r{Ti) = p{Li) and fT% = fLz, for i = 1,2. D

Given L € £^ the number of steps required to build T G 7^ is
O(|L| log |L| + (|L| -2 f c)2). To see this we first discuss the case in which T is
a complete binary décision tree of depth k, then we consider the gênerai case.

Consider the algorithm implicitly defined by the previous Theorem sub-
divided in phases as follows. At the first phase we search for the first term
in L from the left having size 1, in |L| items, using the décomposition
algorithm of Lemma 3.1. We have thus identified the literal at the root of
T and the two sub-tdl's L\ and L2 of L. At the second phase we search
sequentially in L\ and L2 for two terms of size 1 in only \L\ — 1 items, since
\Li\ + IL2I = \L\ and we can exclude from the search the term identified at
the previous phase. In gênerai, at the j-th phase, we search for 23~x terms
of size 1 in (|L| - (2 ' - 1 - 1)) items.

Observe that af ter j phases such that Yli-o^1 ~ l-̂ l w e have identified
all the terms in L. Thus the number of phases is j = O (log |L|). The total
number of steps required to build (a binary complete décision tree) T is
Eï= i ( |£ | - (22"1 - 1)) an<* *is is O(|L|log|L|).

Observe that if T E 7^, then a complete binary tree Tc of depth jfc is always
embedded in T. This means that in the gênerai case of a not necessarily
complete décision tree T E 7^, at some point the algorithm will recover
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Tc. By previous observation, this part requires at most O(\L\ log |L|) steps
and éliminâtes 2k items from L. For the remaining \L\ — 2k items in L
we can only say that in each phase the algorithm éliminâtes at least one
item. So in the worst case this second part requires O((|L| — 2k)2) steps.
Therefore the total number of steps is O(\L\ log \L\ + (\L\ - 2fc)2). Observe
that when L corresponds to a complete décision tree our algorithm runs in
time O(|L|log|L|).

As remarked in Lemma 1 of [2], for any décision tree T, r(T) <
log(|T| + 1) since the smallest décision tree of rank k is the complete binary
tree of depth k. This means that a décision tree of size n can be represented
by a tdl L e £[iog(n+i)] • On the other hand, since the minimal décision tree
Computing the parity function over n variables requires a complete binary
décision tree with 2n leaves, the minimal tdl Computing the parity function
belongs to Cn but must have length no less than 2n.

Moreover it is obvious that a fe-rank tdl can be represented by a fc-decision
list (Theorems 3.3 and 3.2). For the reverse inclusion we can only say that,
since a fc-decision list L has a trivial représentation as a décision tree of
size < fcl-^'l, then L can be represented by an equivalent tdl L1 G £ r in -.

but of length lLl

4. RECOVÉRING BOUNDED RANK REDUCED DECISION TREES

The procedure converting a rank k tdl into an equivalent rank-fc décision
tree is straightforward. On the other side recovering a rank-fc décision tree
from the fc-decision list produced by Blum's procedure requires some more
work. In this section we present an algorithm, Ree-Tree, to recover décision
trees from décision lists. Moreover if Lx is the décision list produced by
Theorem 3.2 when applied to the reduced décision tree T we have that
Rec-Tree(LT) = T.

Let path(T) be the set of terms associated with paths of T. Let
t — li A . . . A îk be a term in path(T), ending with leaf a. In order to view
T as in Part 1 of Figure 1, for each variable in t we deflne +, — G {0,1}
according to the sign (respectively the negated sign) of 1% in t . Moreover
if T = {vi,TuT2) we dénote ï i by Tz+, T2 by Tl~ and (Ti+)j~ by
Tî+J~ (with + and - submitted to the restrictions above). A simple relation
between T and T — T — t is given by the foliowing Remark.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Figure! . - Part 1: the décision tree T wrt t = ^ A . . . A 4 ;
Part 2: the décision tree T = T - t wrt t.
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REMARK 4.1: Let T be a décision tree as in Part 1 of Figure 1 and let
t e path(T) be a term l\f\ . . . A 4 with 1 < k < r(T) ending with leafa:

• if \t\ = 1, then Ti = T;

• if \t\ > 1, then for any 1 < % < k - 1, Ti = Y1+2+'"{t~1)+l~ and
l + 2 + ( f c ) + ( ) +

On a given décision list L, Ree-Tree works as follows: at the first step it
recovers the constant décision tree T\ from the default term of L; at the i-th
step it recovers T% by: (1) taking the (|L| —i + l)-th item (t,a)\L\_i+i of
L\ (2) building the trivial décision tree consistent with the term t and the
constant a and putting the tree Tj_i, recovered at the previous step, at the
unused nodes of this tree; (3) reducing each one of the T2_i's according to
the path folio wed to reach it.

In what follows we provide more details about the algorithm. In order
to have a more efficient réduction step and to simplify the proof of the
theorem we merge the second and the third step, reducing the.Tj_i's' as
soon as they have to be attached to a node and working at each node on
the previously reduced 7ï_i.

Let sgn(£,t) and nsgn(i^t) be two functions Computing respectively the
sign and the negated sign of £ in t and let root(T) be a function giving the
variable at the root of T. Consider the following sub-routines:

1. BTV (Build a Tree wit to a Variable), that takes as inputs a variable
Vi, a term t and two décision trees T\ and T<i and outputs the tree
T = (4,Ti,T2) according to the sign of Vi in t\

2. RT (Reduce Tree), that takes as inputs a variable vu sg-E. {0,1} and
a décision tree T and outputs the décision tree T* as follows:
if (T = a) or (Root{T) # v%)
then T* = T;
else T* is the sub-tree of T chosen according to sg\

3. BTT (Build Tree wrt a Term), a recursive sub-routine that takes as
input an item of the form (£, o) and a décision tree T, outputs the
décision tree T* as follows:
if \t\ = i

then T* = BTV(t=\t,a,T);
else

T+ = RT(t=\sgn(t=\t),Ty,

T~ = RT(t^ ,nsgn{t=\t),T);

T* = BTV(t=1,t,BTT((t>1,a),T+),T-y,

Informatique théorique et Applications/Theoretical Informaties and Applications



A SYNTACTIC CHARACTERIZATION OF BOUNDED-RANK DECISION TREES 157

4. Finally Rec-Tree, that takes as input a décision list L, outputs a décision
tree T, defined recursively as follows

if L = ( l ,a)

then T = a;

else T = BTT{{t,a)i,Rec-tree{L - (t,a)i));

Figure 2. - The output of BTT on inputs t = i\A . . . A 4 and T = T -L

THEOREM 4.1: For <my reduced tree T e Tf~, Rec-Tree(LT) outputs T in
O(\L\k) steps.

Proof: By induction on the number m of leaves of T. Let m > 1,
since the case m = 1 is immédiate by définition of Ree-Tree. Let
t — i\/\ . . . A ̂  G path(T) be the term chosen ending with leaf a and let
T = T - i . By inductive hypothesis Rec~ Tree(L^) = T and by Theorem 3.2
LT = {t,a),LT. The theorem follows showing that BTT{(t,a),T) = T
and this is obtained by cases on |£|: if |t| = 1, then t — lu for some t^.
Since V& is the root label of T and T is a reduced tree, then Vk does not
occur as label of any node of T (so we have no need to reduce it in BTT),
By définition of BTV we obtain T. If, otherwise, t — t\/\ ...Al^ with
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k > 1, then the result follows by Remark 4.1 observing that, in this case,
BTT outputs the tree of Figure 2.

Observe that if T E 7&, then every term in LT has length bounded by k,
so for each term in L, BTT calls itself at most k times. Since Ree-tree calls
BTT \L\ - 1 times, the total number of steps to output T is 0{\L\k). D

Observe that Ree-tree can be used to recover décision trees from any
décision list. Suppose that we modify Ree-tree by eliminating the réduction
sub-routine, and that we run the modified algorithm on a fc-decision list L.
It is easy to see that in O(\L\k) steps, Ree-tree outputs a décision tree T
consistent with L of depth < k\L\ but of size < /clLL On the other hand,
supposing that k\L\ ^> \Vn\ and that the minimal décision tree consistent
with L has size, for example, polynomial in \L\, it could be interesting
to study under what kind of hypothesis and what kind of modifications of
Ree-tree, such a décision tree can be obtained, using, for istance, a fully
reducing subroutine that, for each variable in the currently analyzed term,
always explores the whole tree produced at the previous step.
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