On lindenmayerian rational subsets of monoids
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 31 (1997) no. 1, pp. 81-96.
@article{ITA_1997__31_1_81_0,
     author = {Honkala, J.},
     title = {On lindenmayerian rational subsets of monoids},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {81--96},
     publisher = {EDP-Sciences},
     volume = {31},
     number = {1},
     year = {1997},
     mrnumber = {1460458},
     zbl = {0876.68066},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1997__31_1_81_0/}
}
TY  - JOUR
AU  - Honkala, J.
TI  - On lindenmayerian rational subsets of monoids
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1997
SP  - 81
EP  - 96
VL  - 31
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1997__31_1_81_0/
LA  - en
ID  - ITA_1997__31_1_81_0
ER  - 
%0 Journal Article
%A Honkala, J.
%T On lindenmayerian rational subsets of monoids
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1997
%P 81-96
%V 31
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/ITA_1997__31_1_81_0/
%G en
%F ITA_1997__31_1_81_0
Honkala, J. On lindenmayerian rational subsets of monoids. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 31 (1997) no. 1, pp. 81-96. http://www.numdam.org/item/ITA_1997__31_1_81_0/

1. J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, 1979. | MR | Zbl

2. K. Culik Ii, New techniques for proving the decidability of equivalence problems, in: T. Lepistö and A. Salomaa (eds.), Automata, Languages and Programming, Springer, Berlin, 1988. | MR | Zbl

3. A. Ehrenfeucht and G. Rozenberg, On proving that certain languages are not ETOL, Acta Inform., 1976, 6, pp. 407-415. | MR | Zbl

4. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, 1980. | MR | Zbl