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A GEWERALIZATION OF TRACES (*)

by Walter VOGLER (*)

Communicated by Wilfried BRAUER

Abstract. - Traces describe the behaviour of distributed Systems as labelled partial orders under
the assumption that actions accessing the same object cannot occur simultaneously. We drop this
assumption and show that for the resulting generalized traces will still have some results that
intuitively justify the use of traces, namely: Traces corresponds to équivalence classes of global
observations, and they correspond to tuples of local observations.

Résumé. — Les traces décrivent le comportement des systèmes distribués comme ordres partiels
étiquetés sous l'hypothèse que des actions accédant à la même ressource ne peuvent se produire
simultanément. Nous supprimons cette restriction et nous montrons que pour les traces généralisées
ainsi définies, on retrouve divers résultats qui justifient intuitivement l'usage des traces. En particu-
lier, les traces correspondent à des classes d'équivalence d'observations globales et elles corres-
pondent à des t-uplets d'observations locales.

1. INTRODUCTION

On some level of abstraction, exécutions of sequential Systems can be
described as séquences of elementary actions from some given set. How
exécutions of concurrent or distributed Systems should be described on this
level is not that clear: One could still take séquences and say concurrency of
two actions is expressed by allowing their occurence in arbitrary order. This
interleaving approach identifies concurrency with some form of nondetermin-
ism. This is certainly not always adequate: If two tasks can be executed in
any order this does not mean that they can be executed simultaneously. A
more appropriate approach that takes at least some concurrency into account
is to take step séquences, where a step is a multiset of actions that occur in
parallel.
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148 W. VOGLER

A third possibility is to describe an exécution by a partial order of
action occurrences, which nicely reflects the distributedness of the System. An
example of this approach is the theory of traces in the sense of Mazurkiewicz,
see e.g. [1, 7, 8]; trace monoids as a mathematical structure were already
studied in [3] and given the name free partially commutative monoids in [6].

In trace theory it is assumed that a static dependence relation on actions
is given; a possible interprétation is that dependent actions access the same
object, thus it is important in which order such actions occur. A trace is a
partial order of action occurences, where occurrences of dependent actions
are always ordered while occurrences of independent actions are not directly
ordered, L e, cannot be immédiate predecessors of each other. Of course, if
independent actions, a, b are both dependent to c, a occurs before c, and c
occurs before Z>, then a occurs before b by transitivity.

What makes traces so appealing are the following correspondences, which
are shown in [7]. On the one hand, traces correspond to équivalence classes
of séquences seen as observations made by a global sequential observer; the
ordering of independent actions in such an observation can be seen as
subjective or irrelevant, i.e. observations wabw' and wbaw' are equivalent for
independent actions a, b. On the other hand, traces correspond to tuples of
local sequential observations: Dealing with distributed Systems it is very
natural to assume that we have local observers only; provided their sequential
observations are consistent in some way, we can reconstruct from these
observations a unique partial order of action occurrences.

Furthermore, traces have a very suitable représentation as so called depend-
ence graphs.

A basic assumption in trace theory is that dependent actions cannot occur
simultaneously. In this note we will drop this assumption: It may very well
be possible that actions influencing the same object can happen together and
in fact their effect on that object may differ from the effect they have if they
occur in some order — think of pressing the control key and some other key
on your computer keyboard. Another example is a multiple assignment like
(x, y) : = (y, x), which exchanges the values of x and y; executing x : = y and
y : = x in some order does not have this effect. (Independence of assignments
is studied e. g. in [2].)

Even if the two effects are the same, it is natural to assume that a local
observer can observe the simultaneity of two dependent actions, e. g. if two
processes read the same file simultaneously this is observed by the file
manager. Also other researchers have feit the need to express the actual
simultaneity of actions, e.g. for event structures this is done in [10], A
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corresponding description for exécutions of place/transition nets can be found
in [9].

In the approach taken hère dependent actions must always be ordered, but
now this includes the possibility that they are simultaneous, Le. form a
multiset or step. Hence the basic building blocks of our step traces are com-
pound actions, each consisting of several simultaneous actions. Independent
actions are not directly ordered, but analogously to the above we have: If inde-
pendent actions a, h are both dependent to c, and both a and b occur simulta-
neously with c, then a and b occur simultaneously. Thus the compound actions
may also contain independent actions, they are so-called connected steps.

In our approach observations are step séquences: An observer may observe
the simultaneity of actions, but otherwise an observation is sequential. Then
we can show that step traces correspond to sets of global observations and
they correspond to tuples of local observations. Furthermore we can also
generalize the concept of dependence graphs to step traces.

Dependence graphs and global observations are dealt with in Section 2
and 3. Their treatment is more or less standard trace theory applied to the
alphabet of connected steps. Section 4 deals with local observations; their
treatment does not have a counterpart in the standard theory, since hère the
connected steps get decomposed, while a décomposition of actions is not
possible in standard trace theory. .

2. STEP SEQUENCES, STEP TRACES AND DEPENDENCE GRAPHS

Following [7] we defme a concurrent System as a finite bipartite undirected
graph (A, X9 K), henceforth fixed, with vertex classes A (actions) and X
(objects) where axeK means that a accesses x, We assume that every action
needs some object, Le. no vertex of A is isolated. Ji{A) is the set of
steps, of non-empty multisets over A. A step consists of actions observed
simultaneously. Formally steps are functions, thus we can e.g. add them, but
we also use set-theoretic notation like as s for an action a and a step s. We
say that a step s accesses some object xeX if more some aes we have axeK.
Ji (A)* is the set of step séquences. The graph of a step s is the subgraph of
(A, X, K) induced by [a\aes] U {x\3aes: axeK}. A step is called con-
nected if its graph is connected, ^ is the set of connected steps.

Two actions accesing the same object and appearing to be simultaneous
for one observer will also appear to be simultaneous for every other observer,
thus they are objectively simultaneous. Hence the actions of a connected step
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150 W. VOGLER

s are objectively simultaneous. Hence the actions of a connected step s are
objectively simultaneous: If ax, anes then there is a path a1xla2x2...xn_1an

in the graph of s, thus at and ai+1 are objectively simultaneous and by
transitivity ax and an are simultaneous, too. Since no action is isolated this
also covers multiple occurrences of one action.

Steps s and s' are dependent, s Ds', if there are a es, a'es', xeX such that
ax, a'xeK, independent otherwise, xls'. For independent steps their order is
subjective or irrelevant.

A connected step s' is a connected component of a step s if there is a step s"
such that s'ls" and s = s' + s". In this situation the graph of s' is a connected
component of the graph of s.

To describe an exécution we give the order of action occurrences, where
the possibilities are 'objectively before/after', 'objectively simultaneous', 'not
objectively comparable'. The before-relation is a partial order, and we express
objective simultaneity by labelling the éléments of this partial order by
connected steps. (Another possibility to express simultaneity would be to use
pre-orders where objectively simultaneous actions would be ordered both
ways). If two éléments of this partial order are unordered, then the actions
in their labels are simultaneous for some, but not for all observers, L e. they
are subjectively simultaneous.

Basic for this description is the assumption: If a happens before b and b
together with c, then a happens before c. This assumption is very naturai, at
least if we can view the actions as being instantaneous.

DÉFINITION: A step trace is a labelled partial order (E, ^ , /) where E is a
finite set {of events or action occurrences), {E, ^ ) is a partial order, and
l: E^tg is afunction called labelling, such that for all e, e' e E:

(i) l(e)Dl(e') => e ̂  e' v e' ̂  e (/. e, e, e' are comparable),
(ii) If e is an immédiate predecessor ofe\ then l(e)Dl(e').

We will distinguish step traces and other graph or order theoretic objects
only up to isomorphism.

A step trace where all labels belong to A (which can be seen as a subset
of ^) is a trace in the usual sense.

Next we will generalize dependence graphs to our setting of step traces
and show their close relationship to step traces.

DÉFINITION: A dependence graph (E, F, l) consists of an acyclic directed
graph {E, F) and a labelling function /: E^-^ such that

y e, e'e E: ee'eFv e'eeFv e = e'ol(e)Dl(e').
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PROPOSITION 2.1: For a step trace /= (E, ^ , /) define dep(t)= {E, F, l) by
eë eFoe<ëAl(e)Dl(ë). Then dep is a bijection from step traces onto
dependence graphs.

Proof: First observe that dep is well-defined, i. e. if (E, S, 1) and (E1, ^ ', /')
are isomorphic then (E, F, /) and (E', F\ l') defined as above are isomorphic,
too. Furthermore dep(t) is indeed a dependence graph.

For a dependence graph (E, F, l) define st(E, F, /)= (E, ^ , /) by: e<ë if
and only if there exists a directed path in {E, F, /) form e to ë. It is easily
checked that st is well-defined, and that st (E, F, I) is a step trace.

Now the claim follows since dep°st and st°dep are the respective identity
functions. D

For a step trace t= (E, ^ , /) and a set Ef<^E of maximal éléments let
f- {/(e)|ee£"} be the labelled partial suborder of t induced by E—E'. For
a dependence graph g = (£, F, /) and a set £" g £ of vertices without outgoing
edges let g— {l(e)\eeE'} be the labelled subgraph of g induced by E—E'.

LEMMA 2.2: (i) Let t be a step trace, C g # . Then t~C is defined if and
only if dep (t) — C is defined. In that case, t — C and dep (f) — C are well defined,
they are a step trace, a dependence graph resp., and dep (t—C) = dep (t) — C.

(ii) Let t, f be step traces, C g ^ such that t-C, t-C are defined. Then
t-C=t'-C implies t = t\

Proof; (i) Since maximal éléments of t correspond to vertices of dep (f)
without outgoing edges, the first claim is immédiate. Maximal éléments of t
are incomparable, hence their labels are independent, and especially they are
different. Hence maximal éléments can uniquely be identified by their labels.
With an analogous considération for dependence graphs well-defïnedness
follows. The rest is immédiate from the définitions.

(ii) Given dep(t-Q= (E, F, l) and C, we can uniquely construct
dep(f)={E\3C,F',U) by F = F{j{ec\eeE, ceC, l(e)Dc), I'(e) = I(ë) for
e e E and l(c) = c for c e C. Hence the result follows. •

From a step trace t one can read off a corresponding step séquence as
follows: If C is a set of labels of maximal éléments of t, then concatenate a
step séquence corresponding to t~~ C with that step which is the sum of the
labels in C, i. e. the éléments of / corresponding to C, which are pairwise
incomparable, form together the last step of this séquence. In the next section
we will see that a step séquence corresponding to a step trace t can be seen
as a global observation of the System exécution t. Formaliy:
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152 W. VOGLER

DÉFINITION: For step traces t we define Step (t), the set of step séquences
corresponding to t by:

(i) Step(0, 0 , 0)~ {X}, where X dénotes the empty séquence.

(ii) Tjf * # ( 0 , 0 , 0 ) , then Step(t)=\Jc Step(t-Q. ( £ c)9 where C ranges
ceC

over the non-empty subsets oftë such that t—C is defined.

The next theorem shows that the sets Step{t) form a partition of Ji(Â)*\

THEOREM 2.3: (i) Ift is a step trace, then
(ii) For each step séquence w there is a unique step trace t(w) such that

weStep(t(w)).

Proof: (i) Obvious from the définition and Lemma 2.2.

(ii) Let w=w1. . .wni w{eJt(A). We define t(w) by defïning

dep(t(w))=(E,F,I)

with
E= {(c, i) | c is a connected component of wt},

(c, i)(c',j)eF o i<JAcDc',
I(c, i) = c.

Obviously, the connected components of wn correspond to maximal élé-
ments of t(w), hence one easily sees by induction on n that weStep(t(w)).
Vice versa, if we Step (t) for some trace t, then wn is the sum of l(e), eeE',
for some set E' of maximal éléments of /. By définition, these l(e) are
connected steps and they are pairwise independent, since the éléments of E'
are pairwise incomparable. Thus the l(e), eeE', are connected components
of wtt, and we get a label preserving bijection from E' to {(c, ï)eE\i = n}.
Thus for C= {l(e)\eeEr} we get t— C=t(w1...wn_1) by induction, hence
t-C=t(w)-C and t=t(w) by Lemma 2.2. D

We will now define a concaténation for step traces (in the usual way)
which is based on a concaténation of the corresponding dependence graphs,
and we will observe that this concaténation corresponds to the concaténation
of step séquences.

DÉFINITION: Let (Eu Fu / t), (E29 F2, l2) be dependence graphs with
£x H £2 = 0 - Then {E, F, l) = (Eu Fu /x). (E2t F2, l2) is defined by

E=EX\JE2.

F^F1UF2U{e1e2\e1eEue2eE2,I1(e1)DI2(e2)}
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For step traces t, t' the step trace t.t' is the step trace corresponding to
dep (t). dep (f).

It is easy to see that (E9 F, /) as defïned above is a dependence graph
indeed, hece t, t' is really defined.

THEOREM 2.4: For step séquences w, w' we have t(ww') = t(w).t(wf),

Proof: Obvious from the construction in the proof of Theorem 2.3. D

This resuit shows that step traces, dependence graphs and équivalence
classes Step (t) of step séquences forni isomorphic monoids with respect to
concaténation.

3. GLOBAL OBSERVATIONS

As discussed in the introduction, step séquences can be seen as global
observations where we regard the ordering of independent steps as irrelevant
or subjective. In other words, for independent steps s, s* the step s + s' and
the séquences ss' and s's are different observations of the same exécution of
the System. Therefore we define the following congruence, where a congruence
class consists of ail possible global observations of one exécution of the
system.

DÉFINITION: Let~be the least congruence (w.r.t. concaténation) on J% (A)*
such that f or all independent steps s, s' we have s + s' = ss'.

Usually the basic congruence in trace theory is of the form aar = a'a for
independent actions 0, a'. Since actions are special steps this congruence
follows from our définition {aa' = a + a'= a'a),

THEOREM 3.1: For step séquences w, w' we have w = w' if and only if
t{w)=t{w').

Proof: "=>" If J, s' are independent steps, then the set of connected
components of s + s' is the disjoint union of the sets of connected components
of s and s'. Thus if we replace in a step séquence w the step s + s' by ss' or
vice versa the construction in the proof of Theorem 2.3 yields the same resuit
for both séquences (up to isomorphism).

"<=" By induction on the number of connected components, where the
claim is obvious for zero components. Otherwise we have maximal éléments
e, e' in t(w), t{w') with the same label c. By the construction of Theorem 2.3
c corresponds to a connected component of some step in w (w') that is
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1 54 W. VOGLER

independent of all steps appearing after it in w (w'). Thus w = wlci w' = w'x c,
/(w1) = / (w) - {c} and t{w'1)^t{w')~ {c}. By induction we have ^ s w i ,
therefore w = w'. D

Since by this result the congruence classes of global observations defined
in this section are just the sets Step (t) for step traces t, we have already seen
that the classes of global observations form a monoid isomorphic to the step
trace monoid.

4. LOCAL OBSERVATIONS

In this section we assume that instead of some global observation we only
have a tuple of local observations. Each local observation corresponds to
one object and includes only those actions that access this object.

It is hère that we need the représentation of a concurrent System as a
bipartite graph containing actions and objects. It is more usual to defïne the
System as (A, D), where D is the dependence relation (for actions only) we
have defined above. Up to now we could have just as well worked with such
a représentation. Each object x defines a clique of (A, D), namely the set
{aeA \axeK}, and these cliques cover the graph (A, D), in the sensé that
each vertex aeA and each edge abeD is contained in some clique. Therefore
the reader may also think of a concurrent System as a graph (A, D) given
together with a family X of cliques which cover the graph. With this view,
Theorem 4.3 below generalizes the well-known embedding theorem, which
states that every trace monoid can be embedded in a direct product of free
monoids, see [4, 5].

Of course, local observations of the same exécution have to be consistent;
e. g. if one object 'observed' two occurrences of a, some other observed only
one occurrence of a, then these observations cannot belong to the same
exécution of the System. We regard local observations as consistent if they
can be seen as suitable restrictions of the same step séquence. We will deal
with consistent local observations only:

DÉFINITION: For weJt(Â)* and xeX the local observation loc(w, x) of w
by x is defined inductively;

(i) loc(X, x) = X
(ii) Let s' be the restriction of seM(Â) to {a\axeK}. Then

f loc (w, x) if s' = 0
lociyvs, x) =

\loc{yv,x)s' if
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Each step of loc(w, x) cornes from a connectée component of some step
of w, namely that component which accesses x; these connectée components
are dependent and therefore totally ordered in the step trace corresponding
to w. Thus we can read off loc (w, x) from t (w) as well, that is we get the
following définition and lemma.

DÉFINITION: Let t be a step trace, xeX. The éléments of t whose labels
access x are totally ordered, let w be the séquence of their labels. Then define
loc (t, x) = loc (w, x).

LEMMA 4.1: For all step séquences w and xeX: loc(w, x) = loc(t(w), x).
After the next lemma we are ready to prove that a step trace corresponds

to those step séquences that give rise to the same local observations.

LEMMA 4.2: Let ce^ and t— {E, ^ 5 /) be a step trace. Then there is a
maximal element e of t with l(e) = c if and only if for ail xeX that are accessed
by c the last step of loc (t, x) is c restricted to {a\axeK}.

Proof: "=>" obvious.
"<=" Since c is non-empty there exists some xeX which is accessed by c.

Hence by assumption there exist éléments of E whose labels access a common
object with c. Let e be maximal among these éléments, and let x be accessed
by l{e) and c.

First we show that l(e)~c. Assume to the contrary. Then there exists
ael(e) or aec with l(e)(a)^c(a) (remember that steps are functions!). In
the first case consider a path in the graph of l(e), which is connected, from e
to a. On this path we can fmd some x'eX that is accessed by l(e) and c and
some a'eA that accesses x' such that l(e)(a')¥zc(at). Analogously we fmd
such x' and a' in the second case by considering a path in the graph of c. By
définition of loc (t, x') and the choice of e we conclude that the last step of
loc(t, x') is a restriction of l(e), by assumption it is a restriction of c, thus
l(e){a') = c(af), & contradiction.

Now it is easy to see that e is maximal in t: Otherwise we would fmd an
immédiate successor e of e and by définition of a step trace l(e') and l{é)
access a common object, a contradiction. •

THEOREM 4.3: For all step séquences w and w':

t(w)=t(w') o for all xeX: loc(w, x) = loc(w', x).

Proof: "=>" Lemma 4.1.
"<=" By induction on the number of connected components, the claim

being obvious for w = lk. Choose a maximal e in t(w). By two applications of
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Lemma 4.2 we can flnd a maximal ë in t(wf) with l(e) = l'(ë). By induction
t (w) - {I (e)} = / (w') - { V (ë) } and Lemma 2.2 (ii) yields the resuit. D

This result can also be seen as saying that a suitable synchronization
operator applied to the local observations yields the step trace. This synchro-
nization does not only identify occurrences of the same action in different
observations, it also merges overlapping steps to larger steps.

We conclude by remarking that obviously we have for step séquences w
and w' and xe^f that ioc(ww\ x) = loc(w, x)loc(w', x). Hence we can define
a componentwise concaténation on tuples (loc (w, x))x e x which corresponds
to the concaténation of step séquences. Therefore Theorem 4.3 does not only
exhibit a bijection between step traces and tuples of local observations, it
also follows immediately that step traces and tuples of local observations
form isomorphic monoids.
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