The topologies of sofic subshifts have computable Pierce invariants
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 25 (1991) no. 3, pp. 247-254.
@article{ITA_1991__25_3_247_0,
     author = {Head, Tom},
     title = {The topologies of sofic subshifts have computable {Pierce} invariants},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {247--254},
     publisher = {EDP-Sciences},
     volume = {25},
     number = {3},
     year = {1991},
     mrnumber = {1119043},
     zbl = {0734.68058},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1991__25_3_247_0/}
}
TY  - JOUR
AU  - Head, Tom
TI  - The topologies of sofic subshifts have computable Pierce invariants
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1991
SP  - 247
EP  - 254
VL  - 25
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1991__25_3_247_0/
LA  - en
ID  - ITA_1991__25_3_247_0
ER  - 
%0 Journal Article
%A Head, Tom
%T The topologies of sofic subshifts have computable Pierce invariants
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1991
%P 247-254
%V 25
%N 3
%I EDP-Sciences
%U http://www.numdam.org/item/ITA_1991__25_3_247_0/
%G en
%F ITA_1991__25_3_247_0
Head, Tom. The topologies of sofic subshifts have computable Pierce invariants. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 25 (1991) no. 3, pp. 247-254. http://www.numdam.org/item/ITA_1991__25_3_247_0/

1. F. Blanchard and G. Hansel, Languages and Subshifts, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 138-146, Lectures Notes in Comput. Sci., 192, Springer-Verlag, 1985. | MR | Zbl

2. L. Boasson and M. Nivat, Adherences of Languages, J. Comput. Syst. Sci., 1980, 20, pp. 285-309. | MR | Zbl

3. T. Head, The Adherences of Languages as Topological Spaces, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 147-163, Lecture Notes in Comput. Sci., 192, Springer-Verlag 1985. | MR | Zbl

4. T. Head, The Topological Structure of Adherences of Regular Languages, RAIRO, Inform. Théor. Appl., 1986, 20, pp. 31-41. | Numdam | MR | Zbl

5. T. Head, The Topological Structure of the Space of Unending Paths of a Graph, Congr. Numer., 1987, 60, pp. 131-140. | MR | Zbl

6. R. S. Pierce, Existence and Uniqueness Theorems for Extensions of Zero-Dimensional Metric Spaces, Trans. Amer. Math. Soc., 1970, 148, pp. 1-21. | MR | Zbl

7. R. S. Pierce, Compact Zero-Dimensional Metric Spaces of Finite Type, Mem. Amer. Math. Soc, No. 130, Providence, Rhode Island, 1972. | MR | Zbl

8. B. Weiss, Subshifts of Finite Type and Sofic Systems, Monatsh. Math., 1973, 77, pp. 462-474. | MR | Zbl