
INFORMATIQUE THÉORIQUE ET APPLICATIONS

B. COURCELLE
The monadic second-order logic of graphs III : tree-
decompositions, minors and complexity issues
Informatique théorique et applications, tome 26, no 3 (1992),
p. 257-286
<http://www.numdam.org/item?id=ITA_1992__26_3_257_0>

© AFCET, 1992, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1992__26_3_257_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 26, n° 3, 1992, p. 257 à 286)

THE MONADIC SECOND-ORDER LOGIC OF GRAPHS III: TREE-
DECOMPOSITIONS, MINORS AND COMPLEXITY ISSUES (*)

by B. COURCELLE (*)

Communicated by A. ARNOLD

Abstract. - We relate the tree-decompositions of hypergraphs introduced by Robertson and
Seymour to the finite and infinité algebraic expressions introduced by Bauderon and Courcelle. We
express minor inclusion in monadic second-order logic, and we obtain grammatical characterizations
of certain sets of graphs defined by excluded minors. We show how tree-decompositions can be
used to construct quadratic algorithms deciding monadic second-order properties on hypergraphs
ofbounded tree-width.

Résumé. — On étudie les liens entre les décompositions arborescentes d'hypergraphes introduites
par Robertson et Seymour et les expressions algébriques d'hypergraphes finies ou infinies de
Bauderon et Courcelle. On exprime l'inclusion au sens des mineurs en logique monadique du second
ordre, et on obtient des caractérisations grammaticales de certains ensembles de graphes définis
par mineurs exclus. On utilise les décompositions arborescentes pour construire des algorithmes
quadratiques qui décident les propriétés des hypergraphes de largeur arborescente bornée expri-
mables en logique monadique du second ordre.

INTRODUCTION

This paper continues the study of graphs, hypergraphs and sets thereof
using methods of formai language theory, universal algebra and logic, a study
initiated in Bauderon and Courcelle [7] and Courcelle [13, 17].

In the present work, we show the relations between algebraic notions
introduced in [7, 13, 17] and combinatorial notions introduced independently
by Robertson and Seymour [25-30] in their study of graph minors.

(*) Received December I990, revised February 1991.
This work has been supported by the "Programme de Recherches Coordonnées : Mathé-

matiques et Informatique" and the ESPRIT-BRA projet 3299 on "Graph Transformations".
(*) Université Bordeaux-I, Laboratoire d'Informatique, Unité de Recherche Associée au

Centre National de la Recherche Scientifique, 351, Cours de la Libération, 33405 Talence Cedex,
France.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/92/03 257 30/S5.00/© AFCET-Gauthier-Villars

258 B. COURCELLE

Opérations on hypergraphs have been defined in Bauderon and Courcelle
[7, 13, 17], that make it possible to dénote finite hypergraphs by finite alge-
braic expressions, and infinité ones (countably infinité ones, to be précise) by
infinité algebraic expressions (comparable to formai power series).

An expression is actually a tree and in a natural way defines a tree-
structuring of the hypergraph it dénotes. By a tree-structuring, we mean a
hierarchical construction of the hypergraph in terms of smaller ones, and,
recursively, of these latter ones in terms of others, etc. Expressions actually
dénote sourced hypergraphs, i.e., hypergraphs equipped with a séquence of
distinguished vertices. The length of this séquence is called the type of the
hypergraph.

A notion of width of a hypergraph arises in a natura! way: the width of
an expression is the largest type of the hypergraph denoted by some subex-
pression, and the width of a hypergraph is the minimal width of an expression
denoting it. (It is closely related to the tree-width introduced by Robertson
and Seymour as we shall establish.)

In Section 2, we establish a correspondence between the tree-decomposi-
tions of hypergraphs introduced by Robertson and Seymour [25-27] and
their tree-structurings defined by expressions. We show that the width of a
hypergraph is linearly related to its tree-width, a notion that follows naturally
from that of a tree-decomposition and is essential in the theory of Robertson
and Seymour. Our proof works for finite as well as infinité hypergraphs, and
the resuit for infinité hypergraphs is used in Courcelle [15].

The notion of a hyperedge replacement grammar (Habel, Kreowski [21, 22],
Bauderon and Courcelle [7]) can be considered as an extension to graphs and
hypergraphs of the notion of a context-free grammar defining words. Other
types of graph grammars can be considered as context-free {see Courcelle [12])
but hyperedge replacement grammars are presently the most useful and well-
studied ones. A set of hypergraphs will be called context-free iff it is generated
by an HR (hyperedge replacement) grammar.

Every context-free set of hypergraphs is of bounded width [7], hence of
bounded tree-width. Since the set of finite hypergraphs of tree-width at most
k is context-free, it follows that every statement of the form: "for every set
of hypergraphs of bounded tree-width..." also holds, "for every subset of a
context-free set of hypergraphs" and vice-versa. There are many complexity
results of this form. We refer the reader to Arnborg et al. [3] for an exhaustive
list of results that subsumes many partial results obtained previously. (See
Courcelle [17] and Van Leeuwen [33] for other références.)

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 259

In Section 2, we also defïne a mapping from hypergraphs to graphs that
makes it possible to transfer several known results from graphs to hyper-
graphs.

Hypergraphs can also be considered as logical structures, and logical
formulas can be used to write their properties in a formai syntax. Monadic
second-order logic has proved to be quite powerful while having important
decidability properties (Courcelle [13, 14, 17]). In particular the validity of a
monadic second-order (MS) formula in every hypergraph of a context-free
set is decidable. Another important result is that the validity of an MS
formula in a hypergraph G, given with a dérivation séquence d, relative to
an HR grammar, is decidable in linear time in the length of d [7, 17]. The
major diffïculty is to construct d from G. Constructing a tree-decomposition
of width^A: is an attractive alternative but is still difficult for k ̂ 4 . (See
Section 3 for details.)

In Section 3, we show how some results of Robertson and Seymour [28, 29],
appropriately extended to hypergraphs, make it possible to overcome this
diffïculty.

Section 4 is concerned only with graphs (as opposed to hypergraphs). We
exploit the easy observation that if a set of graphs is characterized by finitely
many excluded minors (this is the case of planar graphs by a variant of
Kuratowski's theorem), then is defmable by an MS formula.

By using other results of Robertson and Seymour [27] (whom we owe a
lot for this paper) we obtain the existence of #i?-grammars generating minor-
closed sets of graphs that do not contain ail planar graphs. We also show
how the minimal excluded minors can be effectively constructed from MS
formulas in certain cases. Our construction uses 7/iî-grammars and gives
alternative proofs to some results of Fellows and Langston [20]. Section 1 is
devoted to a review of définitions from [7, 13, 14].

1. PRELIMINARIES

We dénote by N the set of nonnegative integers, and by f̂ J+ the set
of positive ones. We dénote by [n] the interval {1, 2, 3, . . ., «} for n^O
(with[O] = 0) .

For sets A and B, we dénote by A — B the set {aeA \a$B}. The cardinality
of a set A is denoted by Carû(A). The powerset of A is denoted by 0*(Â).

The domain of a partial mapping ƒ :A -» B is denoted by Dom(/). The
restriction o f / t o a subset A' of A is denoted by ƒ [A'. The partial mapping

vol. 26, n° 3, 1992

260 B. COURCELLE

with an empty domain is denoted by 0 , as the empty set. If two partial
mappings f:A-^B and ƒ ' : À' ->• B coïncide on Dom (ƒ) f\ Dom (ƒ') then we
dénote by ƒ U ƒ' their common extension into a partial mapping: A\J A' -+ B,
with domain Dom (ƒ) U Dom (ƒ').

A binary relation R on a set A is considered as a subset of y4 x A. Hence,
xRy and (x, y)eR are equivalent notations. The transitive closure of R is
denoted by R+, and its reflexive and transitive closure is denoted by R*. The
set of équivalence relations on A is denoted by Eq(^4).

The set of nonempty séquences of éléments of a set A is denoted by A+.
The generic séquence is denoted by (au . . ., an) with commas and parenth-
eses. The empty séquence is denoted by (), and A* is A+ {J {()}. When
À is an alphabet, i.e., when its éléments are letters, a séquence (al9 . . ., an)
in A+ can be written unambiguously a1a2 - - - an. The empty séquence is
denoted by s, a special symbol reserved for this purpose. The éléments of A*
are called words. The length of a séquence (i is denoted by \\i\.

Hypergraphs

As in [7, 13, 14, 15, 17], we deal with labeled, directed hypergraphs
equipped with a séquence of distinguished vertices called the séquence of
sources. The labels are chosen in a ranked alphabet, i.e., in a set Â, each
element of which has an associated integer (in N) that we call its type. The
type mapping is %\A -» N. The type of the label of a hyperedge must be
equal to the length of its séquence of vertices. (This type may. be 0, i.e., we
allow hyperedges with no vertex.)

Let A (and x) be as above, let ne N. A concrete n-hypergraph is a quintuple
G= <VG, EG, labG, vertG, srcG>where:

— VG is the set of vertices of the graph,

— EG is its set of edges,

— labG : EG -> A is a total mapping that assigns to each hyperedge of G a
label in the alphabet A,

— vertG : EG -> Vg is a total mapping that associâtes with a hyperedge e
of G, the séquence of its vertices (this séquence must be of length
T (e) : = (labG (e)) and its z-th element is also denoted by vertG (e, i), and fïnally

— srcG is a séquence of length n in \% (or equivalently a mapping:
[n] -> VG), called the séquence of sources.

We shall dénote by srcG(z') the z-th element of the séquence srcG. (If
« = 0, then G has no source.) "Source" is just an easy sounding word for

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 261

"distinguished vertex". There is no notion of flow involved. The integer n is
the type of G. We shall also dénote by SRCG the set of sources of G.

Whenever we need to specify the alphabet A, we say that G is a concrete
« — hypergraph over A. Let G and H be concrete graphs of the same type n. A
homomorphism: G -• H is a pair of mappings h — (hy, hE) where hy : VG ->• YH,
«E : EG -•EH , and such that:

hy(\ertG(e, i)) = vertH(hE(e)9 i) for all ie[t(e)], all
/ÏV (srcG (/)) — srcH (i) for all f G [n],
If no ambiguity can arise, we dénote hy and hE by /Ï. An isomorphism is a

homomorphism such that hy and «E are bijective. The isomorphism class of
a concrete hypergraph is called an abstract hypergraph, or simply a hypergraph
in the sequel.

A graph is a hypergraph, all hyperedges of which are of type 2. A hyper-
graph G is finite if VG and EG are finite. Otherwise, a hypergraph has at
most countably many vertices and edges (in this paper).

We dénote by FCG(A\, by FCG(^), by FG(^)n5 and by FG(^), the sets
of finite concrete ^-hypergraphs, of finite concrete hypergraphs, of finite n-
hypergraphs, and of finite hypergraphs respectively, over A. The notations
CG(v4)„5 CG 04), G(^)„ and G(A) are used similarly for hypergraphs.

A vertex v belongs to an edge e if v = vertG (e, i) for some L A vertex is
isolated if it belongs to no edge.

For every n in N, we dénote by n the unique w-graph with n pairwise
distinct sources. For every a in A of type «, we dénote by a the «-hypergraph
with a single edge e labeled by a, no internai vertex, and a séquence of n
pairwise distinct sources equal to the séquence of vertices of e.

Let G be a concrete hypergraph; let « be an équivalence relation on VG.
We dénote by [[v]] the équivalence class of v w.r.t^.We dénote by (?/« the
concrete graph H such that

VH = VG/*, EH = EG, labfl = labG, vertH(e, i) = [[vertG (e, OU

for ail eeEH(= EG), ail ie[ï(e)], and srcH(/) = [[srcG(0]] for ail ie[x(G)]. We
calî G/^the quotient graph of G by^.

Opérations on hypergraphs

We recall the définitions of the basic opérations on hypergraphs introduced
in Bauderon and Courcelle [7] (see also [6, 13, 14, 17]}. The fîrst one is the

vol. 26, n° 3, 1992

262 B. COURCELLE

disjoint union © such that, if GeG(A)n, HeG(A)mi then K^G® H is such
M, m «, m

that:

(we assume that V G O V H = 0 and EG D EH = 0)

vert* - vertG U vertH

srcx = srcG. srcH, namely is equal tö the concaténation of the séquences of
sources of the two hypergraphs.

The second opération is the source redéfinition. For each mapping a
from [p] to [«], we have an opération aa such that for G in G(A)n,
cJa (0) == { YG, EG, labG, vertGs srcG

 ö a)* If p = 0, then a is necessarily the empty
map (always denoted by 0) , and ott(G} is the 0-graph obtained from G by
"förgettïng" its sources. We also dénote it by G°.

When/? is small it is convenient tö write oti i2 t> (<7) instead of aa(G),
with i ^ { j) t j \

The third opération is the source fusion. For every équivalence relation ô
on [n], we let 65 be the mapping: G (Â)n -» G (̂ 4)tt that transforms a hypergraph
G into its quotient by the équivalence relation generated by the set of pairs
of vertices { (srco (f), srco (j))/(i, j) s 8}.

Intuitively, 8Ô (G) îs obtained from G by fusing the i-th and y-th sources,
whenever i and ^ are equivalent w.r.t S. If Ô is the équivalence relation on
\n\ generated by a single pair (/,/), then we dénote 6Ô by QUJ. It is clear
that if 8 is the équivalence relation generated by a set of pairs

These opérations and the constants n (for ail weN) and a (for ail # in A)
introduced abôve form a many-sôrted signature denoted by H^. Every Finite,
welî-formed term written with them dénotes a finite hypergraph. These terms
will be called hypergraph expressions, The width of an expression is the
maximal sort of any symbol in it. The width wd(Cr) of a hypergraph G is the
minimal width of an expression denoting it.

Informatique théorique et Applications/Theoreticai Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 2 6 3

Finite terms with variables dénote mappings on hypergraphs called derived
opérations. More precisely, if t is a term of sort p written with variables
xu . . .,xn of respective sorts mu . . . ,m„, then / dénotes in a standard way a
total mapping: G (A)mi x . . . x G (A)mn -+ G (A)r

Infinité expressions without variables have been used in Courcelle [14] and
Bauderon [6] in order to dénote infinité hypergraphs. Such expressions can
be considered as infinité trees, the nodes of which are labeled by symbols
from { ®, 06, aa, n, a}. The formai définition of the hypergraph denoted by

n, m

an infinité expression will be recalled from Courcelle [14] just prior to its use,
in the proof of Theorem (2.2). The notion of width is as for finite hypergraphs.
Some infinité hypergraphs have an infinité width, whereas the width of a
finite hypergraph is always finite.

Logical structures representing hypergraphs

A hypergraph can be considered as a two-sorted logical structure with two
domains: the set of vertices and the set of hyperedges. Constants sl5 . . .,s„
dénote the n sources of an w-graph, and for each a in >4, a relation
édg^e, vl9 . . ., a*) expresses that eis a hyperedge with label a, and séquence
of vertices (TJ1? . . ., vk).

Hence, one can express graph properties by logical formulas. We shall
consider monadic second-order (MS) formulas, where quantified variables
can dénote edges, vertices, sets of edges, and sets of vertices. The symbol if
will refer to this logical language. In particular, a set of graphs is definable if
it is the set of ail graphs satisfying such a formula. The monadic {second-
order) theory of a set of graphs L is the set of ail closed MS formulas that
are valid in ail graphs of L. It îs denoted by Th(L).

2. TREE-DECOMPOSÏXIONS AND HYPERGRAPH EXPRESSIONS

We establish that from every (finite or infinité) expression defming a
hypergraph, one can construct a tree-decomposition of this hypergraph and
conversely, from a tree-decomposition, one can construct an expression. It
foliows from these two constructions that the tree-width of a hypergraph as
defined by Robertson and Seymour [26] and its width as recalled above from
Bauderon and Courcelle [7, 14] are linearly related.

vol. 26, n° 3, 1992

264 B. COURCELLE

(2.1) DÉFINITION: Tree-width.

Let G be an n-hypergraph. A tree-decomposition of G is a pair (T9f)
consisting of a tree T with root r(7), and a mapping ƒ : VT-• ^ (VG) such
that:

(1) VG=U{/(O/»eVr},
(2) every hyperedge of G has all its vertices in ƒ (i) for some i,

, (3) if i,j\ keVT, and if y is on the unique, cycle-free, undirected path in T
from i to K then ƒ (0 O ƒ(*)£/•(ƒ)>

(4) SRCGg/(r(7)).
The wtó/A of such a décomposition is defined as:

Max {Card (ƒ (/))// e V r } - 1.

The tree-width of G is the minimum width of a tree-decomposition of G,
It is denoted by twd(G), and belongs to N U { oo }.

For a 0-hypergraph, condition (4) is always satisfïed in a trivial way.
Similarily, condition (2) is always satisfïed for the hyperedges of type 0 or 1
(provided condition (1) holds). Such hyperedges can be added to or deleted
from a hypergraph without changing its tree-width.

If i and j are two adjacent nodes of T, one may have ƒ (z) Df (J)=Z0.
Hence, G is not necessarily connected, although it is described by a
(connected) tree. It is not hard to see that for every 0-hypergraph G,
twd(G) = Sup{twd(G')/G' is a connected component of G}. Our aim is to
establish the following result:

(2.2) THEOREM: Let A be ranked alphabet, such that
T (A): = Max {x (a)/a e A } < oo. For every hypergraph G over A we have:

(1) twd(G)gwd(G)-l,

(2) wd(G)gMax{2twd(G) + 2stwd(G)+l + T(^)5^(G)}.
For proving this theorem, a few preliminary définitions and lemmas are

necessary.

(2.3) DÉFINITION: Tree-gluings.

Let T be a rooted tree. For every x in VT, let Gx be a hypergraph. We
assume that Gx is disjoint from Gy, for x^y. For every x in VT, let Ex be a
(possibly empty) subset of VGx x VGjc and for every pair (x9 y) of nodes such
that y is a son of x9 we let Rxy be a subset of VGjc x VGy.

Let £ : = U {QJxeYT}, equipped with srcr(ï:) as a séquence of sources.

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 265

Let^be the équivalence relation on \K generated by

R: = U{Ex/xeYT}U(U{Rxy/x,ye\T})

(i.e.,ttis the reflexive, symmetrie, and transitive closure of R).
Let G: = K/&, i.e., be the quotient of K by the équivalence relations on

VK. (Any two equivalent vertices of K become identical in G.) We dénote
this hypergraph by Z (r E R) {GJxe\T} and call it a tree-gluing of the family

(GJxeVr
A tree-decomposition of G can be obtained canonically from this construc-

tion. Let h : K^> K/œ ~ G be the canonical surjective homorphism, and:

ƒ (x) : = hy(VGx)sVG for all xeV r .

With this notation:

(2.4) LEMMA: (T,f) is a tree-decomposition of G. If Card (VGjc) ̂ k for all
xeVT, then the width of this tree-decomposition is at most k—l.

Proof : We only have to verify Condition (3) of Définition (2.1), the other
conditions being clearly satisfied. Let x, ye\Ti let (x, zl5 z2, . . ., zk, y) be
the unique path linking x to y in T.

Let v be a vertex of/(x) C\f(y). We shall prove that v belongs to all the
sets f(zt), Ï = 1 , . . .,k. There exist wx in YGx and wy in VG such that
n(wx) = h(wy) = v' Since h(wx) = h(wy), wx&wr From the définition of^, it is
clear that there exist vertices w1,w[,. . ., w'k, w'y of Gy such that
wxxw'x, (w'x, w J e S ^ ^ ^ « w ' i , (w'ls w2)eS2 1 i Z 2) w2^W2, . . . wkvw'k,
(w'k9 w'y) e SZki y, w'y « wy, where 5Ui „ : = i?U) „ U (Ru, „) ~x for all w, u.

Hence

This establishes that v = h(w^) belongs to ƒ (zt) for all /= 1, . . ., k. D
(2.5) Remark: Let G be a hypergraph, and (T,f) be one of its tree-

decompositions. Then G = X^TtEiR){GJxeyT}, and (T,f) is the associated
tree-decomposition as defined by the construction of Définition (2.3) for well-
chosen E, R, and Gx. To see this, let:

• Gx be a subhypergraph of G, the set of vertices of which is ƒ (x), and
such that every edge of G belongs to Gx for one and only one x in Vr;

• Rxy = {(v, w)e\Gx x YGJv = w} for all pair (x, y) of nodes of T such that
y is a son of x;

vol. 26, n° 3, 1992

266 B. COURCELLE

• the séquence of sources of Gr(T) is that of G.

It is clear that G = E (r E R) { GJx e V r} and that (T, ƒ) is the tree-decompo-
sition of G associated with (T, E, R) by Définition (2.3).

Proof of Theorem (2.2), assertion (1): We dénote by H^1 the restriction of
H^ to symbols of sort at most k. We dénote by M00 (H^1) the set of infinité
(expression) trees formed over Hjf1. It follows that wd(G)^& iff G = val (7)
for some T in M00 (H^1). Let G satisfy this condition. We shall build from T
a tree-decomposition of G. The construction of G = val (T) of Courcelle [14,
Définition 5.3] can be formulated with the notation of Définition (2.3) as:

where E, R and the hypergraphs Gx are defined as follows:

(1) for every node x of T having a label in HA-A, we let Gx: = m where
m = x(x);

(2) for every node x with label a in A we let Gx: = a;

(3) for every node x, we let Ex be 5 if the label of x is 9Ô? and be 0
otherwise;

(4) for every node x labeled by ® then, if y and z are its first and second
n, m

s u c c e s s o r s , w e le t

RXj y : - { (s r c G x (/) , src G y (/)) / / = 1, . . . , » } ,

(5) for every node x labeled by 05 with 8 G Eq ([«]), then, if y is its unique
successor, we let:

(6) for every node x labeled by aaJ where a:[w]-^[m], then, if y is its
unique successor, we let

Rxy : = {(srcGx (i), srcGy (a (/)))//G M}.

Each graph Gx has at most k vertices since every symbol of H^ occurring
in T is, by hypothesis, of type at most k. It follows from Lemma (2.4) that
the associated tree-decomposition of val (T) is of width at most k—l.

Hence, for every graph G, twd (G) ̂ wd (G) - L D

Informatique théorique et Applioations/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 2 6 7

Proof of Theorem (2.2), assertion (2); Frörn a tree-decomposition (T,f) of
G, of minimal width fc-1, so that A; = Max {Card (ƒ(/))/* e V r } , we shall
construct an expression defining G, of width bounded by a function of k.
This construction takes as input a finite or infinité tree T. It is effective
whenever r i s finite or infinité as long Tis given in some effective way.

It is useful to order T in some fixed way. We do this in such a way that
every node has a finite or infinité (possibly empty) séquence of successors.

First step: We transform (T, ƒ) into a tree-decomposition (T\f) of G,
having the same width, and such that V is a binary tree, i,e. such that every
node of T has either zero or two successors. For each node x of V r, we do
the fóllowing.

If x has ö or 2 successors, we do nothing.
If x has one successor y, we add a second one y', and we le t / ' (/) : = 0 .
If x has a fmite séquence of successors (yu y2, . . ., yk), then we replace

by 4

Z2

*

and we le t / ' (z 1) :=/ ' (z 2) :=/ ' (z k . 2) :=/ (x) .
If x has an infinité séquence of successors (j;l5 y2, y$, . . .), we add simila-

rily an infinité séquence of nodes (z1? z2, . . .), and we let ƒ ' (ẑ) : = ƒ (x) for
all L

Second step: We now let (T,f) dénote the newly obtained (T\f), in
order to simplify the notations. By remark (2.5), we can express G as
E(T) 0,R){Gx/x€VT} where R and Gxare constructed appropriately, and each
Gx has at most k vertices.

For every x in Vr, let us choose, in addition, a séquence of sources sx

enumerating without répétition the set of vertices of Gx. Then let x(x) : = \sx .
For each pair (x, ^) of nodes of T where y is a son of x, we deilne

vol 26, nc 3, 1992

268 B. COURCELLE

(i,j)eRxy iff (sx(i\sy(j))zRxr

For every xeVT, let gx be an expression defining < Gx, sx). Since Gx has
at most k vertices, and since the length of its séquence of sources is also at
most k, we can construct gx9 that defmes Gx9 and is of width at most k + x(A).
(One constructs Gx by starting from the graph k', where kf = \sx\, and by
gluing successively all necessary edges; each new gluing is of the form
ao(0ô(g©<2)), where g is an expression of type k'; hence, the width of
<*« (% (g®<*)) is Max {wd (g), k' + x (a)}.)

Next we have to put together all the expressions gx, xeVT) and from a
single one, defining the graph Z(T 0 i R) {GJx e VT }.

For every node x of T having two successors y and z, we let px be the
derived opération:

px(u, v) : = a M (0 v (a a (G s (p

where we let:

q : =T(X);

T(W) : =« : = x(););
T(V) : =m : = T(Z);

P • ["'] ~̂ W be the mapping such that P (z) is the rank in sy of the z-th
éléments of sy belonging to lm(Rxy), hence, n'-^ri);

5 e Eq ([q + n']) be the équivalence relation generated by the set

a be the inclusion map: [q] ->> [q + n'];
y : [m1] -> [m] be such that y (J) is the rank in sz of the ï-th element of sz

belonging to lm(Rxz), hence m'^m);
veEq([# + m']) be generated by {(/, q+j)/(i,J)eRxz}9 and, finally,
ja be the inclusion map: [q] -> [̂ + m'].
This derived opération is of width Max {«, m, ̂ s ^ + «', ^ + /w', wd(gj};

hence, its width is at most Max{2A:, Â: + x(A)}. It has been constructed in
such a way that, for all graphs Hy and Hz of respective types n~x{y) and
m = x(z)9 we have:

/>, (Jïy, ffr) = Z(T,f 0) S) { Gx, i/„ /T,}, where

S^ = {(srcGx (0, srcfly 0*))/(', J) e ̂ } ,

S „ = {(srcGx (0, srCiïz (/))/('j)

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY

and 7" is the tree:

269

This is illustrated in Figure 1. (The relation Sxy is indicated by straight
lines, the relation Sxz by dotted ones, ri = 4 and m' = 3. The big dots •
indicate the sources).

Figure 1

Let P be the set of derived opérations consisting of:

all the opérations px such that x is in V r and has two successors, and

all the expressions (that are derived opérations without arguments) of the
form gx, where x is a leaf of T.

Let t be the tree in M00 (P) such that dom (i) = Vr, t((x)) = gx if x is a leaf,
t({x))—px if je is not a leaf.

The value of / considered as an expression over the derived signature P is
the hypergraph

, and wd(0^Max{2 ,

This G' is "almost equal" to G: to be précise G'° = G°, and
SRCG^SRCG, = 1yr(T). Hence, G = val(aa(/)) for some appropriately chosen
mapping a : [x (G)] -> [| ̂ r (T) |].

It follows that:

wd(G)gMax{2ifc,

vol. 26, n° 3, 1992

270 B. COURCELLE

This has been obtained under the assumption that twd (G) - k — 1. Hence:

wd (G) ̂ Max { x (G), 2 twd (G) + 2, twd (G) + 14- x (A)}. D

(2.6) Remarks: (1) The correspondent betweert width and tree-width is
not exact: the two graphs 1 and (a)~ • — (b) have the same tree-width, namely
0; the first one has width 1, and the second one has width 2.

These examples show in addition that the upper bounds of (1) and (2)
of Theorem (2.2) can be reached: for the first graph we have
0 = twd(l) = wd(l)-l, and for the second one, let us call it G, we have
2 - wd (G) = Max {2 twd (G) + 2, twd (G) + 1 +1 (A), x (G)} since twd (G) = 0,
x(A)=\ andx(G)==Ö.

(2) If G is finite, then the expression constructed from a tree-decomposition
(T, ƒ) of G is of size at most 18 Card (VT) 4- 4 Card (EG). This is a conséquence
of the following observations:

— the initial transformation of T into a binary tree multiples Card(Vr)
at most by 2,

. G
Hère are a few easy conséquences of Theorem (2.2). The width (or tree-

width) of a set of hypergraphs is the least upper bound of the widths (or
tree-widths) of its members.

(2.7) COROLLARY: Let A be a finite ranked alphabet.

(1) A subset L of¥G(A)n has a finite width iffit has a finite tree-width. If
L is generated by an HR-grammar, then its tree-width is finite.

(2) A hyper graph G in G(A)n has a finite width iffit has a finite tree-width.
If G is equationaï then its tree-width is finite.

Hyperedge replacement grammars have been considered in Bauderon and
Courcelle [7J. It is proved in [7, Proposition 4.17] that they generate sets of
hypergraphs of finite width, hence, of finite tree-width.

Equationaï graphs have been introduced in Courcelle [14]. They are of
finite width by [14, Définition 5.8], hence, of finite tree-width.

A number of results have been established for graphs, results that we wish
to extend to hypergraphs. For this purpose, we introducé a transformation
K from hypergraphs to 0-graphs that preserves tree-width and will yield the
desired applications.

Letting A be a ranked alphabet, we let B consist of the symbols of A of
rank 2, We create a new symbol if necessary, so that we can assume

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 271

that B^0, We defme a mapping K : G(A)n ~^G(B)Ö as follows. For every
GeG(A)n, we construct K(G) by doing the following:

— we delete the hyperedges of type 0 or 1 (while keeping the vertices of
unary edges);

- for every hyperedge of type m ̂ 3 we substitute a complete graph in
G(£)m.

Hence, K(G) is an n-graph. We make it into a 0-graph K(G) in G(B)0 by
adding a new edge between any two sources, and turning the sources into
internai, Le., nonsource vertices.

By the following lemma, this construction makes it possible to use for
hypergraphs the known algorithms that deeide whether a graph is of tree-
width at most k and that construct tree-decompositions of width at most k,
when they exist. We shall say more about that in Section 3.

(2.8) LEMMA: twd(G) = twd(K{G)) = twd(K(G)).

Proof: Since K(G) and K(G) are obtained from G by deletions and addi-
tions of edges, we can assume that the vertices are the same, Le,, that
VK(G) = VX(G)~VG . It is clear that every tree-decomposition of G is also a
tree-decomposition of K(G) and of K(G).

Letus now consider a tree-decomposition (T,f) of K(G) [or of K(G)]. For
every complete subgraph K of K(G), [or K(G)] there is an element zeV r

such that ƒ (z) contains all vertices of K. (This fact is easy; a proof can be
found, for instance, in Bodlaender [8]). It follows that (T,f) is a tree-
decomposition of G. D

D. Seese has proved in [31, 32] that if a set or finite or infinité graphs has
a decidable monadic theory, then its tree-width is fmite. We shall extend his
result to hypergraphs. For doing this, we now specify more precisely the
transformation K : G(A)n -> G(i?)0. We replace a hyperedge of G labeled by
a of type k, with a séquence of vertices (vx, . . ,, vk), by binary edges with
label (a, (i,j)), linking vt to vp for all i and j such that i<j. Edges labeled by
(§5 (U f)) a r e added, linking the z-th source of G to the y-th one, for i<j. In
this way, we obtain a graph K(G), the edges of which are labeled in the
alphabet:

B: ^{(a,(i,j))laeA,ï(a)>l9 1 ^ /^x(a)} U

Wç let U dénote G(B)0.

vol. 26, n° 3, 1992

272 B. COURCELLE

(2.9) LEMMA: IfL is a definable subset ofJJ, then

K'l(L): ={GeG{A)JK{G)eL}

is definable (for fixed n and A),

Proof sketch: Let L= {He\3jHV cp} for some monadic second-order for-
mula cp. We wish to construct \|/ such that, for every G in G(A)n9 GNv|/ iff
K(G) N 9.

For simplicity, we shall assume that all symbols of A are of type 3, and
that n = 0. The gênerai case is similar, but more complicated.

The graph K=K(G) can be constructed in such a way that: VX = VG,
X C, where C is the set of pairs

and the two vertices of (e, (i,j)) are the z-th and they-th ones of e in G.

We sketch the translation of cp in cp such that:

Kïy iff G Nep.

The basic remark is that a subset J o f E ^ ^ E ^ x C can be represented by
a triple (Xlt 2, Xlt 3, X2t 3) of subsets of EG.

We construct cp by induction on the structure of cp. We can assume that cp
is written with simplified syntax using set quantifications only (see Section 1).

For each set variable Y of sort e, we shall use set variable Yip l^i^j^3
of the same sort. In the définitions below, X, X' dénotes variables of sort v,
and Y, Y' dénote variables of sort e.

If 9 is X^X\ then cp is J g j .

if cp is i r g r , t h e n 9 i s (r l i 2 g r U 2) A (r l f 3 ç r l i 3) A (y 2 , 3 g r 2 i 3) .

If cp is e d g ^ ^ F , X, X') then ĉ is edga(YitP X, X).

If cp is —i cpx or <p1 v cp2 or 3X.cpl5 then <p is —1 cpx or (pA vcp2 or 3X.<px,
respectively.

If cp is 3 Y.q>u then cp is 3 Y12, Ylt39 Y23.q>1.

It is quite easy to verify that cp satisfies the desired property. •

We dénote by G(^4)^] the set of n-graphs over A of width at most k, i.e.

of graphs denoted by expressions in M00 (H^fc]).

- (2.10) PROPOSITION: Let L^G(A)n. If the monadic theory of L is decidable,
then L is offinite width and tree-width.

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXFFY 2 7 3

Proof: Let L i G (i) „ have a decidable monadic theory. Then, by Lemma
(2.9) the set ^ (I) g D 0 also has a decidabîe monadic theory. (For every
formula cp in j£f, one can construct \|/ such that for every G, G N \|/ iff K(G) ¥ cp;
hence, <p e Th (*T(L)) iff \|/ e Th (L).)

By Seese's result, K(L) is of finite tree-width. The same holds for L by
Lemma (2.8), and L is of finite width by Corollary (2.7). •

3. COMPLEXITY ISSUES

We have proved in [13, Proposition (4.14)] that every monadic second-
order property of a hypergraph can be decided in linear time if the hypergraph
is given either by an expression over a fixed finite subsignature of H^ or by
a dérivation séquence relative to a fixed hyperedge replacement grammar.
This gives efficient décision algorithms for quite a lot properties (including
TVP-complete ones hke 3-vertex colorability or the existence of a Hamiltonian
circuit) restricted to particular classes of graphs and hypergraphs.

By the results of Section 2, the class of hypergraphs of tree-width at most
k (for fixed k) is one of these classes, because its éléments can be defined by
expressions of width at most some fixed m, hence, that are written over the
finite signature Hjf].

The algorithms derived from Proposition (4.14) of [13] take as input an
expression or a dérivation séquence defïning the hypergraph of interest, and
are linear in these data. If the hypergraph is given without these auxiliary
data one must construct an expression for it, (or equivalently, a tree-decompo-
sition by the results of Section 2), or a dérivation séquence. This is not
necessarily an easy task, as shown by the following results:

Resuit 1: For each k, one can décide whether a hypergraph G is of tree-
width at most k by an O(\ VG|ft+2 + |EG|)-algorithm that produces a tree-
decomposition of width ^k if there exists one (Arnborg et al, [I]), In
the special cases of k^\ there exist alternative O([VG| + |EG|)-algorithms
(Arnborg et al [4]).

Resuit 2: For each k, there exists an O (\\G |2 +1EG |)-algorithm that décides
whether G is of tree-width at most k by the results of Robertson and Seymour
[28, 29] and Bodlaender [11], but it is not explicitly known beeause it dépends
on knowledge of the (finitely many) minimal forbidden minors characterizing
graphs of tree-width at most k. (See Section 4.) This algorithm also constructs
a tree-composition of width ^k when such exists.

vol. 26, n° 3, 1992

274 B. COURCELLE

These two results yield polynomial algorithms for deciding monadic second-
order properties of the sets of hypergraphs of tree-width at most k.

Nothing is known yet concerning the complexity of expressing a hypergraph
in terms of a finite set of opérations from HA. This problem is actually a
special case of the parsing problem for hyperedge replacement grammars,
i. e., the problem of either finding a dérivation séquence producing a given
hypergraph or reporting that no such dérivation séquence exists. The main
known results concerning this problem are the following ones:

Resuit 3; Some context-free sets of hypergraphs have an TVP-complete
membership problem. This is the case of the set of graphs of cyclic bandwidth
at most k for each &^2, by the resuit of Leung et al [24] showing NP-
completeness. (Hyperedge replacement grammars generating these sets of
graphs are easy to construct.) Hence, polynomial algorithms cannot be
obtained from arbitrary hyperedge replacement grammars.

Resuit 4: Some hyperedge replacement grammars considered by Lautemann
[23] and Vogler [34] have polynomial parsing algorithms. However, these
results do not apply to the construction of tree-decompositions of width ^k.

In the above discussion, we have considered the construction of polynomial
algorithms for deciding monadic second-order properties cp on classes of
hypergraphs L, that, for every hypergraph G, would deliver the following
exclusive answers:

(1)

(2) GeL and G1= cp

(3) GeL and GN-i<p.

The following proposition is based on results by Robertson and Seymour
[28, 29] and shows how to construct quadratic algorithms delivering the
following non exclusive answers

(1') G$L

(2') Gtcp

(3') Gl=—î cp

where answers (2') or (3') are obtained whenever GeL, but also in some
cases, when G$L.

(3.1) PROPOSITION: Given cp, k, and n such that <§eS£ and k^n, one can
construct an algorithm that says correctly for every finite n-graph G over A,

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 275

and in time O(size(G)2) (or O(Card(VG)) in the special case where E G = 0) :

either that twd (G)>k,

or that twd (G) S 5 &+ 9 and G \= cp,

andGV~\ cp,

Proof: We shall use the notion of branch-width of a graph introduced by
Robertson and Seymour in [28]. This notion is defined in term of branch-
decompositions, as tree-width is defined in terms of tree-decompositions. We
need not give the définition. We shail only use the result of [28] saying that
the branch-width P (G) of a graph G is related to its tree-width as follows:

whenever p(G)^2. The proof provides effective transformations between
tree-decompositions and branch-decompositions that can be done in linear
time. The sizes of the décompositions are related linearly.

The same authors have given in [29] an algorithm that, for every integer
w, for every graph G, gives in time O (Card (EG) Card (VG)) the following
outputs (we assume that E G / 0) :

— either the answer that P (G) ̂ w,
— or a branch-decomposition of width at most 3 w.
By applying this algorithm to a graph G (with E G ^ 0) , and to w = k+2,

one obtains:
— either the answer that twd (G) > k (since twd (G) ̂ p (G) - 1),
— or a tree-decomposition of G of width at most (9/2) (k + 2)<5fc+9,

(from the eventual branch décomposition of width at most 3 w).
If G is a graph with E G = 0 , then twd(G) = 0, and one can construct in

time O(card(VG)) a tree-decomposition of width 0.
Let us now assume that G is a hypergraph. One can express it as G'®G"

where G" is a 0-hypergraph consisting of all hyperedges of type 0, of all
isolated vertices that are not sources, and of all unary hyperedges that are
not adjacent to any hyperedge of type ^ 2 , and that are not incident to
sources. Note that K(G) is the disjoint union of K(G') and K(G").

This détermination of G' and G" can be done in time O(size(G)), and one
can also construct a tree-decomposition of G" of width 0 within this time-
bound.

We now consider G' and apply the above algorithm to K(G'). By Lemma
(2.8), it gives the desired results in time O(Card(EG,).Card(VG,)), since for

vol. 26, n° 3, 1992

276 B. COURCELLE

fixed A and n, the cardinalities of the sets of edges of G' and K(G') are
linearly related. In particular, if twd(K(G'))Sk, the algorithm constructs a
tree-decomposition (71', ƒ') of K(G') of width at most 5&; + 9, and such
that Card (Vr):g Card (VG,). This tree-decomposition is actually also a tree-
decomposition of G' by the proof of Lemma (2.8), and can be extended into
a tree-decomposition of G of the same width.

By Theorem (2.2.2), an expression e defïning G can be constructed from
(T, ƒ). lts size is O (Card (Vr) + Card (EG)), hence, is O (size (G)) (for fixed k).
By applying to e the result of [13, Proposition (4.14)], one gets in time
O (size (G)) that either G = val (e) Nep or that G=val(e) N~i cp. The overall
time complexity is O (Card (EG). Card (VG)). D

This technique applies to the formulas of counting monadic seeond-order
logic introduced in Courcelle [13] (that have special atomic formulas of the
form CzrAp q{X) testing whether the cardinality of a set X is equal to p
modulo q), and to those of the extended monadic second-order logic introduced
in Arnbord et al [3].

4. MINORS

We establish that minor inclusion can be expressed in monadic second-
order logic, and we use some results of Robertson and Seymour to construct
hyperedge replacement grammars generating certain minor closed sets of
graphs.

We shall deal only with graphs in this section. The set A of hyperedge
labels will consist of symbols all of type 2. Every graph over A is thus
directed.

For every such graph G, we dénote by und (G) the underlying, undirected,
unlabeled 0-graph. We shall dénote by U the class of undirected, unlabeled
0-graphs with possible loops and multiple edges. The set of fïnite ones will
be denoted by FU.

4.1. DÉFINITION: Minor inclusion.

Let G and H be fïnite graphs. We say that H is included as a minor in G,
or more simply that H is a minor of G (this is denoted by H<\G) if H can be
obtained from G by a fïnite séquence of edge contractions, edge deletions,
and removals of isolated vertices.

The following characterization is equivalent for fmite graphs, and can be
taken as a définition of minor inclusion for infinité ones. It says that H<G

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 277

iff there exist three mappings:

satisfying the following conditions;

(1) for every veYH, (ƒ {v), f'{v)) is a connected subgraph of G,

(2) for every v, v'eVH with v^v\ then ƒ (z;) O / V) = 0 ,
(3) g is injective and g {e) belongs to no set ff(v)9 fbr any eeEH and veVH9

(4) ïf eeEH links i? and v, then g(^) links a vertex off(v) and a vertex of
f'(v). (We may have v = v.)

ïntuitively, H is obtained from G by the contraction of all edges in f'(v),
for all oeVff5 the deletion of all edges neither in/ ' (u) nor in g (e) for any v
and €, and the deletion of all vertices not mf(v) for any v and e, and the
deletion of all vertices not in ƒ (u) for any v.

These définitions are independent of labels and orientations so that:

H<G iff und(i/)<und(G).

Let us note that we work with abstract graphs. It follows that there is no
différence between "H is a minor of G" and "H is isomorphic to a minor of
G". It follows also that minor inclusion is a partial order on fïnite graphs,
and not a quasi-order. This is so because, for fïnite graphs H and G,

H< G >̂ H=G or size (H) < sîze (G)

Iwhere size(G) = Card(¥G3 + Card(EG)]. Hence,

This argument does not apply to infinité graphs. One can easily construct
non-isomorphic ïnïlnite tr^es H and G such that H<G<iH.

If M is a set of finite graphs, MgFU, we dénote by FORB (M) the set of
all fmïte graphs G such that H<G for no H in M.

A well-known example is the characterization of planar graphs as
FORB({K3 3, K5}) established by Wagner £35] and similar to that of Kura-
towski using subgraph homeomorphism instead minor inclusion. Our objec-
tive is to express minor inclusion in monadic second-order logic, in order to
obtain iogical characterizations of sets of graphs of the form FORB(M).

vol. 26, n° 3, 1992

278 B. COURCELLE

(4.2) LEMMA: For every finite graph H, one can construct a formula q>H in
££ defining {GjH<\G). If H is a simple loop-free graph, one can construct cpH

without using edge quantifications.

Proof: Let YH={vl9 . . -,vtt}9EH={el9 . . . , e m } .

A function ƒ : YH -• 0> (VG) can be represented by an «-tuple of sets
of vertices (Xl7 . . . J J such that Xt=f{v^, Similarly, a function
ƒ ' : V H - ^ (E G) can be represented by an rc-tuple (Yu . . ., 7J of sets of
edges, and g: EH -> EG, by an m-tuple (zls . . ., zm) of edges. Hence, the
existence for a given G of f ƒ ' and g satisfying conditions (1) to (4) of
Définition (4.1) can be written as a formula \|% of the form 3XU . . ., Xn,
Yu . . ., Yn, zl5 . . ., zm[(pH] where Xu . . ., Xn are set variables of sort v,
Yu . . ., F„ are set variables of sort e, and zl9 . . ., zm are object variables
of sort e. A monadic second-order formula (p^ with free variables
Xl5 . . ., Xn, . . ., zm expressing Conditions (1) to (4) can easily be written.
lts writing uses the fact that the connectedness of a graph can be written in
monadic second-order logic (Courcelle [13], Proposition (3.8)]). Hence, for
every graph G, H< G iff G1= \|/ff.

We now consider the case where H is simple and loop-free. Conditions
(1), (3) and (4) of Définition (4.1) can be replaced by the two conditions:

(1') for every veYH, the induced subgraph G \f(v) is connected.

(3') if there is an edge in H linking v and v'9 then there is an edge in H
linking a vertex off (v) and a vertex off (v').

From this formulation, a formula of the form 3Xl9 . . ., Xn.ty'H can be
written, where Xl9 . . ., Xn are set variables and y\f'H expresses the fact that
the function/: VH-»^(VG) associated as above with Xl9 . . ., Xn satisfies
conditions (1'), (2) and (3'). Such a formula can be written without variables
denoting edges or sets of edges. It uses atomic formulas of the form edg(x, y)
expressing the existence of an edge between two vertices x and y. D

As an application we get that the class of planar graphs is definable by a
monadic second-order formula. That this formula does not use edge quantifi-
cations is interesting because some results of Courcelle [12] are applicable to
formulas of this latter form, and not to gênerai ones. (See also Courcelle
[16] for a comparison of the two variants of monadic second-logic with and
without edge quantifications.)

In the constructions of Lemma (4.2), the potential minor H of the consi-
dered graph G is fixed. Now we give an alternative, more complicated
construction where this is no longer the case. We need some notation.

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXÏTY 279

(4.3) DÉFINITION: Let G be a fmite or infinité graph. Let XgVG, let 7,
Z<=EG. We say that (7, Y, Z) defines a minor of G if the following conditions
hold:

(oe) if x, x'eX, x^x', then there is no Z-path in G linking them (a Z-path
is a path all edges of which are in Z; edges can be traversed in any direction);

(P) each end y of an edge in Y is linked to some vertex x of X by some
Z-path; (one may have x = y;)

(y) Yf\Z=0.
Notice that by condition (a), the vertex x in condition (P) is uniquely

defïned. We shall dénote it by y.

The minor defined by the tuple (X, 7, Z) is then H where YH = X,EH=Y
and vertH (e) = {y, y'} where j ; and / are such that vertG (e) = {y, y'}. We
shall dénote it by Minor (X, Y, Z). The corresponding mappings f ƒ ', and g
of Définition (4.1) are as follows: ƒ (v) is the set of vertices of G linked to v
by some Z-path (including v); f ' (v) is the set of edges of Z having their ends
in ƒ (v); and g is the identity.

Hence, Minor (X, 7, Z) is indeed a minor of G. It is not hard to see that
every minor H of G is of this form for appropriate sets X, Y, Z.

We shall say that / /= Minor (X, Y, Z) is a s/nc/ mz'nor of G if it is fmite
and H^G. This is equivalent to requiring that at least one of the following
three conditions holds: Z ^ 0 5 7 /E G , or

(4.4) PROPOSITION: Lei *F be a monadic second-order formula describing
properties of graphs in U. One can construct a Monadic second-order formula
cp defining {G/H< G, for some H inV, Ht^}.

Proef: We can take (p to be of the form:

3X, Y, Z[q>i Acp2]

where q̂ says that (X, Y, Z) defines a minor of the considered graph, and
cp2 says that this minor satisfies *F. The formula <px is just the conjunction
of MS-formulas expressing conditions a, P, and y of Définition (4.3). We
now consider <p2. Let H= Minor (X, Y, Z) where we assume that q>t holds.
Then YH = X, EH = Y and the incidence relation between edges and vertices
of H can be expressed by an MS-formula. It follows that *F can be translated
into a formula (p2 such that H1= ¥ iff G h <p2 (Z, 7, Z). D

Note that the first part of Lemma (4.2) is a conséquence of this lemma
because every fïnite graph H can be characterized (up to isomorphism) by a
first-order formula.

vol. 26, n° 3, 1992

280 B. COURCELLE

We now come to applications of Lemma (4.2) and Proposition (4.4). A
set of graphs is minor-closed if it contains all minors of all its members. (This
implies that it is closed under relabellings and reversals of orientations of
edges).

Robertson and Seymour have established in [30] that if a set L of fmite
graphs is minor-closed, then it is characterized by a finite set of forbidden
minors, i.e., it is of the form FORB(AZ) for some fmite set M. There is a
canonical such set M, called the obstruction set of L and characterized as:

OBST (L)= { i/eFU-und(i:)/every strict minor of H is in und(L)}.

We obtain immediately the following result:

(4.5) THEOREM: If a set of finite graphs is minor-closed, then it is definable.

Proef: Let L be such a set and M={HU . . ., Hm} be its obstruction set.
Then L is defined by the formula —i cpffl A ~t <pHl A . . . A —I cpKm, where the
formulas (pH. are as explained in Lemma (4.2). D

Note that in order to construct the formula defming a minor-closed set L
of finite graphs (and to use it in algoxithms like the ones reviewed above in
Section 3), one needs to know the obstruction set of L,

For each A:^4, the set of graphs of tree-width at most k is mmor-closed.
We know that the members of the obstruction set are all of tree-width exactly
fc+1,. but we do not know y et how to construct them. For k =-3, there are
four, and they have been determined by Arnborg et ai. [5]. For k = 2 the list
reduces to one, namely K4 (Wald and Colbourn [36]; see also Arnborg and
Proskurowski [4]). For k=l, there is only one, namely the loop with a single
vertex. (Graphs of tree-widths at most 1 are forest ha ving possibly multiple
edges.)

We shall now consider sets of finite graphs that are both minor-closed and
of bounded tree-width. Quite many interesting examples are of this type; in
particular, the classes of graphs of tree-width at most k, for each k. The
tree-width of a set of graphs is the least upper bound of the tree-widths of its
éléments.

(4.6) THEOREM: Let L be a minor-closed set of finite graphs. The following
conditions are equivalent:

(1) L = FORB(M) where M<=FU and M contains some planar graph;

(2) The tree-width of L is finite;

(3) L is context-free.

Proof: (I) o (2) is proved in Robertson and Seymour [26, 27].

Informatique théorique et AppMeatîons/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 281

(3)=>(2) holds by CoroUary (2.7).

(1)=>(3) The set L is definable by a monadic second-order formula cp by
Theorem (4.5). On the other hand, if P is a planar graph, then
twd(FORB({P}))^A:(P) where k(P) is a (huge) constant computabie from
P by [27]. For each k, the set TWD{t) of finite graphs in FG(^)0 that have
a tree-width at most k is context-free. (This is an easy conséquence of the
construction of the proof of Theorem (2.2.2) and of Theorem (4.11) of [7].)
Hence, L = TWD (k (P)) D { G/G N <p} is context-free since the intersection of
a context-free set and a definable one is context-free (Courcelle [13, CoroUary
4.8.1]). •

Note that condition (1) of this theorem is equivalent to:

(1') OBST(L) contains some planar graph.

This result raises effectivity questions that we shall now discuss. Concerning
a set of graphs L, one may know the following objects or information
concerning it:

- a finite set M such that L = FORB(M);

- the information that L is minor-closed (denoted: MC);

- the obstruction set OBST(L) when L is minor-closed;

- the information that the tree-width of L is finite
(denoted: FTW);

- an upper-bound k< oo on twd(L), when FTW holds;

- a monadic second-order formula <p definmg L;

- au HR-gr&mmar F gerierating L,

In the following proposition, we review the possitoïlities of deterrnining
effeotively some of fitaese informations ^r objects Irom the others,

(4,1) Ï*ROH)SÏTION: Let L be a set of finite grapks,

(1) From M such that L^FORB(Âf), one ccrn compute OBST(£) and, of
eowrse, condition MC holes. If m addition M contains a plmar graphe one ean
compute k and T, and property FTW also holds.

(2) We now usswme ihat condition MC holds, From ̂ p and an upper bowid
on twd(ÖBST{£)|, om ean construct OBST(£,). Ifwe mswne MC and FTW,
If me kmow <jx, then we ean compuie k, OBST(£|, and T.

(3) From F, one ean compute k,

Proof: (1) The graphs in OBST(L) are minors of the graphs ia M. One
ean thus deteriîîine them as the minimal minors of the graphs in M that are

vol. 26, n° 3, 1992

282 B. COURCELLE

not in FORB(M). The constructions of k, cp, and F when M contains a
planar graph are given in the proof of Theorem (4.6).

(2) Let L be minor-closed and defined by an MS-formula cp. Then
Mo : = OBST(L) is characterized as {i/eFU-L/every strict minor of H is in
L}. It follows that M° is the set of graphs H in FU such that:

H\=VX, Y, Z['ïf (X, 7, Z) defines a strict minor of H, then Minor (X,
Y, Z)satisfiescp"]-

By the technique used in the proof of Proposition (4.4), one can express
the second condition by an MS-formula. Hence Mo is definable, say by a
formula \[/. We know that Mo is finite, but this is not enough to be able to
construct it from \|/. We need something more.

We also assume that we know fc'^twd(Af0). From this upperbound and
the formula \|/, one can construct an //i?-grammar F' generating Mo. One
can décide whether a given i/TÎ-grammar générâtes a finite set and construct
this set explicitly when it is finite, by a resuit of Habel [21, Corollary 2.5].
By applying this result to F', one can construct Mo.

Let us now assume that L is given by a formula cp and is known to be
minor-closed and of finite tree-width. There exists a square grid Gn such that
Gn$L (because twd(L)< oo and L is minor-closed). One can find the smallest
one by enumerating them and testing for each n whether GBq>. The integer
k — k(Gn) gives an upper bound on twd(L). (Again, we are using the main
result of Robertson and Seymour [27].)

Since twd(Z,)gfc, we know that Mo : =OBST(L) is of tree-width at most
k+1 (because each edge-contraction, edge-deletion, and vertex removal
decreases the tree-width by at most one). Hence, Mo can be constructed by
the first part of the proof.

(3) Immédiate conséquence of Bauderon and Courcelle [7, Proposition
(4.17)]. D

The second part of Proposition (4.7) can also be obtained by the method
of Fellows and Langston [20]. They use congruences of finite index on an
appropriate algebra of graphs. Every definable set of graphs saturâtes a finite
index congruence relation, as proved in Courcelle [13]. This relation can be
effectively determined from a given logical formula, hence the method of [20]
is applicable to (4.7.2).

(4.8) Remarks: These results show the following in particular. In order to
define a minor-closed set of graphs of bounded tree-width, it is equivalent to
have the obstruction set or an A/S-formula, because either of them can be

Informatique théorique et Applications/Theoretical Informaties and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 2 8 3

constructed from the other. Both of them can be used to construct an HR-
grammar. However, we do not presently know how to construct an MS-
formula or the obstruction set from the grarnmar, though we have no theore-
tical result saying that this is impossible. The result of Fellows and
Langston [19] (see also Van Leeuwen [33]) showing that one cannot détermine
OBST(L) from a membership algorithm for L does not apply if L is given
by a grammar.

There may exist an algorithm that takes an //iî-grammar F and produces
a fmite set of graphs A(T) such that, whenever L(T) is minor-closed, then
,4 (F) = OBST (L (F)). This algorithm would yield another one, producing
OBST (TWD (k)) for every given k ̂ 1. The existence of such an algorithm,
and a fortiori an explicit construction of it, is an open problem. D

The following result is due to Fellows and Langston [20]. We obtain it as
an immédiate conséquence of Proposition (4.7), assertions (1) and (2). The
proof of [20] uses a different technique.

(4.9) COROLLARY: Let L = FORB(M1) UFORB(M2) be given by Mx and
M2. If we know an upper bound on twd (OBST (L)), then we can compute
OBST(L).

Note that L is minor-closed since it is the union of two minor-closed sets.
Hence, OBST(L) is finite and so is twd (OBST (L)). It is not known how to
détermine OBST(Z) from Mx and M2 without some additional assumption.
An upper bound on twd (OBST (L)) can be obtained as explained in the
proof of Proposition (4.7.2) if Mx U M2 contains a planar graph.

We now consider some decidability results obtained by these techniques.
For each k, the set of graphs of tree-width exactly k is context-free because

it can be expressed as TWD(fc)-TWD(fc- 1), Le., as the intersection of the
context-free set TWD(fc) and the definable set T(k) : = {G/twd(G)>fc-l }.
However, we are presently unable to construct an i/i?-grammar generating
it, because we do not know the MS-formula that defines T(k). It follows
that its monadic theory is decidable, but that the corresponding décision is
presently unknown.

By contrast, the following result shows that, even if we do not know how
to construct a formula cp defining a minor-closed context-free set L, neverthe-
less we can solve some décision problems concerning L that seem, at first
sight, to require the construction of cp or at least, of an ifiî-grammar
generating L.

We first recall that one cannot décide whether the intersection of two
context-free sets of graphs is empty (simply because context-free sets of words

vol. 26, n° 3, 1992

284 B. COURCELLE

can be considered as context-free sets of graphs via an appropriate encoding
of words as graphs, and the eorrespondïng problern for context-free ïanguages
is undecidable).

(4.10) PROPOSITION:; The emptiness of L f)L' is decidabie if L is a context-
free set of graphs {gvuen by an ER-grammar), and L' is minor-closed, given by
a membersMp algorithm,

Proof: We fïrst recatl from Habel that the membership probîem for a
context-free set of graphs, given by an ER grammar, is decidabie ([21,
Chap. IV> Corollary 1.6}). Hence, the property L f)Lf^0 is semi-decidable.
We let D be stich L, I ' c D , where either D = FU or D=-FG(^)0 for some
ftnite alphabet A.,

We need only show that the pxoperty Lf)Lr = 0 is serni-decidable.

Let Hl9 B2, H3> . . ., be an effective eimmeration of D. By testing whether
each graph Ht beïOBgs to L% one can extract from it an enumeration
H\, M2, H's, ., ., of T>-U\ For every j ,k t M^-FORB: ({J^, ..., E^}), Since
U is minor-closed^

V = FQKB ({ B*tr H2>)) and Mt 2 Af 2 2 . . . i A f ; i

By the mrnn theorem of Robertson and Seyrnoiar |3CQ, we have some j
such that L*=:Mj = Mjj+n. §ot all m (TM$ j ï$ not necessarily the fïrst such
that Mj^Mj-x* and we have no way to détermine it in genera! because one
cannât décide whether L/~R, for a defiaable set of graphs R; one can only
décide whetfoer 1/^R^ Foc every ir one can test whether I g B - M t (because
B - M i is deiïnabfc by a knomn MS-fornaiiïa). It is, clear that Lf\U=0\M
L^D-Mt fbr some L Hence^ the property Lf\U^0hsemi-decidable. D

Note aâckê at proof correction. Air aïgödtnm; Computing tlte obstruction sets of the sets of
graphs. of tree-wMtf* at most k, for £jj|4 kas beert giveB in [37];. Mowever, tnis algorithni: is
intractable amd; the sets are stillï unknown, Nevertheïess, they can be cornputed, at least in
prineipfe..

ACKNOWLEBGEMENTS

I thank H. Bodlaender för helpful cornments cöneerning the results; of Section 3. I thank K.,
Callaway wha helpedJ me with the EngHsh styfev

Informatique théorique et Appucations/Theoreticaî Informaties, and Applications

TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 2 8 5

REFERENCES

1. S. ARNBORG, D. CORNEIL and A. PROSKUROWSKI, Complexity of fïnding an embed-
ding in a k-tree, S.I.A.M. J. Alg. Disc. Methods, 1987, 8, pp. 277-284.

2. S. ARNBORG, B. COURCELLE, A. PROSKUROWSKI and D. SEESE, An algebraic theory
of graph réduction, Report 90-02, Bordeaux-I University, 1990. Short version in
L.N.C.S., 532, 1991, pp. 70-83.

3. S. ARNBORG, J. LAGERGREN et D. SEESE, Easy problenis for tree decomposable
graphs, / . Algorithme 1991, 12, pp. 308-340.

4. S. ARNBORG and A. PROSKUROWSKI, Characterization and récognition of partial 3-
trees, S.LA.M. J. Alg. Disc. Meth., 1986, 7, pp. 305-314.

5. S. ARNBORG A. PROSKUROWSKI and D. CORNEIL, Forbidden minors characterization
of partial 3-trees; Discrete Math., 1990, 8ù,pp. Î-19.

6. M. BAUDERON, Infinité hypergraphs, I, Basic proporties, Theoret. Comput. ScL,
1991, 82, pp. 177-214.

7. M. BAUDERON and B. COURCELLE, Graph expressions and graph rewritings, Math.
System Theory, 19S7, 29, pp. 83-127.

8. H. BODLAENDER, Classes of graphs wïth bounded tree-width, Report RUU-CS-
86-22, University of Utrecht, The Netherlands, 1986.

9. H. BODLAENDER, Poïynomial algorithms for Chromatïe Index and Graph Iso-
morpMsm on partial &-trees, Proc. First Scandinavian Workshop on Algorithm
theory, 1988, Lecture Notes in Comput. ScL, 318, pp. 223-232.

10. H. BODLAENDER, Dynamic programming on graphs with bounded tree width,
Proceedings of ICALF88, Tampere, Finland, L.N.C.S, 317, 1988, pp. 105-118.

11. H. BODLAENDER^ Improved self-reduction aïgorithms for graphs with bounded
tree-width, Proceedings of WG'89, Lecture Notes in Comput. Set, 1990, 411,
pp. 232-244

12. B. COURCELLE, An axiomatic définition of eontext-free rewriting and its application
to NLC graph grammars, Theoret. Comput. Sel, 1987, 55, pp. Î41-181.

13v B;. COURCELLE, The monadic second-order theory of graphs I: Recognizable sets
of finite graphs. ïnform. and Comput. 1990, 85, pp. 12-75.

14. B. COURCELLE, The monadic second-order logie of graphs II: Infinité graphs of
bounded with, Matk, Systems Theory, Î989, 21, pp, 187-221.

15. B. COURCELLE^ The monadic second-order logic of graphs IVy DefinabiMty resiilts
fbr eqiiational grapès, Ann. Pure Appl. Logic, 1990̂ 49, pp. 193-255.

16. B. COURCELLE, The monadic second-order logic of graphs VI: On several représen-
tations; of graphs by logica! structures. Research report 8^-99y Bordeaux I-Univer-
sity. Discrete Appi. Math. (in press). (See also Logic in Comput. ScL, 199$.
Philadelphia}.

Î7. B. COURCELLE,; Graph rewriting: an algebraic and logic approach, in Handbook
of Theoretieal computer Science, vol. B, J. VAN LEEUWEN Ed. 1990, Elsevier,
pp. 193-242.

18.. B. COURCELLE and M. MOSBAB, Monadic second-order évaluations on tree-
decomposable graphs,. Rapport 90-110, Bordeaux-I, University, 1990. Theor. Com-
put. ScL, (to appear).

19. M. FELLOWS and M. LANGSTON, On Search, décision and the efficiency of polynom-
ial-time algorithms, A.C.M. Symp. on Theory of Computing 1989, pp. 501-512.

voL 26, n° 3, 1992

286 B. COURCELLE

20. M. FELLOWS and M. LANGSTON, An analogue of the Myhill-Nerode Theorem and
its use in computing finite-basis characterization, 30th Annual I.E.E.E. Symp. on
Foundations of Computer Science, 1989, pp. 520-525.

21. A. HABEL, Hyperedge replacement: grammars and languages, Doctoral disserta-
tion, University of Bremen 1989.

22. A. HABEL and H. J. KREOWSKI, May we introducé to you: hyperedge replacement,
L.N.C.S., 1987, 291, pp. 15-26.

23. C. LAUTEMANN, Efficiënt algorithms on context-free graph languages, ICALP'88,
Tampere, Finland, L.N.C.S., 1987, 317, pp. 362-378.

24. J. LEUNG, J. WITTHOF and O. VORNBERGER, On some variations on the bandwidth
minization problem, S.I.A.M. J. Comput., 1984, 13, pp. 650-667.

25. N. ROBERTSON and P. SEYMOUR, Some new results on the well-quasi-ordering of
graphs, Ann. Discrete Math., 1984, 23, pp. 343-354.

26. N. ROBERTSON and P. SEYMOUR, Graph Minors IV, Tree-width and well quasi-
ordering, / . Combin. Theory, Ser. B. 48, 1990, pp. 227-254.

27. N. ROBERTSON and P. SEYMOUR, Graph Minors V, excluding a planar graph, J.
Combin. Theory, Ser. B., 1986, 41, pp. 92-114.

28. N. ROBERTSON and P. SEYMOUR, Graph Minors X, Obstructions to tree-decomposi-
tion, Revised version, Feb. 1988.

29. N. ROBERTSON and P. SEYMOUR, Graph Minors XIII, The disjoint paths problem,
Preprint, September 1986.

30. N. ROBERTSON and P. SEYMOUR, Graph Minors XV, Wagner's conjecture, Revised
version, March 1988.

31. D. SEESE, Ein Unentscheidbarkeitskreiteriurn, Wiss. Z. der Humbold Univ. Zu
Berlin Math. Natur. Wiss., R24, 1975, pp. 772-780.

32. D. SEESE, The structure of the models of decidable monadic théories of graphs.
Ann. Pure and Appl. Logic, 1991, 53, pp. 169-195.

33. J. VAN LEEUWEN, Graph algorithms, Handbook of Theoretical Computer Science,
volume A", J. VAN LEEUWEN Ed., 1990, Elsevier, pp. 523-631.

34. W. VOGLER, Recognizing edge replacement graphs languages in cubic time, Procee-
dings of the 4th Int. Workshop on Graph Grammars, Bremen 1990, L.N.C.S.,
532, 1991, pp. 676-687.

35. K. WAGNER, Ueber eine Eigenshaft der ebenen Komplexe, Math. Ann., 1937, 114,
pp. 570-590.

36. J. WALD and C. COLBOURN, Steiner trees, partial 2-trees, and IFI networks,
Networks, 1983, 13, pp. 159-167.

37. J. LAGERGREN and S. ARNBORG, Finding minimal forbiden minors using a finite
congruence, L.N.C.S. 510, 1991, pp. 532-543.

Informatique théorique et Applications/Theoretical Informaties and Applications

