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ON FREE INVERSE MONOID LANGUAGES (*) (**)

by Pedro V. SILVA C1)

Communicated by C. CHOFFRUT

Abstract. — This is a study on the class of FIM(X)-languages and its important subfamily consisting
of inverse automata languages (i-languages). Both algebraic and combinatorial approaches are
used to obtain several results concerning closure operators on (X U X " 1 ) * -languages, including
a classification of FIM(X)-languages by i-languages. In particular, it is proved thaï the i-closure
of a recognizable (X U X—1)* -language is at most deterministic context-free. Infinité trees are
an essential tool in this process, and they are also helpful in producing counterexamples for other
closure problems. Applications to X*-languages are also produced, involving particular classes
of codes.

Résumé. - Nous étudions la classe des langages dans FIM(X) et la sous-famille importante des
langages à automates inverses {^langages). Les approches algébrique et combinatoire sont utilisées
pour obtenir plusieurs résultats concernant la fermeture par certains opérateurs des langages de
{X U X " 1 ) * et entre autre une classification des langages des FIM(X) par les i-langages. En
particulier, il est prouvé que la i-fermeture des langages reconnaissables de (X U J " 1 ) * est au
plus algébrique déterministe. Les arbres infinis sont un outil essentiel dans cette démarche et ils
sont aussi utiles pour produire des contre—exemples pour les autres propriétés de fermeture. Des
applications aux langages de X* sont aussi exhibées dont des clases particulières de codes.

1. INTRODUCTION

The first connections between inverse semigroup theory and automata
theory are due to the work of W. D. Munn [11], who developed a description
of the free inverse semigroup in tenus of finite labelled trees which turned
out to be finite automata. Unfortunately, this innovative approach had no
immédiate followers and purely algebraic methods dominated the theory of
inverse semigroups for years to corne.
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However, the work of J. B. Stephen [15] in the late eighties revived the
spirit of Munn's work and boosted combinatorial inverse semigroup theory as
one of the fashionable subjects in algebra, attraeting the interest of computer
scientists, group theorists, logicians and others. His work related the study
of présentations of inverse monoids to a certain class of automata called
inverse. These are trim deterministic automata on a dual alphabet of the
form X U X~1, and must satisfy a duality condition on their edges. Inverse
graphs (underlying graphs of inverse automata) were already a major tooi
in other areas of mathematics such as combinatorial group theory [13],
and inverse automata have now acquired great relevance in several other
domains as well.

Stephen's techniques produced great developments in recent years and
many of them are due to the work of S. W. Margolis and J. C. Meakin
([6] to [10]). Their methods and results brought together semigroup theory,
automata theory, combinatorics and logic, and created a new interest for
inverse monoids inside computer science itself.

This new emphasis on combinatorial methods in the study of inverse
semigroups forced considération of free inverse monoid languages, since the
language of an inverse automaton can be viewed as a free inverse monoid
language. This study examines free inverse monoid languages from an
automata theoretic point of view. We answer several standard questions
concerning this class of languages, and consider various decidability
questions. Some of the methods and results are related to previous work by
the author [14]. It is expected that free inverse monoid languages will have
applications to classical language theory, and we provide some évidence
for this assertion.

2. PRELIMINARIES

The reader is assumed to be familiar with elementary language and
automata théories, [1], [2] and [3] being standard références. In particular,
we assume some knowledge about RecM, the class of all recognizable
languages L Ç M, where M is an arbitrary monoid [1],

Let M be a monoid. A subset L Ç M is said to be an M-language. Given
an M-language L, the syntactic congruence of L is defined as follows: for
all u9 v e M, u ~L v if and only if

Va;, y G M, xuy e L <£> xvy e L.
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We say that L G RecM is and only if M / ~ L is finite. Alternatively,
L G RecM if and only if there exists a homomorphism <f) : M —> N into a
finite monoid N such that L = Lfy^T1. It is a well-known fact that RecM
is closed for the Boolean operators (union, intersection, complement).

The reader is also expected to know elementary concepts and results
regarding finite E-automata and languages in RecY** [2], where S dénotes
a finite alphabet and S* dénotes the free monoid on E. Such concepts
and results should include determinism, trimness, the subset construction,
the construction of the minimal automaton, Kleene's Theorem, etc. We
use the following notation for automata: a E-automaton is a quadruple
A ~ (Q, z, T, JE), where Q is a nonempty set, i G Q, T Ç Q and
E Ç Q x E x Q] the S-language recognized by A is denoted by L {A)\ for
every p G Q, we dénote the S-language L (Q, p, T, i?) by p " 1 T.

Now we introducé the basic définitions concerning inverse monoids and
free inverse monoids. For further details, see [12], or [4] for gênerai
semigroup theory.

A monoid M is said to be inverse if

V u G M, 3\v € M : uvu = w and wt; = v.

We say then that v is the inverse of u and dénote it by u~1. Alternatively,
M is inverse if and only if

V u G M, 3 V É M

both hold, where £ (M) dénotes the set of idempotents of M. It follows
easily that, in an inverse monoid M, (m;)"1 = v~l u"1 and {u~l)~l — u
for ail u, v £ M.

Let M be an inverse monoid. A subset TV Ç M is said to be an inverse
submonoid of M if iV is a submonoid of M and u-1 E N for every u G N.
Now let L be an arbitrary subset of M and let L"1 = {n"1 : u G L}.
It is easy to see that (L U L"1)* is the smallest inverse submonoid of
M containing L. We say that (L U L"1)* is the inverse submonoid of M
generated by L and dénote it by {L}.

Two relations play an important role throughout this paper. The équivalence
relation K on M is defined by

ulZv <^> uu~ — vv~~ .
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The natural partial order of M is defined by

u < v 4=> u = uu"1 v.

In fact, this can be shown to be equivalent to having u = eo v\ e\ . . . vn en

for some eo, . . . , en e E (M) and v\, . . . , vn G M such that ui . . . un — v.
It follows easily that

u < v, v! < v1 => uv! < W,

u <v ^ u~l < v~x.

Such facts will be used later with no further comment.
Now let X dénote a finite alphabet. We associate to X a set of formai

inverses X~l = {x~1 : x G X} disjoint from X. We extend the operator - 1

to ( l U F 1 ) * inductively by defining {x~x)~l — x for every x e X and
by using the rule (uv)"1 — v-1 u"1 . The free inverse monoid on X [12] is
defined as the quotient (X U X~1)* /p, where p dénotes the congruence on
(X U X" 1 )* generated by the relation

{{uvTlu, u) : ue ( l U F 1 ) * }

VJ {{uu~l vv~l, vv^uu'1) : u,v£ ( l U F 1 ) * } .

The congruence p is known as the Vagner congruence on (X U X"1)* and
we dénote the free inverse monoid on X by FIM(X).

The projection homomorphism (X U X"1)* —> FIM (X) : u i—> up is
denoted by 0. For technical reasons, we shall favour the use of u6 instead
of up.

3. F/M(X)-LANGUAGES

Some results in this section are probably well-known but, since no
appropriate références could be found, we include Ml proofs for the
sake of completeness. It is essential to relate F/M(X)-languages to
(X U X"~1)*-languages, and the next results establish the basic connections.

LEMMA 3.1: Let L Ç FIM{X). Then

L e RecFIM{X)^L6-1 e Rec(X U X"1)*.

Proof: Suppose that L G RecFIM(X). Since recognizable languages are
closed under inverse homomorphism, it follows that L0~l G JRec(XuX~1)*.
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Conversely, suppose that L9~l G Rec(X U X"1)*. Suppose that u,
v e (X\J X"1)* are such that u ~LQ-I V. Then, for ali a, b G ( l u i " 1 ) * ,
we have (aO)(u9)(b0) G L & (aub) 9 G L o aub G L 0 " 1 <^ ai;6 G
L 0 - 1 <£> (avb)9 e L <& (a9)(v9)(b9) G L. Hence u9 ~Lv9 and since
~£<9-i has finite index, it follows that ~ L has finite index as well. Thus
L G RecFIM(X).

Given P Ç [X U X"1)*, we say that P is p-closed if P is a union of
p-classes (equivalently, P = P99~1).

THEOREM 3.2: Létf P Ç (X U X"1)*. The following conditions are
equivalent :

( i )P = L6~l for some L Ç FIM(X);

(ii) p Ç~P ;

(iii) (XUX"1)*/ ^ p is inverse and (x ^p ) " 1 = x~l ~p for every x G X;

(iv) P is p-closed.

Moreover, if P G #ec(X U X"1)*, fften L G RecFIM(X) in (i).

Proof: (i)=Kii). Suppose that P = LÖ"1 for some L Ç FIM(X). Let
(u, v) G p. Then, for ail a, b G (X U X"1)*, we have aub £ P O aub G
L0-1 &{aub)6 e L & (a9)(u6)(b0) G L <s> {a9){v6){b6) e L &
avb G P Hence u ~p?; and p Ç~p.

(ii)=Kiii). Suppose that p Ç~ p . Then we can define a surjective
homomorphism (j> : FIM(X) —> (X U X" 1 )* / ^ p by (up)(j> = n ~ p
for ü G (X U X"1)*. Since (X U X" 1 )* / ~p is a homomorphic image of
an inverse monoid, it must be inverse as well [4], and for every x G X,
we have (x ~p)~l = [(xp)^]"1 — \{xp)~l]<t) = {x~l p)<j) = x" 1 ~ p .
Thus (iii) holds.

(iii)=>(iv). Suppose that (X U X" 1 )* / ~p is inverse and (x ^ p ) " 1 —
a:"1 ~ p for every x G X. Then (u ^ p ) " 1 = u" 1 ^ p for every
u G (X U X"1)*. It follows that, for ail u, v G (X U X"1)*, we have
(uu~1u) ^p — u ^p and (mi"1

 T;^"1) ~ P — ( Î ; ^ " 1 WW"1) ~p and so every
~p-class is a union of p-classes. Since P is a union of ~p-classes, it follows
that P itself is a union of p-classes. Thus P = P99-1 and (iv) holds.

(iv)=»(i). Suppose that P = P99'1. Let L = P9. Then L9~l =
P99-1 = P.

The final remark follows from Lemma 3.1.
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COROLLARY 3.3: Given P G Rec(X U X"1)*, it is decidable whether or
not P = L9'1 for some L G RecFIM(X).

Proof: By Theorem 3.2, we only need to décide if condition (iii) in
the theorem holds for P. Since (X U l " 1 ) * / ~p is finite and effectively
constructible, we can cèrtainly décide whether or not ( l u i " 1 ) * / ~p is
inverse and (x ~p)~* — x~l ~p for every x G X.

4. /-LANGUAGES

In the last few years, inverse automata have become a very useful tool in
inverse semigroup theory [15]. They are naturally related to FIM(X) by the
Munn description [11], they play a major rôle in the study of présentations
[9], [14], and so languages recognized by these automata induce a subclass
of jF/M(X)-languages important in its own right.

A trim deterministic (X U X"1)*-automaton A = (Q, i, T. E) is said
to be inverse if

(p, x, q) eE&{q, x~\p) e E

holds for ail p., q E Q and x G X (duality of edges). If A is inverse, it
follows easily that L (A) is p-closed [15].

A language L Ç FIM(X) is said to be an i-language if L9~l = L(A)
for some inverse (X U X"1)*-automaton A. Sometimes we will refer to the
language of an inverse (X U X"1)*-automaton as an z-language too.

Given a language L Ç FIM(X), we say that L is closed if

V u e L, Vv G FIM(X), v>u =^ v EL,

and we say that L is elastic if

Va, 6 G L, aa -1& G L.

THEOREM 4.1: Let L Ç FIM(X). Then L is an i-language if and only if
L is closed and elastic.

Proof: Suppose that L is an i-language. Then L6~l = L(A) for some
inverse (X U X"1)*-automaton A. Let u G L, v e FIM(X) be such
that v > u. Then u = uu~xv. Let vf G v6~l and u' G u9~l. Then
(v!v!~l v') 9 = uu~l v = u and so u V " 1 vf labels a successful path in A.
Since A is deterministic, v!v!~l must label exactly one path starting at the
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initial vertex. Since A has duality of edges, that path must necessarily be a
loop. Therefore vf also labels a successful path in A, so vf G L (A) — LO'1

and v = vf 9 G L. Thus L is closed.

Now suppose that ap, bp G L for some a, 6 G (X U X" 1 )* . Then
a, b e L{A). Since A has duality of edges, aa" 1 must label a loop at
the initial vertex in A and so aa~l b labels a successful path in A. Thus
(a^)(a(9)-1(^) G L and L is elastic.

Conversely, suppose that L is closed and elastic. Let P = L9~1. We intend
to show that the minimal automaton of P, denoted by A — (Q, z, T, Ü7), is
inverse. Since A is minimal, A is certainly trim and deterministic and so we
only need to prove duality of edges. Let (p, x, q) G E, with p, q G Q and
x G X U X " 1 . Since A is trim, there is a path in A of the form

t —> p —• q —> £ G T.

Hence wxt? G P, and since F = P69~1, we have n x o ; " 1 ^ G P. Since A
is deterministic, it follows that A has an edge (q. x" 1 , r) for some r G Q.
We want to show that r — p. Since A is minimal, this is equivalent to
p-lT = r~lT[2].

Let w G r~1T. Then uxx~1w G F and so (uxx~1w) p G L. Since
(tixx"1^) p = (uxx~1u~1) p(uw) p and L is closed, it follows that
(uw) p G L and so utu G P. Since A is deterministic, it follows that
w G p " 1 T and so r" 1 T Ç p " 1 T.

Conversely, let ^ G p~lT. Then u£ G P. Since uxv G P and L is
elastic, it follows that (uxvv~l x~lu~l uz) p G L. Now (uxx~lz)p >
(uxvv-1 x~l u~l uz) p and so (uxx~~l z) p G L, since L is closed. Therefore
uxrr"1 2 G P and we must have z G r" 1 T. Hence p~l T Ç r™1 T and so
r" 1 T = p*1 T, Thus A is inverse and L is an i-language.

It follows from the previous proof that L Ç FI M (X) is a recognizable
i-language if and only if L 0"1 is recognized by a finite inverse ( J u J " 1 ) * -
automaton. We dénote by iRecFIM (X) the class of all recognizable
z-languages of FI M (X).

For L Ç FIM(X), let

L^ = {v G F / M (X) : v > u for some u G L}.

It is immédiate that L^ is the smallest closed FIM (X)-language
containing L.

THEOREM 4.2: RecFIM (X) is the Boolean closure ofiRecFIM (X).
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Proof: Since iRecFIM (X) Ç RecFIM {X) and RecFIM (X) is closed
for the Boolean opérations, it follows that RecFIM (X) contains the
Boolean closure of iRecFIM {X).

Conversely, let L E RecFIM (X), Then there exists a finite inverse
monoid M and a homomorphism 4> : FIM(X) —> M such that
L = L^r1.

Let u E M. Obviously, u ^ ^ " 1 G RecFIM {X). We are going to show
that uw </>~a is an i-language.

Let v £ u^ 4>~l and let w E FIM(X) be such that w > v. Then
u?0 > v<f> > u and so u> G u^^»"1. Hence y,0"* <fi~l is closed. Now
suppose that a, b E u ^ ^ " 1 . Then a<p > u and 60 > u. It follows that
(aa~2 b)<f> > uvT1 u = u and so aa"1 b £ uu (j)^1. Therefore uw 0"1 is
elastic and, by Theorem 4.1, an i-language.

Thus ww 0 - 1 E iRecFIM {X) for all u E M.

Now L = Lct><t>-1 = U«€L« «0"1 = U ^ ^ K r ^ U ^ J ^ ^ " 1 ) ] -
Thus L belongs to the Boolean closure of iRecFIM (X) and the resuit
follows.

Now we are able to define the i-closure of a language L Ç FIM(X),
which we prove to be the smallest z-language containing L. Let

Now we have

THEOREM 4.3: Let L Ç FIM(X). Then L is the smallest i-language
containing L.

Proof: By définition, L is closed. Now let a, b E L. Then there exist
«1, . . . , Un+i, vi, . . . , vm+i E L with

a > (iti u^ 1 ) ...{un u~l)unjr\

a n d

6 > ( v i V Î 1 ) . . . ( ^

Thus

a a " 1 & > (u i u ^ " 1 ) . . . ( % w " 1

X . . . X (Ui UÎ^ivi VÏ1) . . . {vm V^)vm+l € L.
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Since L is closed, we have aa~l b G L and so L is elastic. By Theorem 3.1,
it follows that L is an i-language.

It is immédiate that L Ç L.

Finally, let 1/ be an â-language containing L. Since L Ç L', and L' is
elastic, it follows that

(|J uu^yLCL'.

Since V is closed, it follows that L Ç Lf and so L is in fact the smallest
z-language containing L.

Let Rx dénote the subset of ail reduced words of ( X u X " 1 ) * . We dénote
bu i : (X UX"1)* —> Rx the réduction map which assigns to every word u
in (X U X""1)* the corresponding reduced word ut. It is well-known that
Rx under the binary opération defined by (it, v) —> (uv) i constitutes a
description of F G (X), the free group on X. This perspective of Rx should
be kept in mind. Note in particular that every (free) subgroup of FG (X)
corresponds to a subset P Ç Rx which is closed under this binary opération
and formai inversion. This is the correspondence that should be kept in mind
when we refer to such a set P as a subgroup of Rx-

We dénote by F(X) the Cayley graph of FG(X) with respect to the
generators X U X " 1 . Therefore Rx is the set of vertices of F(X) and
(PÎ #) q) is an edge of F (X), with p, q € Rxi # G X U X" 1 , if and only if
q = (px) t. We fix 1 as the initial vertex. Since F (X) has duality of edges,
we can turn F (X) into an inverse automaton by assigning to it a set T of
terminal vertices: provided T is nonempty, our automaton will be trim, and
determinism follows in any case. Moreover, if we replace F (X) by one of
its nonempty connected subtress containing 1, say F, the resuit is still an
inverse automaton. This automaton will be denoted by (F, T), T denoting
a nonempty subset of vertices of F.

For every u G (X U X"1)*, we dénote by MT (u) (the Munn
tree of u), the finite connected subtree of F (X) defined by the path
beginning at vertex 1 and having u as its label. It is well-known that
{(MT(u), ut) : u G (X U X" 1 )*} , under the product defined by
(MT(u), UL)(MT(V), VL) — (MT (uv), (uv)t), constitutes a description
of FI M (X) [11]; in fact, it solves the word problem for p, since

up = vp o (MT(u), m) = (MT(v), VL).
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Now we can define MT (w) and WL for w G FIM (X) as being respectively
MT(u) and UL for some u G w6~l. It is easy to see that, for ail u,
v G FIM(X),

(i) uRv & MT{u) = AfT(v);

(ii) u > v <£> MT(u) is a subtree of MT {v) and ÎW = vi\

(iii)L ((MT(u), tu)) = u ^ " 1 -
A word u e ( l U X " 1 )* is said to be a Dyc/: word if m, = 1. We dénote the

language consisting of ail Dyck words of ( l u i " 1 ) * by Dx> The language
Dx is a well-known example of a context-free (X UX~1)*-language (CFL)
[1]. It is easy to see that, given u e {X U X"1)*, up G E[FIM(X)\ if
and only if u G Dx-

Now for P Ç (X U X"1)*, we define a connected subtree MT(P) of
T (X) to be the union of ail subtrees of the form MT(u), with u E P.
Finally, for L Ç FIM(X), we define MT (L) to be the union of all
subtrees of the form MT(w), with w G L.

THEOREM 4.4: Lef L Ç FIM(X) and let A = (MT(L), LL). Then A is
an inverse automaton and L(A) = L6~l.

Proof: It follows from previous remarks that A is inverse. Suppose
that w G L0"1 . Then tu G L((MT(w), WL)) and so iw G L(A). Thus
L0- 1 Ç L(A) and so L Ç [L(A)]0. Since [L(4)]0 is an i-language
containing L, it follows from the previous resuit that L Ç [L (A)] 6 and so
L6-1 Ç [ L ( A ) ] ^ " 1 = L(A).

Conversely, suppose that v G L(A). Since A = (MT(L), LL),
there exist u\, . . . , un G L such that v is in the language of
(MT(ui) U . . . U MT(un), Uni). But now v is in the language of
(MT (u\ u^1 . . . un-i u~\x un), (u\ u^1 ... un_i it"^ un) t) and so if
follows that v6 > uiu^1 . . . i tn- i ^ - i un» But ui uj" . . . u n - i u ü - i n^ ^
L and so, since L is closed, we obtain vp G L. Thus v G L 0 " 1 and the
theorem holds.

We note that, despite being inverse, the automaton A — (MT(L), LL) is
not necessarily minimal, any infinité recognizable FIM (X)-language being
a counterexample.

THEOREM 4.5: Let L be afinite FIM (X)-language. Then

(i) L is recognizable;

(ii) L is finite;

Informatique théorique et Applications/Theoretical Informaties and Applications



ON FREE INVERSE MONOID LANGUAGES 359

ö_1 = (MT(L), Lt);
(iv) L is an i-language if and only ifthere exisî an TZ-class R ofFIM (X)

and F Ç R such that L - Fu\

(v) if L — {u}y then L is an z-language if and only if u is reduced.

Proof: (i) For every n > 1, the subset In = {u G FIM(X) : MT (u)
has at least n vertices} is an idéal of FIM(X). The corresponding Rees
congruence rn on FIM (X) has In as one of its congruence classes, all the
others being singular, and so FIM (X)/rn is finite. Since L is finite, we have
L Ç FIM(X)\Im for some m > 1. Let <f> : FIM {X) -> FIM(X)/rm

dénote the projection homomorphism. It follows that L = L(jxf)~l and so
L G RecFIM(M),

(ii) We have L = [L (A)) 0, where A = (MT (L), Lu). It follows that Z is
contained in the subset F consisting of ail u G FIM (X) such that MT (u)
is a subtree of MT (L). Since L is finite, then F is. finite and so L is finite.

(iii) We know that XO'1 = X(A), where A = (MT(L), Lt), therefore
we only need to prove that A is a minimal automaton. Since A is inverse, it
is certainly trim and deterministic. By a well-known algorithm [2], we only
need to show that p~l T / q~l T for ail vertices p, q of A with p ^ q.
Let p, q be vertices of A.

Suppose first that there exists u G (X U X"1)* such that u labels a path,
say, from p, but u labels no path from q. Then ww"11; G p~~l T for some
t> G (X U X"1)* but uu-1 v $ q~x T, since tm"1 v cannot label a path
from q in A. Thus p ' 1 T =̂  g"1 T.

Now suppose that paths from p and paths from q produce exactly the same
labels. Let w be a reduced word labeling a path from p to q. We show by
induction that wn labels a path from p for every n > 1. It is true for n — 1.
Now suppose that tt;71 labels a path from p. Then w11 labels a path from q
and so w n + 1 labels a path from p. It follows by induction that wn labels a
path from p for every n > 1. We can write w = aca"1 for some words a,
c with c cyclically reduced, therefore acn a"1 is a reduced word labeling a
path from p for every n > 1. Since MT (L) is a finite tree, the length of a
reduced word labeling a path in A is clearly bounded. It follows that c—\
and so w ~ 1 and p = q. Thus A is minimal.

(iv) Suppose first that L is an z-language. Then L = L — [L (A)] 0, where
4̂ = (MT(L)) LL). Since L is finite, there exist M, UI, . . . , % G L

such that MT(L) = MT (u) and Lt = {^t, . . . , vmt,}. It follows
that L{A) = U " i M ( M T ( L ) , w ) ) = U™i L{{MT{u), vu)) -
U £ i £ ( (MT (m*"1 v,-), (uu-1^)*,)). Therefore L = [L(A)]0 =
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UiLi {uu~lv%Y = (U^i uu-1vt)". Since MT {uvT1 Vi) = MT{u) for
% — 1, . . . , m, it follows that the M " 1 ̂  are ail 7^-related.

Conversely, suppose that there exist an 7£-class R of FIM(X) and
F Ç R such that L — F w . Since L is closed by hypothesis, we only need
to show that L is elastic. Let a, b E L. Then there exist c, d £ F such that
a > c and 6 > d. It follows that aa"1 6 > ce"1 d = dd~l d = d G F. Thus
aa" 1 6 E F w ~ L and L is an z-language.

(v) Suppose that L — {u}. By (iv), {u} is an i-language if and only if
{u} = F w for some subset F of an j?-class of FI M (X). But then we must
have 1^1 = 1 and this yields F = {u} and {u} = uu. It is easy to see that
{u} = iiw if and only if u is reduced.

In gênerai, L E RecFIM (X) does not imply Z E RecFIM (X), as the
next example shows. We remark that LL = LL for every L Ç F / M (X).

EXAMPLE 4.6: Let X = {#, y} and let L = {xp) U {yp). Obviously,
we have (xp)6~l = (a; U o:"1)* E Rec(X U X" 1)* and so (xp) E
RecFIM (X). Similarly, (yp) e RecFIM (X). Since RecFIM (X)
is closed for union, it follows that L E RecFIM (X). We prove that
L ^ RecFIM (X) by showing that ^ does not have finite index.

Let m, k > 1 with m ^ k. Since L is elastic, we have (xm p)(x~m y) p E
L. On the other hand, (xk x~m y) L ̂  Lu — LL and so (a;* p)(x~m y) p g L.
Hence (xm p) ^ / (xk p) - ^ . It follows that FIM(X)/ ~£ is infinité
and so I ^ RecFIM (X).

5. CLOSURES FOR (Z u X^^-LANGUAGES

In this section we discuss the FIM (X)-languages PO and Pô for
P E iîec (X U J " 1 ) * . We shall be forced to consider far more gênerai classes
of languages than recognizable. We say that L Ç FIM(X) is context-
free (deterministic context-free, context-sensitive) if Lô"1 is context-free
(deterministic context-free, context-sensitive) [3]. Note that these définitions
are compatible with the concept of recognizability.

It is easy to see that P9 is recursive for every P E Ree (XuX" 1 )* . In fact,
given u E FIM (X), we have u E Pô if and only if Pfl (u9~l) # 0 . Since
{u} E RecFIM (X) by Theorem 4.5, we have uO'1 E Rec(XUX~l)\
But Rec(X U X" 1 )* is closed for intersection, therefore P n (nÔ"1) E
Rec{X U X" 1 )* and we can certainly décide whether or not this is empty.
It follows that we can décide whether or not u E PO and so Pô is recursive.
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However, PO does not have to be context-free, as the next example shows.

EXAMPLE 5.1: Let X - {x} and let P = x*. We show that P9 is not
a context-free FI M (X)-language, that is, P99~1 is not a context-free
(X U X'^Manguage.

Suppose that P90~l is a CFL. Since x* O"1)* x* G Rec{X U X" 1 )* and
the intersection of a CFL with a recognizable language is still a CFL [3], it
follows that Q = (P99~l) n [x* (x"1)* x*] is a context-free (X U X"1)*-
language. Since P99~l is the union of the languages of all inverse automata
of the form

/ 3 ci - ^ C2 . . . Cd_i -^ cd eT

for d > 1 (the dual edges are ommited), it is easy to see that Q =
{xm x~~n xk : m > n and k > n}. By the Pumping Lemma for CFLs [3],
there exists N > l such that, for every u G Q with \u\ > N, there exist
a, v9 w, z, b G (X U X"1)* satisfying

(i) vz ? 1;
(ii) | ̂ w :̂ | < Â ;

(iii) avwzb = u;
(iv) a^n ^^ n 6 G Q for every n > 0.

Take u = xN x~N xN G Q and let a, v, ty, ^, 6 satisfy the Pumping Lemma
conditions. If x~l occurs in v or z, it is easy to see that av2 wz2 b £ Q,
contradiction. On the other hand, if x~l does not occur in either v or z,
then awb $ Q, contradiction again. It follows that Q is not a CFL and so
P69~l is not a CFL either.

In this particular example, it is not dificult to show that P9 is
context-sensitive, since P99~l is the intersection of two context-free
(X U X^Manguages. Whether or not P9 is always context-sensitive is
an open question.

The remaining part of this section is devoted to the study of P9, the
i-closure of P. We can pro vide positive answers but some technical work
is required.

For every P Ç ( l u i ' 1 ) * , we define Ppr to be the (XuX"1)*-language
consisting of ail préfixes of words in P . If P G Rec(X U X" 1 )* , then it is
easy to see that Ppr G Rec(X U X" 1)* as well, just by allowing ail vertices
in the minimal automaton of P to be terminal.

Given an (X U X"1)*-automaton A = (Q, ƒ, T, E), we define L{ (A) to
be the language recognized by the (X U X"1)*-automaton (Q, / , Q, E).
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The words in Li (A) are said to label initial paths in A. Obviously, it is
always true that [L (A)]pr Ç Li (A). If A is trim, then the reverse inclusion
holds as well.

LEMMA 5.2: Let P, N be (X \J X"1)*-languages. Then ~P6 = M *ƒ and
on/y *ƒ P ^ = iVpr£, and P i =" iVt.

Proof: Let Q be an (X U X~1)*-language. It follows from Theorem 4.4
that QÖ is fully determined by MT (Q) and Qt. Since MT (Q) is a tree,
it is determined by its geodesics, where a geodesie means the shortest path
Connecting the initial vertex 1 to a certain vertex. Since MT (Q) has duality
of edges, it is immédiate that the set of labels of these geodesics is precisely
Qpr t. Thus PprL = Nprt and Pi = Ni together imply ~P6 = ~N9.

Conversely, suppose that PO = NO. Let u G Pprt. Then u = vt for some
v G Ppr. Hence v labels an initiaTpath in MT(P) and so in MT{P6) as
well. Since P6 = N6 and M r (N0) has duality of edges, it follows that
u — vi labels an initial path in MT(N9). Hence u labels an initial path
in MT {w\ wïl . . . wn w^1 wn+i) for some IÜI, . . . , wn+i G iV, n > 0,
and we can assume that such n is minimal. Since u is reduced and n is
minimal, it follows that u must label an initial path in MT (iun+i) and
so n G (wn+i)prt C iV^ri. Thus P^ri, C JV^r6. Similarly, we show that
Npr t ç pprL a n d s o pprL = Npr b

On the other hand, it follows from the définition that (Q9)L — Qt for
every (X U X~1)*-language Q9 hence Pu = (P0)t = (N0)L = Nt and the
lemma is proved.

Next we present a slightly stronger version of Lemma 2.4 of [9], usually
related to Benois' Theorem [1].

LEMMA 5.3: Let P G Rec(X U X~r)* be nonempty. Then we can
effectively construct a finite deterministic (X U X"1)* -automaton A such
that L(A) = Pt and Li (A) - Ppri.

Proof: Let B = minp = (Q, i, T, E1). For all g, qf G Q, we dénote by
Lqjq* the set of labels of all paths in B from q to qf. We define

Ao = (Qo, ïo, Tb, EQ),

where Ç0 = [ Q x ( I U X"1)] U {z0}, T0 = T x ( I U X"1) (we add iQ if
PÏ 0) and £:0 - {((?, y), X, ((/, x ^ ^ i / G l U l - 1 , ! / / a;"1,

, ^ € Q, LM , H (x.-1) ^ 0} U {(»o, a?, (g', ar)) : x G X U X~\ q' G Q,
if«' n (xr1) £ 0}.
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It is a well-known f act that the Dyck language Dx = U" 1 is a CFL [1],
and so is xi~l = Dx%Dx for every x G X U X~l. Therefore it is always
decidable whether or not these languages intersect recognizable languages
such as P or Lq^q>, with g, g' G Q [3]. It follows that AQ is an effectively
constructible finite (X U X"1)*-automaton.

Let u G P P V Since 1 E Li (Ao) and 1 G Pprt trivially, we can assume
that u / 1. Then there exist xi, . . . , xn G X U X " 1 and ei, . . . , en,
en ^ ^ x such that u = x\... xn and ej. xi e2 . . . en xn e!

n labels an initial
path in B. Let

2 . . . —> qn~\ —> qn

be an initial path in B. We show that

is a path in AQ.

In fact, ei xi G L^qi yields (ÏQ, XI, (gi, xi)) G EQ. For every
j G {2, . . . , n - 1}, we have that XJ ^ xJ-i (since x\ .. ,xn is reduced)
and e j x j G Lq._uq.. It follows that ((gj_i, Zj-i) , XJ, (gj, x^)) G -Eb for
every j G { 2 , . , . , n - l } . Similarly, we prove that ((gn_i, x n _i) , xn ,
(gni xn)) G EQ and so u = xi . . . xn labels an initial path in AQ.

Therefore Ppr i Ç Lj (Ao). Now, if u G Pi-, with u = xi .. .xn just as
before, then we can assume that qn G T. But then (gn, xn) G To and so
u G L(Ao). Finally, if 1 G Pu, then D y Y n F ^ 0 and so i0 G To and
1 G L(AQ). It follows that Pi Ç L(AQ).

Conversely, let u G L{ (AQ). We can assume that u ^ 1, say u = xi . . . xn ,
with xi, . . . , xn G X U X~l. Then u must label a path in Ao of the form

ïO -^ (Cl, Xi) -4 (92, X2) . . • ^ (gn-lï Xn_i) ^> (gn , Xn).

It follows from the définition of EQ that x\ G L^qi i and that, for all
j G {2, . . . , n},xj / x~ix and Xj G Lq._lAjt. Denoting i by go, we can say
that there exist vi, ..., vn £ (X U X"1)* such that, for all j G {1, . . . , n},
Vj G Lq._uq. and^A = XJ. Nowv = vi .. ,vn labels a path in B fromi — go
to qn and vi = (vi . . . Vn)t = (v\i.. .vni)i = (xi .. .xn)i = xi . . . x n = w.
Hence u = viePpri and L; (Ao) Ç P^V Thus Lj (Ao) = Ppri.

Now if u G L (Ao), with n = x\ . . . xn just as before, we can assume
that (gn, xn) G Tb, that is, gn G T. It follows that u labels a successful
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path in B and so u = vt G Pi. Finally, if 1 G L (Ao), then io £ 2b and so
D l f l P ^ 0 . Therefore 1 = vt for some v € P, that is, lePt.It follows
that L(A0) Ç Pc and so L(A0) = Pi.

Now let A dénote the (X U X~1)*-automaton obtained by applying the
subset construction [2] to AQ and deleting the state corresponding to the
etnpty subset of Qo- Of course A is deterministic and L(A) = Pc.

Suppose that u G Li (Ao). Then u labels a path in Ao from ÏQ to some
state k G QQ. If follows that u labels a path in A from {ÎQ} to some state
if which, as a subset, contains k. Thus u E Li (A) and L{ (Ao) Ç L« (A).

Conversely, let u E Li (A), and we can assume that u ^ 1. Then there
is a path in A of the form

with # i , . . . , xn G X U X " 1 and x\...xn = u. Let fcn G ifn. For
jf = n, . . . , 1, we can successively choose kj-i G ifj_i such that
(fcj_i, a;j, fcj) G So* Since ^o must necessarily be ÎQ, we obtain a path

in Ao and so u G Li (Ao). Thus L{(A) Ç Li (Ao) and so Li{A) =
L,-(Ao) = P^6.

In a similar spirit to Corollary 4.3 of [9], we can now obtain the next resuit.

THEOREM 5.4: Let P G Rec(X U X"1)*. Then ~P6 is deterministic
context-free and (P6)6~1 is effectively constructible.

Proof: We assume that P is nonempty. By our previous lemma, we
can effectively construct a finite deterministic (X U X"1)*-automaton
A = (Q, i, T, E) such that L(A) = Pt and Li (A) = Pprt. For every
A G E, we dénote by | À j the label of À.

We define a pushdown (XuA:"1)*-automaton [3] A' = (Q, i, T, T, 5, 6),
where F = i5Ü{s},s$*i5 and <$ is described by the folio wing transitions,
with x G X U X " 1 ; g, qf e Q; \, fi E E :

x : (g, 5) h (g', As) if A = (<?, rc, ç')

x : (g, /i) h (g7, A/i) if A — (ç, a:, q') and | A* | ^ x " 1

a; : (q, /x) h (g', 1) if// = (g', a;"1, g).
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Obviously, A' is an effectively constructible pushdown (X U X~~1)*-
automaton. Since A is deterministic, it follows that Af is deterministic as
well, and we shall prove that L(A') =

We are going to successively prove a few remarks, where we assume
that x G X U X-x\ u, v G (X U X"1)*, e G Dx\ g, g' e Q\ t G T;
Ai, . . . , An € £?; 7, V, y e r*.

(i) If u : (i, s) r- (g, Â  . . . Ai s), then | An | . . . | Ai | is a reduced word.

This follows from the définition of 6, namely the constraint | // [ 7̂  a;"1

for transitions of the form x : (g, /i) h (g', A/i).
* * • *

(ii) If (M) h (4, 7) and u : (g, 7) h (g',Y), then uu"1 : (9,7) h ((7,7).

By a simple induction, it is enough to consider w G l U l " 1 . Suppose then

that (i, 5) h (g, 7) and x : (g, 7) h (g7, y ) , with x G l U X " 1 . Suppose first
that y = A7 with X E E. Then A = (g, x, g7) and so x~l : (qf, A) h (g, 1).

Thus xx~l : (ç, 7) h (g, 7). Now suppose that 7 = ^7 ' , with fi £ E.
Then /z = (g', £ ~ \ q). Let 7' = A7", with A G T. By (i), it follows
that either A = 5 or A G E with | A | ^ | /x"1 | — x. Therefore we have

x"1 : (</, A) h (g, ji\) and so xx~1 : (g, 7) h (g, 7). Thus (ii) holds.

(iii) L(A') is p-closed.

Let a, 6, w, v G (X U X"1)*. Suppose that aub G L (A;). Then we have

a : (i, s) t- (g, 7), u : (g, 7) h (g', 7') and 6 : (g7, y ) h (t, 7") for some g,

g' G Q; t G T; 7, y , 7" G T+. It follows from (ii) that uu"1 : (g, 7) h (g, 7)

and so uu~l u : (g, 7) h (g', 7'). Therefore auu~l ub G L(Af). Suppose
now that auu~l ub G L(Af). Since A' is deterministic, it follows from (ii)
that aub G L(A'). Similarly, we show that auu~lvv~1b G L(A') if and
only if avv~1 uu~1 b G L (A') and so L (A7) is p-closed.

(iv) If u, t? G ^(A7), then uu~l v G L(A').

By (ii), we have uu~l : (i, s) h (i, s) and so uu~x v G L (A7).

(v) If vp > up and u G L (A'), then u G L (A7).

If up > up, then up — (tm"1 v) p. Since u G i (A7), then uu-1 v e L (A7)
by (iii).

Similarly to previous cases, it follows from (ii) that v E L (A7).

(vi) If u is reduced, then u e [L (Af)]pr if and only if u G U (A).
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Let u — x\ . . . xn, with x\, . . . , xn G X U X" 1 . We have u G Li (A) if
and only if there is a path in A of the form

Xj X2 Xn

% = qQ —• qi —> q 2 . . . —> g n .

Since ^ is a reduced word, it follows from the définitions that this is

equivalent to u : (i, s) h (gn, (gn- i , Zn, 2n)..-(<?0, S I , gi)s), which

is equivalent to have u : (i, s) h (g, 7) for some q and 7. Finally,

this is equivalent to u G [L(j4')]pr, because if n : (i, 5) h (g, 7), then
u n " 1 ^ G L(A ;) for any v G L(A').

(vii) If u is reduced, then u e L (Af) if and only if u G L (A).

Similar to the previous proof, considering qn G T.

Now we know from (iii), (iv) and (v) that L (Af) is an i-language. It follows
that [L (Af)]PrL = [L (A')F r H Rx and [L (Af)} 1 =_L (A') n Rx. On the
other hand, since L (A') is an i-language, L (A') = (PO) 9~l is equivalent to
[L(A')]6 = PÖ.By Lemma 5.2, we must prove that [L(Af)fr n #yY = ^p r^
and L(A ;) n Rx = Pi . Since P ^ = L̂  (A), it follows from (vi) that
[L (Af)Yr nRx = PpTi, and since PLJ= L (A), it follows from (vii)_that
L (Af) n Rx - PA. Thus [L (A')] 6 = TÖ, L {A') = (P6) 0"1 and (Pö) is
deterministic context-free.

Naturally, one can raise the question of determining exactly which
(deterministic context-free) ï-languages can be obtained as i-closures of
recognizable (X U X~1)*-languages. It is useful to consider the following
lemma, though quite obvious.

LEMMA 5.5: Let a, b, c G Rx<> with b prefix of c. Then (ab) 1 is a prefix
either of a or of (ac) 1.

Proof: If a = a' 6"1 for some a' G Rx, then (ab)i = a' is a prefix of a.
Otherwise, we have (ac) t = (ab)t • c'. where c' G i?x is such that c = 6c'.

THEOREM 5.6: Let P C ( l u i " 1 ) * 6e an i-language. Then P = (W) Ö'1

r 5om^ AT G Rec(X U X" 1)* z/ an only if Ppr t} Pi G Rec(X U X"1)*
Ppr L C (PF) 1 for some finite subset F of Rx.

Prao/_Suppose that P = ( W ) i T 1 with N G Rec(X U X"1)*. Since
P = (N9)9~l, we have P^ r t = N^L and PA = Ni by Lemma 5.2.
By Lemma 5.3, we have N?7* 1, Ni e Rec(X U X"1)*. Therefore Pprt,
Pt G Rec(X U i " 1 ) * . Let A - (Q, i, T, E1) dénote the minimal automaton
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of N. Fix t E T. Since A is trim, we can fix a path aq from q to t for every
q E Q, and we dénote by wq the label of a^. Let F — {u/"1 : q G Q}.

Let u G PprA. Then u G Npr u and so u = vt for some v G Npr. It
follows that v labels a path in A from i to some q E Q. But then vu/g
labels a path in A from i to t and so vwq G L (A) — N, It follows
that (vu/g) i e Ni = Pi and so (vu/g) i — zi for some 2 G P. Now
u — vi — (vwqw~l) 1 = ((vu/g) iw~l) i — {ziw~l)i = (JZU/"1) ^ G (PF)t
and so P * ^ Ç ( P P > .

Conversely, suppose that P^ r 4, Pi G i?ec(XuX~1)* and P^ r t Ç (PP) 4
with F Ç iZx finite, say F = {ni, . . . , u^}. We define

'A U: 1= PiU\ UiPtniP^u-1)!]'

Since P is an z-language, we have P = {NO) 9~l if and only if PO = NO.
By Lemma 5.2, we must have Pi = 7W and Ppr 1 = AT^r

6. Since P t = TVA
is obviously true, we only need to prove the last equality.

Let v G PprL, say v = v't, with v; G Ppr. Since P p r t Ç (PP) fc =
(Pi • P) i, we have v = {pui) 1 for some p G P i and i G {1, . . . , n}.
Hence p = {vu~1)i = {vfu~1)t and so p G Pi n (P p r u " 1 ) ^ It follows that
pu; G iV?r and s o ^ {pu*) 1 G Npr t. Thus P^ r i = Nprt.

Conversely, let v G Npr t. Then v = WL for some u/ G N p r .

Suppose first that w G {Pi)pr. Then u/ G i îy and so v = u/. Hence
v G (Pi)^ r Ç pP r i .

Now suppose that w $ {Pi)pr, Then w — pa for some p G Pi n
{Ppr u~1)i, i G {1, . . . , n}, and some prefix a of UiuJ1. Moreover,
p = (çu~1)i for some q G P p r and so v = wi = (pa)i = {quj1 a)i =
[{qi)(u~ a)i]i. Since a is a prefix of muj1 and m G i?x? then (u"1 a)6
is a prefix of u~l. By Lemma 5.5, it follows that v is a prefix of either
qt, or {qi.u~1)i = p. In any case, we obtain v G (P p r i )p r Ç Pprt and so
^ r i Ç Ppri. Thus P p r i = Npri and so P = (N6) 0"l

9 proving the resuit.

For P Ç i2 x , let Stab(P) = {u G i î^ : (uP)i = P } . It is immédiate
that Sta& (P) is a subgroup of fix and Stab (P) Ç P.

THEOREM 5.7: Let P Ç [X U X"1)* Z?e an i-language. Then P G
Pec(X U X"1)* /ƒ and ott/y if Ppr 1 = {HF) 1 for some subgroup H of
Stab (Pi) and some finite subset F of Rx*
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Proof; By Theorem 4.4, the language P is recognized by the inverse
(X UX-^-automaton A = (MT(P), Pc). If we write A = (Q, t, T, E),
we know that P G #ec(X U X"1)* if and only if the set {g"1 T; q G Q} is
finite [2]. We can assume that Q = Ppr i. If follows from the définition of
A that q~lT = L ( ( M T ( g " 1 P ) , ( g ^ P ^ ) ) = ((g"1 P ) ^ " 1 for every
g G P ^ . Therefore, for ail a, b G Pprt, we have a " ^ = b~lT if and
only if (a-1P)0 = ( 6 - ^ ) 0 if and only if (a"1 P)^r^ = (6"1 P)pr i
and (a- xP)i , - (b~l P) t. Since ( g ^ P ) ^ / , - (g ' 1 Ppr)t for every
g G PprL, it follows that P G Rec(X U X"1)* if and only if the sets
{(a~1Ppr)o : a G P p r t} and {(o^P)*, : a G Ppr i} are both finite. We
show that this holds if and only if Ppr i — (HF) i for some subgroup H of
Stab (PL) and some finite subset F of Rx-

Suppose that Ppr i = {HF) t for some subgroup H of Stab (Pc) and
some finite subset F of Rx, say F = {/i, . . . , / n } . Every a G Ppr<,
is of the form a = (hfi)t for some h £ H and i e {1, . . . , n}, and
we have (a"1 P) i =\f~x hTx P)i = {f^Py as well as (a"1 Ppr)t =
(f'1 h-1 Ppr)t = (f'1 h-1 HF)L - (f~{ HF)i = ( i f 1 Ppr)i. It follows
that the sets { (a ' 1 Ppr)u : a G Pprt} and {(a"1 P)L : a G Ppr^} have at
most n éléments each and are therefore finite.

Conversely, suppose that {(a~l Ppr)t : a G Pprt} and {{a~l P)t :
a G P * M are both finite. Suppose that {(a'1 Ppr)t : a G Ppri} =
{(a'1 PpT)i, . . . , (a"1 P ^ r ) 4 , with m > 1. Let G = 5ta6 (P^ r t) Ç P^ r t
and let Fo = {ai, . . . , a m } . We show that Ppri - (GFQ)L.

Let a G Pp r^. Then (a"1 Ppr)i = (a"1 P^r)^ for some i G {1, . . . , m}. It
follows that (aa~l Ppr)u = Pprt and so (aa'^t G G. Hence a G (Gai)t C

Conversely, let g G G and let i G {1, . . . , m}. We have (g~1Ppr)t =
and so ( a " ^ - 1 ? ^ ) ^ = {a'^P^y Since 1 G ( a " ^ ^ ) ^ then

1 G ( a ' 1 g~l Ppr)i and so (goi)i G PprL. If follows that (GF0)^ Q Pw^
Thus (GP0)6 = Pprt.

Now let i ï = G n S£a& (Pt). Then H is a subgroup of Stab (Pi) C Pt.
Since {(a-1^)*, : a G Ppr^} is finite, we have {(g'1 P)L : g G G)•. =
{(frf1 P)L, . . . , (ftfe^)^ for some fc > ' 1 and 6i, . . . , 6fc G G. Let
Pi - {6i, . . . , bk}. We show that G - (fTFi)*. Since /T, F\ Ç G,
it is immédiate that (HF\)i Ç G. Conversely, for every g G G, we
have (g~l P)L — (bj1 P)L for some j G {1, . . . , /c}. It follows that
(gbj1 P)t = P i and so (gb~1)t G Stab(Pt). Since #, fej G G, we have
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{gbjr)i G H and so g G (Hbj)t Q (HFi)i. Thus G Ç (ffFi)t and so
G = ( J ÏF)

Let F = (Fi F0)6. It follows that P ^ = (GFQ)L = (HF1F0)t =
Since F is a finite subset of iîx> the theorem follows.

6. ALGEBRAIC OPERATORS

Unfortunately, RecFIM (X) is not closed for most algebraic operators
and so this section consists mainly of counterexamples. By Example 5.1,
we know that RecFIM (X) is not closed for the star operator, since
xp G RecFIM (X) and {xp)* £ RecFIM (X). Next, we show that
RecFIM (X) is not closed for product either.

EXAMPLE 6.1: Let X = {rc, y}. We saw in Example 4.6 that (xp),
(yp) G RecFIM(X), in fact they even belong to iRecFIM(X). Let
L = {xp){yp). We prove that L g RecFIM (X) by showing that ~L
does not have fînite index.

Let m, k > 1, with m ^ k. Then ((yy'1 xm) p)(x~m y)p =
(xmx~my)p e L. It is easy to check that, for every u G L, the
edges labelled by y in MT (u) must form a connected subtree. Hence
({yy-1^) p)(x~™y) pïL, and so {{yy'1 x™) p) ~ L # ((yy"1 xfc) p) ~ L .
It follows that FIM{X)/ ~L is infinité and so L g RecFIM (X). Thus
RecFIM (X) is not closed for product.

Next we show that RecFIM (X) is not closed for taking inverse
submonoids.

EXAMPLE 6.2: Let X = {x, y}. Since the set {xp, (xy) p, (xyy~1)p} is
finite, we have {xp, (xy)p, (xyy~l) p} G RecFIM (X) by Theorem 4.5,
and it is not difficult to see that {xp, {xy) p, {xyy~l ) p} is also an i-language.
Let L - {xp, {xy)p, {xyy~l)p). We prove that L g RecFIM{X) by
showing that ~£ does not have finite index.

For ail m, k > 1, with m / &, it follows easily that

" m y ' 1 x ' 1 ) p = (oT1 a;yxm x " m y'1 x~l) p G L.

It is easy to check that, if u G L and an edge labelled by y occurs in
MT{u), then it must occur in a subtree of the form
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Hence ((yxk) p)(x~m y'1 x~l)p <£ L and so ((yxm) p) ~L ^ ((yxk) p) ~L.
It follows that FIM(X)/ ~L is infinité and so L £ RecFIM(X). Thus
RecFIM (X) is not closed for taking inverse submonoids.

This example can be used to produce another counterexample concerning
homomorphic images.

EXAMPLE 6.3: Let X = {ar, y}. Let <f> : FIM(X) -> FIM (X)
be the homomorphism defined by {xp)<p = xp and (yp)<f> = (xy)p.
Let L = FIM(X) G RecFIM(X). We have L<j> = (xp, {xy)p) =
(xp, (xy) p, (xyy-1) p) and so L(j) 0 RecFIM (X) by Example 6.2.

Now we present some nontrivial algebraic closure properties from
RecFIM (X),

THEOREM 6.4: Let L G RecFIM (X). Then Lu G RecFIM (X) and is
effectively constructible.

Proof: Let P = L0'1 and let A = (Q, z, T, JE) be the minimal automaton
of P. Considering

E* = EU {(9ï 1, q') : q, q' G Q; L M , n D x ^ 0 } ,

we can define an (X U X"1)*-automaton A1 = (Q, i, T, £*)•

Of course, A' is a finite constructible (X U X""1)*-automaton. We show
that L(A') = L"0-\

Let u G L(Af). Then there exist ni, . . . , un G (X U X"1)* and
eo, - . . , en ^ ^ x such that u\...un — u and eou\ei .. .unen G P.
It follows that u9 = (ui ... un) 9 > (eo u\ e\ . . . unen) 0 £ P6 = L. Hence
u<9 G Lw. If follows that u G L ^ " 1 and so L (A') Ç Lw 9'K

Conversely, suppose that u G LUJ9~1. Then u0 > v9 for some v9 € L and
so there exist ui, . . . , un G (X U I " 1 ) * and eo, . . . , en G £>x such that
u\ . . . un = u and (eouiei . . . unen) 0 — v0. Therefore eo^iei . . . unen G
V00-1 Ç L9~l =Pmdsou = u1...uneL (Af). Hence L" Ö"1 Ç L (A1)
and so Lu>9~1 = L(A'). Thus Lw G RecFIM (X).

Given L Ç FIM(X), it follows easily that there exists a smallest
closed inverse submonoid of FIM(X) containing L, precisely (L)^.
Closed inverse submonoids of FIM (X) are becoming important for both
combinatorial inverse semigroup theory and combinatorial group theory, and
the reader is referred to [7] for detailed information.
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Given an (X U X"1)*-automaton A = (Q, i, T, E), x e X U X'1 and
edges (p, x, ç), (p, x, </), with g / </, we can form a new automaton
from A by identifying the vertices q and (/. We say that this automaton is
obtained by folding our two original edges.

The next resuit can be derived from Lemma 3.6 and Theorem 3.7 in [7],
but we give a direct proof for completeness.

THEOREM 6.5: Let P G Rec(X U X"1)*. Then {P9)u G iRecFIM(X)
and is effectively constructible.

Proof: Let L = <P0)W. Let A = (Q, i, T, £ ) dénote the minimal
automaton of P, with T = {ti, . . . , <m}. Let Ao dénote the (X U X"1)*-
automaton obtained from A by identifying the vertices i, t i , . . . , tm , and let
Ai dénote the (X U X-1)*-automaton obtained from AQ by adding to every
edge (p, #, g), with x G X U X" 1 , a dual edge (g, x" 1 , p) (if necessary).
Let A2 dénote the (XUX" 1)* -automaton obtained from Ai by successively
folding edges until no more folding can be carried out. In these constructions
the new automaton has always fewer vertices than the original and it will
follow from this proof that his opération is confluent. It is immédiate that
A2 is a finite inverse automaton. We shall prove that L0~1 = L (A2).

By construction, A2 has duality of edges and successive folding forces A2
to be deterministic as well, therefore A% is an inverse (XuX""1)*-automaton.
Since L(A) C L(A0) Ç L(A\) C L(A2), it is obvious that P Ç L(A2).
Since A2 has a single terminal vertex which is also the single initial vertex,
duality of edges yields P " 1 Ç L (A2), followed by (P U P" 1 )* Ç L (A2).
This yields (P6) = (P9 U (PÖ)"1)* Ç [L(A2)]0. Since A2 is inverse,
[L(A2)]6 is closed and so L = (P0)» Ç [L(A2)]6. Further, L(A2) is
p-closed and so L0'1 Ç [LiA^eO'1 = L(A2).

To prove the converse inclusion, we shall proceed by steps, considering
successively L(Ao), L(A\) and L(A2).

Of course, since PO Ç L, we have L(A) = P Ç L 9~x. Let u G L (Ao).
Then we can write u = u\ . . . un where, for every j G {1, . . . , n } , we have
Uj G Lp^q in A for some p, g G { i , <i, . . . , t m } .

If wj G Lijk for some fe G {1, . . . , m } , then iy G P and so itjô G L.

If U7 G Lij, then for any u G P we have Uji; G P and so (ujvv~l)9 G L.
Since L is closed, it follows that u3 9 G L.

If Uj G Ltkj for some A; G {1, . . . , m } , then for any v G L^tk we
have VUJV G P and so (v-1

 VUJ vv~1) 9 E L. Since L is closed, it follows
that Uj9 G L.
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If UJ G Ltktu for some fc, / G {1, . . . , m}, then for any v G L^th we have
VUJ G P and so (v~r

 VUJ)6 G L. Since L is closed, it follows that Uj9 G L.
Therefore ni 0, . . . , un 9 G L and so (m . . . un) 9 G L. Thus w G L9~l

and so L(A0) Ç L6"1.
Note that, since A is trim, AQ is also trim. Now we will show that given a

trim (XuX-x)*-automaton Bf = (Q7, ï', i', E') such that L(B') Ç Lfl"1,
then any automaton Bn obtained from Bf by adding a dual edge also satisfies
L{Bn) Ç L9~1. Since the new automaton Bn is certainly trim, successive
application of this fact yields L(A\) C L9~l. Suppose that {qf \ x~l, p7),
with x G X U X " 1 , is the edge added to B' to form B". We show that
L {Bu) Ç L Ö"1 by induction on the number of occurrences of the new edge
in a successful path of Bn'. ïf u is the label of a successful path a where
(g7, a;"1, p') does not occur, then a is also a successful path in B1 and so
u G L9~1

t Now suppose that the labels of successful paths in Bn with no
more than k occurrences of (</, x""1, p') ail belong to L6~1. Let a dénote
a path in 5 " with k + 1 occurrences of (g', a;"1, p'), and let u dénote the
label of a. Then a must be a path of the form

7 « i f X~X / U2 .f
% —v q —• p —» %

for some u\y u<i G (X'U X"1)*. Since Bf is trim, there exists in Bf a
path of the form

/ v iq - > p .

Since (p7, #, g') G E1', it follows that U\VU2 and ui^xt'ti2 both
label successful paths in Bn with no more than k occurrences of
(q'', x" 1 , p7). By the induction hypothesis, we now have uivn2,
u\vxvu2 G L9~l. Hence [(n "̂1 v~l u7l){uivxvu2){u^ v~x u^ )]6 G L
and so [(u^1 V~l u{1 u\vu2){u^1 xu^[ )(ui v^u^v"1 ^î"1)]^ ^ *̂ Since
L is closed, we must have (u^1xu^'1)0 G L. It follows that u =
uîx~lur^ L9~l and so, by induction, we obtain L(B") Ç L9'1. Thus
L(Ai) Ç-Lfl-1 .

Now suppose that 5 7 = (Q7, i7, z7, Ef) is an (XUX~1)*-automaton with
duality of edges such that L (Bf) Ç L 0~r. We show that any automaton Bn

obtained from B1 by folding two edges also satisfies L(Bf/) Ç L0" 1 . Since
the new automaton Bn also has duality of edges, successive application of
this fact yields L(A2) Q L9'1.

Suppose then that (p7, x, q!), (p7, x, r7) G £7, with x G X U X~l and
</-^ r7, and let 5 " be obtained from B1 by identifying qf and r7. Let
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u G L (B/f). Since Bf hâs duality of edges, x~x x labels paths from qf to
r' and vice-versa. It follows that there exist uo, •.., % G (X U X" 1 )*
such that UQ .. .un — u and uox~lxu\ . . . x~1xun G L (-B')- Now
u6 = (uo — -un)O > (uox~1xui .. ,x"1xun)9 G L. Since L is closed,
it follows that u9 e L and u G l f l ' 1 . Hence L(B") Ç L 0 " 1 . Successive
application of this fact yields L (A%) Q L 9~l and so L (A2) = L 6~~l. Thus
( P ö ) w = L e iRecFIM(X) and the theorem is proved.

COROLLARY 6.6: Let L G RecFIM (X). Then ( L )w G iRecFIM (X).

Note that, even though RecFIM (X) is closed for closed inverse
submonoids, it is not so for the closed product (A, B) H-•
Example 6.1 being an adequate counterexample.

7. APPLICATIONS TO THE THEORY OF CODES

Some classes of submonoids of X* are closely related to free inverse
monoids, and some of these classes are becoming a popular topic in language
theory, particularly in the theory of codes. We intend to give évidence of
this and show how FI M (X)-languages can play a rôle on this area.

A languages P Ç X* is said to be a zigzag language if

uv, v: vw G P => uvw G P

for ail u, v, w G X*. The next resuit can be derived from [5], but we
give a direct proof.

THEOREM 7.1: Let P be a submonoid of 'X*. Then the following conditions
are equivalent:

(i) P is a zigzag language;

(ii)P - (P6)9~1 HX*;

(iii) P = L6~l n X* for some inverse submonoid L ofFIM (X).

Proof: (i)=^(ii). Suppose that P is a zigzag language. Then P Ç
{PO )9~1 n X * is obvious and so we only need to prove the reverse inclusion.

Suppose that ue (P9 )9~x n X*. Then u9 G (P9) and so we must have
u0 = (po q^1 pi . . . q~l pn)9 for some pi, qj G P, n > 0. We can assume that
such n is minimal. Suppose that n > 1. Let r G {po> • • • > P™} U {<Zi, . . . , ^ }
have minimal length in this set. Since it G X*, we must have \po\ > \ q\ \,
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\pn\ > \Qn\i and so we can assume that one of the following conditions
holds:

(1) r — pi for some i G {1, . . . , n - l } ;

(2) r — qj for some j G {1, . . . , n}.

Suppose that (1) is verified. By minimality of \pi |, we have |p» | < | g» |
^ d \pi\ < | f t+i | . Since (po «i^Pi • * • fl^Pn) 0 = u9 and it G X*, it
follows that M T (g"1 p^ ç^ \ ) is linear and so qi = pia and <&+i = 6pi for
some a, b E i?A'- Thus fcp^, pi, pia E P. Since P is a zigzag language, it
follows that &Pî a £ P. But 6p̂  a = (<ft+i p " 1 ÇÎ) /-, so

(few a) o > («+i p,-1 «) ^ a n d (a - 1 p,"1 ö"1) ^ > («r11* «A) e -

Therefore we have

{po QÏl - • -Pi-i (a~1P2~1 ^~X)^+i * * -Pn) 6

Since u E X*, it follows that

contradicting the minimality of n. If (2) is verified, a similar situation anses
and the minimality of n is again contradicted. Therefore n — 0 and so
uO = po 0. Since u, po € X*, this yields u = po and so u G P. It follows
that {P6)e~1 nPÇPandsoP- (Pô)o"1 ni*.

(ii)=Kiii). Immédiate.
(iii)^(i). Suppose that P = L9~x n Jf * for some inverse submonoid

L of FIM{X). Let n, v, w G X* be such that uv9 v, vw G P.
Then (uv) 0, ^0, {vw) 9 E L. Since L is an inverse submonoid, we have
v^e G L and (m;) 6 (v~l 6)(vw) 9 G L, that is, (uvw)9 G L. Hence
liviu G L0"-1 Pi X* = P and so P is a zigzag language.

Now we consider a particular class of FIM (X)-languages which allow
us to characterize ail X*-languages which have an inverse syntactic monoid.

A language L Ç FIM (X) is said to be positive if

If L is positive and u E {X U X"*1)*, it follows easily that (up)
for some v G X*.
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THEOREM 7.2: Let P Ç X*. Then X*/ ~p is inverse if and only if
P = L6~l H X* for some positive L C FIM (X),

Proof: Suppose that X*/ ~ p is inverse. Let <f> : X* —* X*/ ~p
dénote the projection homomorphism and let 6 be the restriction of 6
to X*. Since X* / ~p is inverse, (j> induces a surjective homomorphism
il) : FIM(X) -> X*/ ~P such that 9ij) = 0. Let L = P ^ r 1 and let
x G X. Since X*/ ~p is inverse, we have (x(f>)~1 = v0 for some v G X*.
Hence (x" 1 P)Î/J = (%p)~l $ ~ [(xp) ̂ l " 1 — (x</>)~1 = v<f> = (vp) ip.

L e t a , b G FIM(X). T h e n w e h a v e a{x~l p)b G l o a ( x ~ 1 p ) 6 G

P<j>^-1 <& (ai))[{x-lp)il)\{b<ip) E P<j> <& {a^)\^vp)ip]{b^) G P(j> &
a(vp)b G P^tp"1 & a(vp)b G L and so (x"1 p) ~x(vp). Thus L is
positive.

Finally, let w G L6~l H X*. Then u6 e L = P^ip~l and so w6^ G P4>,
that is, u0 G P<f>. Since P is ~p-closed, it follows that u G P and so
L0"1 H X* Ç P. Since the converse inclusion is obvious, it follows that
P = L0-1 DX\

Conversely, suppose that P = L6~l n X* for some positive L Ç
F / M (X). Let (j> : X* -+ FIM(X)/ ~ L be the homomorphism defined by
t£<̂> — (u/?) ~£ . Since L is positive, we know that for every a: G X there
exists v G X* such that ( x " 1 p) ~L = (vp) ~L. If follows that (xp) ~ £ ,
(x~l p) ~ L G X* (j) for every x G X and so (j> is surjective.

Let u, v € X* and suppose that u<f> = v0. Then (up) ~L(VP) a n d so» f ° r

ail a, & G X*, we have aw6 E P ^ aw6 G L9~x & (ap)(up)(bp) G l ^
(ap)(vp)(bp) G i O GW& G LÖ"1 <3> avb G P Thus Ker <j> Ç~P and so
X* ~p is a homomorphic image of FIM (X)/ ^x , hence inverse.

If the conditions of the theorem hold, it is obvious that L G
RecFIM(X) ^ L9-1 G Rec(X U X" 1)* => L0"1 n X* G Rec(X U
X"1)* ^ P G i2ec(XuX"1)* ^ P G iîecX*. Conversely, if P G RecX*,
then P̂ > is finite and so when we choose L = P ^ ^ " 1 we obtain
L G RecFIM(X). Therefore we have P G RecX* <* Le RecFIM(X)
is L is defined as in the proof of the theorem.

We note hat being a zigzag (free) submonoid is not enough to secure an
inverse syntactical monoid, as the next example shows.

EXAMPLE 7.3: Let X = {x, y} and let P = {x, xy}*. It is easy to check
that P is a zigzag submonoid of X*. Moreover, a simple vérification shows
that X*/ ~p is a regular monoid. However, idempotents in X*/ ~p do
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not commute (namely, (xy) ~p and x ~p) and so X*/ ~ p is not an
inverse monoid.

A language P Ç X* is said to be a cross language if

ab, cd, cb G P =̂> ad G P

holds for ail a, b, c, d e P. If P is also a submonoid of X*, it is said
to be a cross submonoid.

Let P be a cross submonoid of X*. If we consider the particular cases
c = d — 1 and a — b = 1, we obtain the implications

ab, b e P ^ ad e P

cd, ce P => de P.

If follows that P is a free submonoid and the basis of P is a bifix code [1].

THEOREM 7.4: Let P be a submonoid ofX*. Then the following conditions
are equivalent:

(i) P is a cross language;
(ii)p = (pe^e-1 n r ;

(iii) P = L0" 1 H X* /or some closed inverse submonoid L of FIM (X),
(iv) P = G D X* for some subgroup G of Rx-

Proof: (i)=>(ii). Suppose that P is a cross language. Let u G {PO )w 9~l n
X*. Then u0 > (po^r1^! • • • Qn1 Pn)0 for some pi, qj G P, n > 0, and we
can assume that such n is minimal. Let v = p^qïlpi . . . ç^1 pn<

Suppose that n > 1. Since (po çf1 Vi • • • (Zn1 PTI)^ — UL — u e X*, one
of the following must necessarily happen:

(1) (pi-iq~lPi)t G X* for some i G { 1 , . . . , n};
(2) ( « ^ P j - i ^ V e (X-1)* for some j G {2, . . . , n}.
Suppose that (1) is verified. Then there exist a, b, c, d e X* such that

Pi-\ — a6, (ft = cb and p; — cd, Hence ab, cd, cb e P and since P is
a cross language, it follows that ad G P. Since ad = (pi-i q~l Pi)t, we
have (po q^1 . . . g~_\ (ad) g ^ .. .pn)t — vi ~ u and it follows easily that
uO > (po q^1 ... q^}^ (ad) q^ .. .pn)Qi contradicting the minimality of n. If
(2) is verified, then we have (qj pjli qj-\)t> €ï X* and we proceed similarly
to the previous case, contradicting again the choice of n. Therefore n = 0
and so v G P Now we have u# > v0 and u, v e X*? hence u — v and
u G P . Thus ( PÔ )w ô"1 H X* Ç P. Since the converse inclusion is trivial,
it follows that P = ( P f ? ) ^ " 1 n X*.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON FREE INVERSE MONOID LANGUAGES 377

(ii)=>(iii). Immédiate.

(iii)=>(iv). Suppose that P = L6'1 n i * , where L dénotes a closed
inverse submonoid of FI M (X). Let G = Lt Ç Rx* Since L is an inverse
submonoid of FIM (X), we have 1 G L and so 1 G Le. Further, let u,
v £ G. Then there exist uf,vf£L such that u — v!i and v — v* i. Hence
(uv)t = (u'i/)*, G Li = G and u"1 = (uU)'1 = u'"1/, G Lt = G. Thus
G is a subgroup of Bjç.

Let u e P. Then u G X* and «0 G L. If follows that u = m = (u0)i G
Lt = G and so P Ç G n X * .

Conversely, suppose that u G G n X*. Then u — u1\ for some iz' G L,
and so u9 > uf G L. Since L is closed, it follows that u0 G L and so
u G L0-1 n r = P. Thus G n X* Ç P and so P = G H X**

(iv)=Ki). Suppose that P = G n X*. where G dénotes a subgroup of
Let a, b, c, d e X* be such that afc, cd, c6 G P Since P Ç G, we have
&"1 c"1 G G and it follows that ((a6)(6~1 c^^cd^t G G, that is, ad G G.
Thus ad G G n X* = P and so P is a cross language.

COROLLARY 7.5: Let P be a cross submonoid of X*. 77ien P G RecX* if
and only if {P9)u G iRecFIM (X).

iVüo/; If P G #ecX*, then P G Pec(X U X" 1)* and so <P0)W G
iRecFIM{X) by Theorem 6.5.

Conversely, suppose that (P0) w G ŒecFIM (X). Then (P0) W 0- 1 G
#ec(X U X"1)*. Since X* G Rec{X U X"1)*, it follows that ( P0 )^e~x n
X* G Rec(X U X" 1 )* and so P G Rec(X U X" 1)* by Theorem 7.4. Since
P Ç X*, it is immédiate that P G RecX*.

We dénote by ECom the pseudovariety of all finite monoids with
commuting idempotents.

THEOREM 7.6: Let P G RecX* be a cross submonoid. Then X*/ ~p G
ECom.

Proof: Let L = (P0) w and let M = (X U X" 1 )* / ~ w - i . By
Theorem 3.2, M is an inverse monoid. Since P G RecX*, it follows from
Corollary 7.5 that L G iRecFIM(X). Therefore L0"1 G #ec(X U X" 1 )*
and so M is a finite inverse monoid. Let N — {u ~ 1,0-1; u G X*}.
Obviously, iV is a submonoid of M. We define a mapping $ : iV —» X* / ~p
by u$ = u ~ p , for u G X*
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To show that $ is well-defined, let u, v G X* be such that u~L9_x =
v ^ . ! - Let a, b G X*. Suppose that aw6 G P. Then aufc G L0~x and so
avb G L0- 1 . Since avb G X*, it follows from Theorem 7.2 that avb G P.
Similarly, we show that avb G F implies awè G P, hence u ~p = v ~p
and $ is well-defined.

Now it is immédiate that $ is a surjective homomorphism and so X* / ~p
is the homomorphic image of a submonoid of the finite inverse monoid M.
Since M G ECom, if follows that 1 * / - P G ECom.

The syntactic monoid of a recognizable cross submonoid of X* does not
have to be inverse, as the next example shows.

EXAMPLE 7.7: Let X = {x. y, z} and let P — {a:2, y, xyz}*. It is easy
to check that P is a cross submonoid of X*. However, a simple vérification
shows that X* / ~p is not regular (namely, (xy) ~p is not a regular element).
Therefore X* ~p is not an inverse monoid.
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