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CHARACTERIZATION RESULTS ABOUT L CODES (*)

by J. HONKALA and A. SALOMAA

Communicated by Jean BERSTEL

Abstract. - The paper investigates interrelations between codes and L codes, présents characteriz-
ation and decidability results for L codes of bounded delay, as well as discusses some related
notions.

Résumé. — L'article étudie les interconnexions entre codes et L codes, présente des propriétés de
caractërisation et de décidabiîité pour les L codes à délai borné et discute des notions voisines.

1. INTRODUCTION

L codes, introduced originally in [13], fit into the framework of generaliz-
ations and modifications of codes, an area that has been studied extensively
during recent years. In order to make comparisons, it is useful to view a
code as an injective morphism rather than a set of words, [2], We return to
this question in Section 2. L codes are obtained by applying a morphism

h: E*->E*

(not necessarily injective) in the "L way". This means applying h to the first
letter of the argument word, h2 to the second letter, h3 to the third letter,
and so on, and catenating the results. This gives rise to a mapping (that is a
morphism only in special cases)

h: £*->£*,

referred to as the L associate of h, The original h is called an L code iff h is
injective. Every code is an L code but not vice versa, [13].

(*) Received November 1990, final version October 1991.
The Academy of Finland and Mathematics Department, University of Turku, 20500 Turku,

Finland.
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288 J. HONKALA, A. SALOMAA

Apart from being a natural extension of the theory of codes, L codes are
linked with the theory of number Systems. This interconnection was observed
already in [13], The line of .studies was continued in [7], [4] and [8]. For
closely related work, see [1], [6] and [12]. Similarly as many classical cryptosy-
stems can be viewed as codes, [17], also L codes are interesting from the
point of view of cryptography, [18]. With this aspect in mind, we often use
the term plaintext for the argument w and the term cryptotext for the value
h(w) or h(w).

Needless to say, L codes are closely linked with many problems dealing
with L Systems. We want to emphasize also that the related problems dealing
with number Systems have so far been investigated for unary morphisms
only, that is, for morphisms whose range is generated by a single letter.

A brief outline of the contents of this paper foliows. Section 2 contains
the basic définitions, as well as explanations in case our définition déviâtes
from the customary one. Technical lemmas needed later on will be established
in Section 3. Section 4 présents the basics of L codes, in particular, the three
different types of bounded delay L codes introduced in [16] and {14]. Two
such types of bounded delay L codes are investigated in Sections 5 and 6:
the family S of strongly bounded delay L codes and the family M of medium
bounded delay L codes. More specifically, a characterization and a simple
décision method are presented for S and a characterization for M. The last
two sections are devoted to a further discussion and generalizations. In
particular, the notion of an LL code is again closely linked with number
Systems. The paper is largeiy self-contained but [15] may be consulted if need
arisès.

Additïonal remark: This paper, together with the paper [10], constitute the
full version of our ICALP-91 paper {11], where practieally no proofs were
given. More speeifteaüy, this paper is the full version of the "bounded delay"
part of [ïi], whereas [lö] is the full version of the "regularity of ambiguity"
part. This paper contains also rnaterial not mentioned in [11], such as
LL codes. The original version of thîs paper was written about half a year
feefore [11].

2. MORPfflSMS: DEFINITIONS

Consider a nonerasing morphism /^:S*-^À*, where S and A are finite
alphabets. We want to emphasize that ail morphisms discussed in this paper
are nonerasing, that is, h(-à)^X (the empty word) for every a in E. If .A is
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CHARACTERIZATION RESULTS ABOUT L CODES 289

injective it is referred to as a code. This définition was used, for instance,
in [15]. For fmite codes it is equivalent to the customary définition, [2], in
the following sensé. A morphism h is a code iff the set [h{a)\aeE] is a
code, provided h is non-identifying, that is, a^b implies h(a)^h(b). In
cryptographie terms h being a code means every "cryptotext" w' can be
"decrypted" in at most one way, that is, there is at most one "plaintexf ' w
such that h(w)~ w'. The notation C will be used for the class of all codes.

Since morphisms will be iterated in the sequel, we consider only endomor-
phisms, that is, A is included in E.

For a positive integer k and a word w, we dénote by preffc(w) the prefix
(initial subword) ofw of lengthA;. If w is shorter thanfc, then pxefk(w) = w.
The notation first (w) stands for the first letter of a nonempty word w. A
morphism h is of bounded delay k if, for all words u and w, the équation

preffe (h (u)) = preffe (h (w))

implies the équation first (ü) = first (w). The morphism h is of bounded delay
if it is of bounded delay k, for some k. The notation B will be used for the
class of all morphisms of bounded delay. (Actually, our définitions concern
bounded delay from left to right. This is the notion needed for L codes.)

When a code is viewed as a set, there are various définitions of bounded
delay, [2, 3]. In particuiar, Bruyère considers three such définitions and shows
that they are equivalent for flnite sets. (This means that they all lead to the
same collection of bounded delay sets, although the minimal value of k can
be different under different définitions for the same set.) In particuiar, one
of the définitions considered by her defïnes a set X £ £'+ to be of bounded
delay if, for some -fc^O, the conditions

x x xy e x 2 X* and | x 1 x j > k,

where .xl3 x 2 e l , x€ Jf* and )»el*, imply the équation x1=x2.
Assume now that h is non-identifying and the set X={^(<3)|#e£} is of

bounded delayk. Define fe1=^ + max{\h(a) \\a in £} . Then the condition

preffel(/z (au)) -pteffcl (è-(&w)), a, beE; u,

implies that h(a) — h(b) and, hence, a — b. (If \h{au)\<ku u and w can be
replaced by longer words.) Conversely, assume that h is af bounded delay k.
Then the conditions

h(a)h{x)y^h(b)h{x1) and \h(a)h(x)\>k-1,
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2 9 0 J. HONKALA, A. SALOMAA

where a, bel, and x,xl9yeT,*9 imply a = b and, hence, h(a) = h(b). Thus, we
have established the following

Observation: A non-identifying morphism h is of bounded delay iff the set
{h (a) I a e E } is of bounded delay.

It is easy to prove that B is properly contained in C, [2], We conclude this
section with a few other définitions. A morphism h is a prefix code if there
are no distinct letters a and b such that h(a) is a prefix of h(b). The class of
all prefix codes is denoted by P. A morphism h : E* -> E* is elementary if it
is not simplifiable, that is, no alphabet £x smaller than E and no two
morphisms h1 :E* -• Ef and /*2

: SÏ -* s * e x i s t s u c n t n a t h = h2hi.

For a word w, alph(w) dénotes the minimal alphabet such that w is a
word over this alphabet. For a morphism h and letter a, we say that a is
growing with respect to h if, for every positives, there is an i such that
|A l(a)|>5. Similarly, <s is stabile with respect to /* if |/z l(a)|=l for alh*. lï h
is understood, we speak simply of growing and stabile letters. Clearly, there
may be letters that are neither growing nor stabile.

3. MORPHISMS: BASIC LEMMAS

The rather diverse lemmas established in this section will be used in the
sequel. The first lemma can be established in various ways using results
concerning DOL Systems with the axioma. Our argument does not présup-
pose any knowledge concerning DOL Systems.

LEMMA 1: A letter a is growing with respect to h iff there are i andj,j>i,
such that

(•) | hj (a) I > I h1 (a) I and alph {h1 (a)) - alph (hj (a)).

Given h and a, it is decidable whether or not a is growing with respect to h.

Proof: Recall that we consider only nonerasing morphisms. Conditions
(*) imply that

which means that a is growing. Conversely, if the second condition in (*)
always implies that |hj(a)\ = \h1 (a)| then, for any suchi, |hn(a)\^|h1 (a)| holds
for ail n and, thus, a is not growing. The second sentence of the lemma now
follows because we only have to test whether or not the first condition in

Informatique théorique et Applications/Theoretical Informaties and Applications
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(*) holds for the smallest number j for which there is an i satisfying the
second condition in (*). D

The next two lemmas will be needed in Section 6. Lemma 2 is from [5] and
Lemma 3 uses also ideas from [9].

LEMMA 2: Assume that h : E* -> E* is a morphism and)'^ card (E) — 1. Then,
for ail words w and w' over E,

(*) hj+1 (w) = hj+1 (w') implies hj (w) = hj (M/).

Proof: If h is injective (a condition always satisfîed for card (S) = 1), then
so are the powers ofh. We proceed inductively, assuming that / i : 2* ̂ 2 * is
not injective and that the lemma holds for alphabets smaller than S. Since/z
is not injective, there are morphisms

hx\ S* - • £ * and h2: E* -> £*

such that h = h2h1, card (E1)< card (Z) and h2 is injective. Assume that the
first équation in (*) holds. It can be written in the form

h2 {h, h2y (h, (w))=h2 {h, h2y (h, (M/)).

By the injectivity of h2 and by the inductive hypothesis, we infer successively

(h, h2y {h, (w))=(h, h2y (h, (w% (h, A2y- i (hx (w))=(h, h2y~' (hx (*/)).

By taking the /ï2-images of both sides in the second équation, we obtain the
second équation in (*). D

LEMMA 3: For ail morphisms h : Z* -> £* and integers n ̂  card (E) — 1, there
are morphisms g, p and q, of which p is elementary and g bounded delay, such
that hm + n = gpm q, for ail m ̂  0.

Proof: If h is elementary, we may choose p = h, g=pn and # = identity
because (see [15]) elementary morphisms are of bounded delay and bounded
delay morphisms are closed under composition. We proceed again by induc-
tion on card(E). Assume that /*:E*->E* is not elementary and that the
assertion holds for ail alphabets smaller than E. Consequently, there is an
alphabet 2,x smaller than E and morphisms

hx: E* -> E* and h2 : E* -> E*

such that h = h2hx and h2 is of bounded delay. We write hm+n in the form

hm+n=h2(hxh2)
m+n-1hx.

vol. 26, n° 3, 1992
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Sinee n—t ^eard(Z t) — 1, we obtain by the inductive hypothesis

where pt is elementary and gx of bounded delay. Consequently,

where q = q1 kx and g=h2g1 is of bounded delay. D

Observe that Lemma 3 leads to an alternative proof of Lemma 2. The last
two lemmas will be needed in Section 5.

LEMMA 4: Assume thaï h : Z* —•• Z* is a code and a is in Z„ Then either (i) a
is growing, or else (ii) \hn (a) | = 1 for alln.

Proof: Dénote by Zj the subset (possibly empty) of Z consisting of letters
satisfying (ii). Clearly, if a is in Z t then so is k(a). Furthennore, because h
is a code, any two distinct letters a and b of Zx satisfy k(d)^k(tï). This
means that A permutes the set Z1? that is, A(Zt)=-Z1. Moreover, for every a
in Zj and every integer «^0, there is a (unique) letter d of Zj such that

To prove the lemma, we assume the contrary: Ö G Ï satisfïes neither (i) nor
(ii), that is, there are integers n^l and m>\ and letters au ,am of Z t

such that htl(a) = a1. . .öm., Consequently, there are letters aJeEj such that
Ml{a^=aiy fbr i= I, . . . ,m. But /P is a code because codes are closed under
composition., However,

a contradiction. D

LEMMA 5: If h is: a prefix code and a is groming tken fk$t(h(a}}: is growing.

Proof: The assertion is clearly true if |A(a)[=L Otherwise, h{q)=bxy for
some letter b and nonempty wordx. If & is not growing, the preceding proof
shows that A(c)=è, for somec. But this eontradicts the assumptton of A being
a prefix code. •

Informatique théorique et Applications/Theoretical Informaties and Applications



CHARACTERIZATION RESULTS ABOUT L CODES 2 9 3

4. L CODES

Given a morphism h : E* -> E*, its L assocïate h is defîned to be the
mapping of E* into E* such that always

^ a2.... a„) = h (ax) h
2 (a2). . . *" (<*„),

where the </s are (not necessarily distinct) letters of E. (The empty word is
mapped into itself by h,) The morphism h is termed an X code if its L associate
is injective, that is, there are no distinct words w\ and w2 such that

The class of L codes is denoted by L. Observe that it is not natural to define
an L code as a set of words. Observe also that h is usuaïly nat a morphism.
In fact, h h et morphism exactly in case A is idempotent. Moreover, hk^kk
with a few trivial exceptions. L codes are not closed under composition. The
problem of deciding whether or not a given morphism is an L code was
solved in [9} for morphisms giving rise to an empty set Hu as defîned in
Lemma 4.

The notion of bounded deîay for L codes was defined in [16] and [14]. The
idea is the same as for codes: one has to read k letters of the eryptotext in
order to détermine the fîrst plaintext letter. For codes the situation is unal-
teredr after the fîrst plaintext letter a has been removed, as weîl as h {a) from
the eryptotext. The remainder of the eryptotext still equals k(w), for some
plaintext w. For L codes, the remainder of the eryptotext equals M (w) rather
than jf(w). This means that we obtain different notions of bounded delay
depending on whether we are interested in fïnding onîy the fîrst plaintext
letter (weak notion), or the fîrst letter at eaeh stage of decryption {strong or
medmrn strong notion).. The différence between the two latter notions éma-
nâtes on the condition imposed on the bound of delay: is the bound constant
f strong notion),, or is it allowed to grow with the stage of decryption (medium
strong notion). We are now ready for the formai définitions.

A morphism h is of weakfy bounded delay k^l M, for a l words u and w,
the équation

rmpîies the equatioa fîrst (w) = fîrst (w). If for a l f^O and ail u and w, the
équation

vol. 26, n* 3, 1992
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implies the équation first (u) = first (w), then h is of strongly bounded delay k.
In gênerai, h is of weakly or strongly bounded delay if it is so for somefc.
The notations W and S are used for the corresponding classes of niorphisms.
Finally, h is of medium bounded delay if, for some recursive function/ and
all z^O, u and w, the équation

prefr {i) (h
l h(u)) = pref} (0 (h* h(w))

implies the équation first (ü) = first (w). The notation M is used for the corre-
sponding class.

Observe that we do not require h to be an L code in these définitions.
The situation is analogous to that concerning ordinary codes. However, a
morphism being in B implies that it is in C, [2], whereas L and W are
incomparable. Air inclusion relations between the classes introduced are
presented in the following theorem. For the proof we refer to [14].

THEOREM 1: The mutual inclusions between the families P, B, C, S, M, W
and L are as follows:

S->P

Here the arrow dénotes strict inclusion, and two families are incomparable if
they are not connected by a path.

5. THE FAMILY S

We now present a simple characterization for the family S. Some related
questions will still be dealt with in Section 7.

THEOREM 2: A morphism h is in S iff for any distinct letters a and è,
first (h(a))^ first (h(b)).

Proof: Consider the "if'-part. The assumption means that there is a
permutation n of the alphabet E such that, for all a,

first ik{a))^%{a).

Informatique théorique et Applications/Theoretical Informaties and Applications
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Consequently, for all z^O and a,

Therefore,

pref x (h
l h(a)) = first (hl +1 (a)) = ni+1 (a)

uniquely détermines a, that is, h is of strongly bounded delay 1. In crypto-
graphie terms: at the i-th stage of decryption the first letter in the remaining
cryptotext uniquely détermines the first letter of the still uncovered plaintext,
but the decryption process dépends on i.

Consider next the "only if'-part. Let h be in S. By Theorem 1, h is a prefix
code. Proceeding indirectly, we assume that there are two distinct letters a
and b such that first (h(a)) = first (h(b)). Since, h is a prefix code, we may
write

h (a) = cxdy and h (b) = cxez,

where x, y, z are (possibly empty) words and c, d, e are letters such that
d^e. By Lemma 4, a and b are growing letters. This implies, by Lemma 5,
that also c is growing. Hence, for every k, there is an i such that

preffc {ti h(a)) = pref, (hi+1 (*)) - preffe (h
i+1 (*)),

which contradicts the assumption that h is in S. D
Theorem 2 gives a straightforward décision method for testing membership

in S. We do not know any décision method for testing membership in M
or W. Of course, for a fixed bound k, such a method is obvious.

6. THE FAMILY M

Medium bounded delay can be viewed in the theory of L codes as the
most natural counterpart of bounded delay codes. It is natural to require
that only a bounded amount of lookahead at each stage of the decryption
process is needed. However, if the amount of lookahead remains the same
throughout the process, the resulting notion is a very restricted one. This
was seen in Section 5.

The drawback in the définition of M is that, in gênerai, the construction
of the séquence of values
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seems to be an infïnitary task. The purpose of this section is to show that,
in f act, it suffices to construct the values only up to card(Z)-2. [We assume
that card(S)^2.] This construction already guarantees that the morphism is
in M.

More specifïcally, we say that a morphism h : £* -> E* is in the set M' if,
for sorne k>0 and all i with 0:§z^card(Z) — 2, the équation

always implies the équation first(«) = first(w).
Thus, we consider the séquence ƒ {i) = ki only up to card(S) —2, and take

the maximum of the resulting numbers.

THEOREM 3: M' = M.

Proof: The inclusion of the right side in the left side is obvious: if a
recursive function ƒ is associated with h as required in M, then a constant k
as required in M' can be immediately found in the way indicated before the
theorem.

To prove the reverse inclusion, we assume that h is in M', Assume that
z'^card(£)— 1. We give a method óf computing ƒ(z) such that

pref^ (0 (ti E{u)) = pref> (i) (If h{w))

always implies fîrst(M) = fïrst(w). The vahie f(i) dépends on the constants
involvèd; this will be explained mom explicitly ia the next section.

lit will be more convenient to write u and w as products of letters. Thus,
our basic équation assumes the form

By Lemma 2, we inay exclude the case where the words appearing in (*)
are short. The ïbllöwing argument holds quitte independently of the value
f(i% Assume that one of the words appearing in (*) is «horter tâmxi f{î)..
Then also the other must be so, aani {*) assumes the ïbrm

Heoce, by Lemma!,

Informatique théorique et Applications/Theoretical Informaties and Applications



CHARACTERIZATION RESULTS ABOUT L CODES 2 9 7

If z^card(E), the argument can be repeated un til the value card(E)—1 is
reached. Hence, we may conclude that a1=b1.

From now on we assume that the lengths of the words appearing in (*)
are at least f{i). We dénote card(E)- l=n and rewrite (*) aceording to
Lemma 3 :

Observe that the length of gpi+i~nq(a), where a is a letter, is bounded by a
constant. This means that ƒ(/) being large forces s and t to be large, too.
This, in turn, gives enough lookahead (recall that g is of bounded delay) so
that we can drop g from a long initial part of the words in (*)'. We may
have to replace ƒ(/) by a smaller value ƒ'(/) because, after removingg, the
common préfixes may be considerably shorter. Altogether, (*)' assumes the
form

(**)

where s' and t' are still large but smaller than s and /.
We now read the left side of (**) as long as possible without exceeding

ƒ'(/) in length. This gives rise to an équation

(**)' />i+I-»*("i>- • •Pi^"~nq{a,)=pi+1-nq{bl). . .p1^"-*q(br)z,

where we still assume s" and t" to be large. Observe that the "final mess" z
is needed because the right side may be interrupted in the middle of morphic
image. Observe also that we may obtain (**)' directly from (**) if the left
side of (**) is shorter than ƒ '(z).

Let k be the constant associated with h aceording to the définition of M'.
Since p is of bounded delay, also pi+1~n {$ of bounded delay d(i). We now
view (**)' in the form

where the a's and P's are letters, and decrypt from the left, until on the right
side the first letter of pk(q(bi+k)) has been reached. Since a full pl +1 " "-image
remains on the left side, we obtain

vol. 26, n° 3, 1992
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for some z', and hence by (**)'

(***) y + 1 - - ? ( û 1 ) . . . p i + s " - "? (^ )=y + 1 " "? (* i ) . • -Pi-a

Here ?" has to be large enough to provide lookahead of size d(i). Since
pi+1~n is injective, (***) yields

Taking fïrst the g-images and then using the représentation of h in terms of
g, p and q, we obtain

which implies a1=b1. •

7. SCATTERED REMARKS

We now present some supplementary material to the two preceding sec-
tions. Let us first consider in more detail the computation of f(i) in the
preceding proof. The value ƒ(z) does not depend on ƒ(?-!) . On the other
hand, ƒ(/) dépends on certain constants which, in turn, depend on L Such
constants are k, d(i) and the delay dg of g, as well as upper bounds of the
form

BH = max{\H(a)\ | a i n X } ,

where H is a composition of known morphisms, possibly depending on L
The computation of ƒ(z) can be explained by going through the proof

backwards. The number t" has to be large enough to yield (***). When we
take into account the delay d(i), we obtain the estimate

On the other hand, we must have t>t" + dg. In the estimate for ƒ(/), we
must take the è-images as long as possible. Since d(i) is linear (see [15]), our
estimate for Ms a linear function e(i). Hence, we may choose

f(i) = Bx+...+Be(i)9

where the i?'s are bounds of the form BH. They may grow exponentially
with L (In fact5 we are dealing here with DOL growth functions.) Thus we
obtain an exponential expression for ƒ(/).

Informatique théorique et Applications/Theoretical Informaties and Applications
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This shows that the class M remains unchanged if it is assumed that f(i)
is an exponential function. It is an open problem whether a better estimate
can be obtained for ƒ(*').

It follows by Theorems 1 and 3 that the class M' is contained in L. We
now present a direct argument showing this, based on Lemma 2.

Assume that h is in M' and that

Denoting again « = card(E)— 1, we infer by the définition of M' that

Hence, by Lemma 2,

bn+1. . .bj,

which implies cin+1=bn+1. Continuing in the same way, we conclude that
u = t and at = bt for i = 1, . . ., /.

Finally, we outline a straightforward method for deciding membership
in S. The method does not use Theorem2 or Lemmas 4 and 5. The resulting
algorithm is not as simple as the one obtained from Theorem 2. By
Theoreml, we may assume that the given morphism &:S* -» £* is a prefix
code.

For any pair (a, b) of distinct letters, there is a pair (c, d) of distinct letters
such that

h (a) = wcx and h (b) = wdy,

where w, x, y are words (possibly empty). We dénote

eq (<z, b) — w and diff (a, b) = (c, d).

(It is possible that diff(a,b) = (a,b).) Let now diffseq(a, b) be the séquence
(otfcPi), i' = 0 , l , . . . , with (OO,PO) = ( Û ^ )

 a n d (O|+i,Pi + i) = diff(ai,p£). Con-
sider the smallest number n such that there is a number m<n such that
(otm, Pm) = (a„, pn). Define wi = eq(a/, Pf), z'^0, and the "deposit of period"

Then the vérification of the following criterion is immédiate.
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The morphism h is in S if f, for every pair (a,b), eq(a,Z?) does not contain
any growing letter and dep per (a, b) is empty.

The conditions are easily decidable, by Lemma 1.

8. LL CODES

The purpose of this section is to defîne a notion closely related to L codes
and number Systems.

A morphism h : S* -> X* is a lengtkwise L code or, briefly, LL code if ail
distinct words u and w satisfy |A(M)]#JÂ"(W)J. The notation LL is used for
the class of LL codes.

Assume that H = {au . . .,«„}. The growth matrix M associated with h is
an n x n-matrix whose (z5j)-th entry equals the number of occurrences of ÜJ
in h{a^. Let 7ci be the i-th coordinate vector and r| the /ï-dimensional column
vector consisting of l's. The morphism h is unary if there is a letter at such
that h (aj) is a power of ah for ail j .

THEOREM 4: A unary morphism is an LL code iff it is an L code, The class
LL is strictly contained in~L. A morphism h is an LL code iff the function
ƒ:£* -* N defined' by

is an injection. Hère the fïrst sum is over the indices i such that ax appears
in x, and the second sum over the indices] such that ai is thej-th letter in x.

Proof: The first sentence follows because in the unary case two words are
different iff they differ in length. Similarly, LL is contained in L because
différence in length, for any words, implies their différence. That the contain-
ment is strict is seen by considering the Fibonacci morphism: h(a) = b,
h(b) = ab. It is, by Theorem 2, even in S but it is not in LL because
\h{ab) \—\h{ba)\, The rest of the theorem follows from the définition of LL
codes and the fact that ƒ (x) = | h(x) [ D

Observe that the condition given is not as such a décision method for
membership in LL. Any décision method must also settle the uniqueness of
représentation in number Systems, a problem solved in [7].

As regards the hierarchy of Theorem 1, LL is strictly contained in L but
incomparable with all the other families in the hierarchy. This follows by the
proof of Theorem 4 and the fact that W does not contain ail unary L codes.
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From the point of view of number Systems, LL codes give the possibility
of working with several bases at the same time. We hope to return to this
area in a forthcoming paper.
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