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CONTEXT-FREE LANGUAGES WITH RATIONAL INDEX IIM 0
FOR ALGEBRAIC NU MB ERS L (*)

by Laurent PIERRE (*) and Jean-Marc FARINONE (2)

Communicated by A. ARNOLD

Abstract. — The complexity of a non-empty language L may be estimated by the asymptoiic
behavior ofits rational index, which is a fonction pL'.N — { 0 } - + K l - { 0 } . For any positive integer X,
we knew a context-free language whose rational index is in €> (HX). In this paper we show context-
free languages, whose rational indexes are in ®(nx) for other varions values ofX>\, such as the
rational numbers or the algebraic numbers or even some transcendental numbers.

Resumé. - La complexité d'un langage non vide L peut être estimée par le comportement
asymptotique de son index rationnel, qui est une fonction pL:f^l — {0}->f^l — {0} . On connaissait
déjà des langages algébriques d'index rationnel en © (nx) pour tout entier positif X. Dans cet article
nous montrons qu'il existe des langages algébriques d'index rationnel en © (nx) pour d'autres valeurs
de X>1, telles que les nombres rationnels, plus généralement les nombres algébriques, et même
certains nombres transcendants.

I. INTRODUCTION

There are many ways to measure the complexity of languages. The rational
index introduced by L. Boasson, M. Nivat and B. Courcelle [3, 4] is one of
them, that behaves well when combined with rational transductions: if
L^L'(Le. there exists a rational transduction x, such that x(L) = L'), then
the rational index pL of L provides an upper bound on pL,, since

This is why the rational index can prove helpful when studying sets of
languages closed under rational transductions like the set of context-free
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2 7 6 L. PIERRE AND J.-M. FARINONE

languages. We define the extented rational index pL of a language L to be
pL LUS* for any letter s, which occurs in no word of L. The extended rational
index pL of a given language L is generally not harder to compute than its
rational index pL, Both indexes are related since

but the extended one gives more information about the complexity of the
language since

We dénote by 0 (nx) the set of functions which are the products of n i-> nx by
positive bounded functions. Given two languages Lx and L2 and two
numbers 'k1 and X2 such that pLle©(«Xl) and pL2e&(nX2) and l^kl<X2>
then you can conclude that L2 does not belong to the rational cone generated
by Lx. Note that this is true even if \2 — Xl<\, but this case could not be
handled with plain rational index. In référence [6] you can find a way to
construct a context-free language with a rational index in &(nk) for any
positive even integer. For a long time the rational index of a context-free
language was thought to necessarily behave asymptoticaly like a simple
function, namely an exponential or a polynomial function. In this paper we
give methods to construct context-free languages, whose rational indexes are
in G(nx) for other various values of X>\, such as the rational numbers or
the algebraic numbers or even some transcendental numbers. The technic
used in this paper is strongly related to the one used in [10], where we proved
that some context-free languages have rational indexes, which grow faster
than any polynomial, but slower than any exponential function exp(Xn).

n. NOTATIONS AND DEFINITIONS

M will dénote the set of non-negative integers, and N + = N - {0} the set
of positive integers.

AU B will dénote the union of the disjoint sets A and B.

An alphabet is a finite set of letters.

A language written over an alphabet T is a subset of 7*.
8 dénotes the empty word.
\u\ is the length of the word u, i,e. the number of its letters. E.g.

| a3 bac2 | = 7. The function Z/J—• | z/ j will be denoted | . |.

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTEXT-FREE LANGUAGES OF RATIONAL INDEXES IN 0 (nX) 2 7 7

\u\x is the number of occurrences of the letter x in u. E.g. \a3 bac2 \a = 4.
The function MI—>|«L will be denoted

I ! *
L
1-*

If X is an alphabet then \u\x is the number of occurrences of letters of X
in u. E.g. \a3bac2\{bj c} = 3. The function wh~»|w|x will be denoted | . \x.

LÇsf) dénotes the regular language recognized by the finite automaton sé.
A context-free language is a language generated by a context-free grammar.

For instance

is a context-free language, since it is generated by the grammar

({a,b}9 {S9 T9 17}, {S^>aSb+T+U, T-+aT+a, U^>bU+b}, S}.

Similarly

is a context-free language generated by the grammar

We shall use S± a lot in this paper.
Let r be a binary relation between the two free monoids X* and F*. We

say that r is a rational transduction, if its graph is a rational subset of the
monoid X* x 7*; /. e. it is the value of an expression containing only products,
unions, stars (or+ opération) and finite sets. The rational transductions may
be characterised in another way:

THEOREM (Nivat) [9]: For any rational transduction r:X* -> Y* there exist
an alphabet Z, a regular language K<=Z* and two morphisms cp : Z* -> X* and
\|/ : Z* -> 7

Furthermore, we may assume the two morphisms to be alphabetic, i.e.
<p(Z)czArU{e} fl#«/\KZ)c7U{e}. We shall write

Let L and Z' be two languages. If Z/ is the image of L under a rational
transduction, then we dénote it L ̂  L' and we say that L rationally dominâtes
L. For instance S=^S* since S* = a+ S=U S=b+.

vol. 24, n° 3, 1990



278 L. PIERRE AND J.-M. FARINONE

The transformation x\L\—>a+ L\JLb+ accords with the définition of a
rational transduction, since its graph is

(e, a)+ {(a, a), (b, b)}* \J {(a, a), (b, b)}*(s, b)\

As an example of Nivat's theorem we can décompose it x = \|/° f j K ^ " 1 ,
where X- { a, b}, Z - {a9 b, a', b'}

<p: Z*-*JT*, \|/: Z*-»X*
ah->a

K=af + X*{

If L ^ L' and L'TjiL then we say that L dominâtes strictly L and we write
L>L'. E.g. S=>S±.

Référence [1] holds the above définitions.
Every regular language is recognised by a finite automaton. Mn is the

family of the regular languages recognized by a finite automaton. Mn is the
family of the regular languages recognized by finite automata with at most n
states.

A function/: U -> M will be said increasing if

V x, y e R, x <y => ƒ (x) ̂ f (y).

You may notice that, according to this définition, a constant function is
increasing.

Let ƒ be a function N -• IR. We shall use the Landau's notations o and O
[8], § IV.7, and the Knuth's notations O and 0 [7]:

|g(/i)|gc| ƒ (/i)

~ / will stand for g —fe o (ƒ).

Remark: If/does not take the value 0 then

g~f o Iim #/ƒ=!,

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTEXT-FREE LANGUAGES OF RATIONAL INDEXES IN 0 (nX) 2 7 9

ge o (f) o li

geO(f) o limsup |g//|<oo

and

g e 0 ( ƒ) o (lim inf | g/f | > 0 and lim sup | g/f | < oo).

[x\ is the floor of the real number JC i.e. the greatest integer k such that

[x] is the ceiling of the real number x Le. the lowest integer k such that

If T is a sub-alphabet of an alphabet U, then 7rr will dénote the morphism
U* -*(U— Tf, which erases the letters of T and keeps the letters of
U-T.E.g.

n{a, ö}{axayzxa) = xyzx.

j %x j will stand for the morphism j . j ° nK, so that j %x j = j . j — ] . j x ,

A LU B will dénote the shuffle of the languages A and B, L e, the set of the
words produced when interspercing words of A in words of B. E. g.

HL DEFINITION AND BASIC PROPERTIES OF RATIONAL INDEX

1. Définition of p and p

DÉFINITION 1 : If L is a non-empty language then its rationa! index is the
function pL : M + ~* M deflned by

pL(n)= max min \w\.

DÉFINITION 2; Let L<~X* be a non-empiy language. Let s be a letter which
does nol belong io X. We define the extended rational index of L io be the
rational index of LLUS*, and we dénote it by pL,

vol. 24, n° 3, 1990



2 8 0 L. PIERRL AND J.-M. FARINONE

2. Basic properties

A morphism of free monoids 9 : X* -* Y* is said to be alphabetic if
<p(X)a YU {e}, and strictly alphabetic if <p(X)<=Y. In [2] Boasson et al
give the five following lemmas.

LEMMA 1 : IfL and L' are two languages then pL u L< ̂  m a x
 (PL> PLO-

LEMMA 2: IfL and L' are two languages then pLL. ̂  pL + pL,.

LEMMA 3: Let <p:X*^>Y* be an alphabetic morphism, and LaX*. Then

LEMMA 4: Let K be a regular language recognised by an m state automaton.
Let L be a language. Then

LEMMA 5; Let cp be an alphabetic morphism from X* to 7*. Let L be a
subset of 7*. Then

Using the last three lemmas and Nivat's theorem they dérive the theorem.

THEOREM 1: If L'^L, then there exists an integer c such that

Proof: According to Nivat's theorem there exist two alphabetic morphisms
<p and \|/ and a regular language K such that Z' = (p(Arn^~1 (£))• Let c be
the number of states of an automaton recognising K. Then

We can make a variation on lemma 5:

LEMMA 6: Let (p be a strictly alphabetic morphism from X* to F*. Let L be
a subset of Y*. Then pp-1 (L) ̂  pL.

The proof is left to the reader. This leads to the following theorem.

THEOREM 2: IfL'^L, then there exists an integer c such that

Proof: According to Nivat's theorem there exist two alphabetic
morphisms q> and v|/ and a regular language K such that L' = cp (KO \|/~1 (L)).

Informatique théorique et Applications/Theoretical Informaties and Applications
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Let \|/ be the strictly alphabetic morphism defined by:

and

V(a)=s if v|/(a) = s.

Then vj;"1 (L) = \|/"1 (LLU J*). Let c be the number of states of an automaton
recognizing K. As in the proof of theorem 1 we have

Hence

Pu («) ̂  P+- - * a LU s*) (en) ̂  PL- tu s* ( c ) = PL (e«).

This theorem has the corollary:

THEOREM 3: If L'^L then there exists an integer c such that

Proof: We have L'LU S^^L'^L. Hence theorem 2 yields that

V«eN + , pL, m s*(w)gpL(cw)

for some integer c. D

7i{ s} is an alphabetic morphism verifying 7i{ 5} (L LU .S1*) = L and
7i{~ j (L) = L LU 5*. Hence lemmas 3 and 5 yield the theorem:

THEOREM 4; If L is a language then

Remark: In this paper, the rational index of a language and its extended
rational index will be refered to as its rational indexes.

3. The rational corne generated by S±

In order to evaluate the rational indexes of S±, we first give two lemmas.

vol. 24, n° 3, 1990



282 L. PIERRE AND J.-M. FARINONE

Proof: Let « be a positive integer. The shortest word in S^ recognised by
the n state automaton drawn in figure 1 is an~x bn. lts length is 2n— 1. Hence

- l . D

. {

Figure l.

LEMMA 8: s # (n)<.2n- 1.

Proof: Let « be a positive integer. Let
ing at least one word in 5 # LU 5*

be an /z state automaton recognïs-
least one word in 5 # LU 5*. Let w be a shortest word in
(S*ixi s*). Let us assume that \w\^2n, Then a successfui path in

sé labeled by w holds at least two disjoint loops, Hence W=ÖLU$VY for some
words a, P, y5 M and x; such that u and z? are non-empty and si recognises
ap^y, OCWPY and aPy. These three words belong obviously to-a*è*UJ5* but
they do not belong to S^ tu ^*? sinçe they are shorter than w, Hence ttiey
belong to S^UJ s*J.e. they hold as many a as b, and so do u, v and w. This
is a contradiction to weS^tu s*. Hence we have proved that | w\<2n, D

THEOREM 5: + , p5 # («) = p§ ̂  (n)—2 » - L

Proof: Lemmas 7, 8 and theorem 4 yield

Theorems 2 and 5 yield the proposition:

PROPOSITION• 1: IfL^S^, then

- 1 , P

+, pL(n)<cn.
We shall handle in this paper a lot of languages dominated by S#, This is

why we introducé a new notation:

DÉFINITION 3: Let Ku K2, and K3 be three languages over the alphabet X.
Let (pu and <p3 be two morphisms X* ~*N. Then we shall dénote

Informatique théorique et Applications/Theoreticaî Informaties and Applications
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the language

{wlw2w3\w1sKu w2eK2,

LEMMA 9: Lef A\ Â 2 a«J AT3 6e three regular languages over the alphabet X.
Let (px and cp3 be two morphisms X* -* N. TTien V* (ü^, <pl9 ^ 2 , q>3, K3)^S*.

Proof: Let tp̂  : X* -> a* be the morphism such that cp'x (x) = a^1 (x) for every
xeX. Let q>3:A^-^6* be the morphism such that cp3(x) = 693(x) for every
xeX, Let a be the rational transduction, whose graph is the set of the
couples (vvx vv2 w3, <pi (wj cp'3 (ÖD3))S when Wi w2 and w3 range over Kx K2 and
^ 3 . Then V*(tflf (p1; ̂ 2 , cp3s ^ 3 ) = ^" 1 (5^ ) . •

For instance this lemma proves that S± dominâtes the language

2| . \b9 c, 2\ . |a + 5 | . |„ a*eb*).

IV. STRUCTURE FUNCTIONS

1. Définitions of structure fonctions

We first define S^-functions.

DÉFINITION 4: A S ̂ -function will be a partial function g: N+

X is afinite alphabet, and
X*, where

Remarks;

— ƒ is a p a r t i a l f unc t i on , i.e.f(i) m a y n o t exis t for s o m e ieN + .

— X*— g(N+) is a context-free language, since it is dominated by another
context-free language.

— The choice of X does not matter. Indeed if Y is a super set of X, then g
may be considered to be a partial function from Py+ to 7*. And, since

a n d converse ly

vol. 24, n° 3, 1990



284 L. PIERRE AND J.-M. FARINONE

it is obvious that X * - g ( N + ) ^ S * if and only if Y*-

DÉFINITION 5: We define a structure function to be a S ̂ -function g : N + -> X*
verifying also the three following properties:

• for some unique letter x e J , that we shall dénote xg9 we have \ g (z) |x + 1 = i
for every ieN + ,for which g(i) exists.

• g(N+) does not contain any infinité regular language.
• g{i) is definedfor infïnitely many L

Remark: In the fïrst property uniqueness is supposed only for convenience:
in order to specify a structure function g, we only have to give the value of
g(i) whenever it exists; we need not specify which letter is xr

The second property is easily checked by means of the following lemma:

LEMMA 10: Let g : N + -> X* be a partial function such that

lim |ff(i)|/i=oo.

Then g(N+) does not contain any infinité regular language.

Proof: Let assume g(N+) to contain an infinité regular language. Then we
can fïnd three words a, u and P such that u is not empty and au+ P<=g(N+).
Hence for any positive integer i, there exists a positive integer jt such that
aul$~g(ji)- Let n b e a positive integer. Then/l5 . . . Jn are n pairwise distinct
positive integers. So that

Thus

hence lim inf | g (jt) \/jx ^ | a u (31 and thus lim inf | g (i) \/i ^ | a u p | which is
not compatible with:

lim \g{i)\/i=oo. D

For instance we shall prove later that

f 2- N + ^ { x l 5 x 2 } * ,

Informatique théorique et Applications/Theoretical Informaties and Applications
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is a structure function.

DÉFINITION 6: For any structure function g we define g to be the partial
function N+ -> N+ such that g{n) is the largest integer p such that

LEMMA 11: If g is a structure function then:
• there exists an integer n0 such that g(n) is defined if and only ifn^n0;
• g is increasing;
• for any nïtn0 we have g(n)^n;
• lim g(n)= oo.

Proof: g(N+) is not empty, since it is infinité. So we can consider the
integer «0= l+min|g(N+) | . Let us define G(n) to be the set of numbers p
such that g (p) exists and | g (p) | ̂  n — 1. Then obviously G (n) is a increasing
séquence of sets, which are non-empty if and only if n^n0. Furthermore,
when g(p) exists, we have \g(p)\Xg=p—l, so that \g(jp)\^p—l. Hence, if
\g(p)\^n—l, then p^n. This proves that G(ri)<^[\, ri\. This complètes thé
proof of the first three assertions of the lemma, since we may notice, that g
(n) is defined if and only if G(n) is not empty, and then g(n) = màxG(ri).

Since g (i) is defined for infinitely many /, for any integer j we can find a
integer p such that p ̂ j and g (p) is defined. Then p e G ( | g (p) | + 1), so that

Let n be an integer such that n>\g(p)\, Since g is increasing, we have g
(n)^g(\g(p)\+\) eind thus

We have proved that

Vj, 3p, V n, n > \ g (p) \ => g(n

Thus lim g =oo. D
00

DÉFINITION 7: Let f and g be two structure functions. We shall say that
f dominâtes g and we shall write f^g, if there exist two finite alphabets X
and Y and a rational transduction cpf t g : X* -* 7* such that

vol. 24, n° 3, 1990



2 8 6 L. PIERRE AND J-M. FARINONE

<pf,g(X*-f(N+))=Y*-g(N+),

q>fyg(X*)=Y*

and

Vt/eX*, VT,eqy,,(ii), | « | V = | H V

Obviously the domination between structure functions is a pre-order, i. e.
it is reflexive and transitive.

DÉFINITION 8: Let f and g be two structure functions. Iff^g and g{n)eo(J
(«)), then we shall say that f dominâtes strictly g and we shall write f>g.

Obviously the strict domination between structure functions is transitive.

2. Main example of structure fonction

DÉFINITION 9: We define Xk={xl9 . . . , x k } , with Xo = 0.

DÉFINITION 10: We inductively define the séquence of functions

In other words fk (i) is the word in X*k ~
1, whose /-th letter is Xj if z7"1 is

the greatest power of i dividing /.

So we have

and

\f*(0lr?-J(i-i).

E.g.

/o (0 = 8. /o (2) = e, /o (3) = e

/ i ( 0 = e, /i(2) = * 1 , A(3) = x1x1

/ 2 ( 0 = £, /2(2) = î̂ 2̂ i» /2(3) = x1x1x2x1x1x2x1x1

Informatique théorique et Applications/Theoretical Informaties and Applications
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f 3 \ ^ ) ~ Xl X2X1 X2X1 ^3 Xl x2Xl X2XX X3X1 X2XX X2X\*

DÉFINITION 11: Let i and k be two positive integer s, such that i^k. Let w
be a word of X%. Then nx._1(w) can be written in a unique way

where oco, 04 . . . a,- are non-negative integers and zu z2 . . . Zj are letters of
Xk — Xi. Then z1z2 • . . Zj=nXi(w) a.ndj=\nXi(w)\. Let us define the séquence
of the groups of xt in w to be the fïnite séquence

There are exactly |%.(vf) |+l groups of xt's in w, Some of them may be
empty. The length of the group of xt's of rank p is the number of occurrences
of xt, which are preceded by exactly p occurrences of letters of Xk — Xit E.g.
Let k = 3 and

W X j X2 X^ X^ X^ X-y X^ X^ X^ X2 X-^ X2 X2 X j X^ X^ X-^ X ^ X ^.

For /= 1 we have

nXo(w) = w = x{x2x
2
1x3x

2
1x3x\x2x

1
1x2x

o
1x2x

2
lx3xl

Note that there is an empty group of xx in the middle of the factor x\. The
lengths of the 8 groups of xx are 1221 102 and 3. For *"= 2, we have

rcXl (w) = x2 x\ x\ x3 = x\ x3 x% x3 xl x3 x°2,

hence there are 4 groups of x2, whose lengths are 103 and 0. At last

hence w has 1 group of x3, whose length is 3.

fk(n) is the only word of X% such that for every ze[l5 k] the lengths of all
its groups of xt are equal to n— 1. And a word of X% belongs to fk{N+) if
and only if all its groups have the same length.

DÉFINITION 12: Let Ak = Xk*-fk(N+).

So a word belongs to Ak if and only if a group of xt and the (only) group
of xk have different lengths for some i such that \^i

LEMMA 12: For every k^2,

vol. 24, n° 3, 1990



288 L. PIERRE AND J.-M. FARINONE

• fk is a structure function;

The remaining of this section will be the proof of this lemma. For this we
fïrst prove two lemmas.

LEMMA 13: Let k^l. There exists a rational transduction
such that

V w '^ / , /HiW then Wk + 1 = \wlk 0)

*î + i - (2)

^ * + i (3)

Proof: Let <p:X%+1-+ X% be the morphism defined by: (p(x1) = s and
(x£+1) = x; for z^ l . Let <p':X% -*X$+1 be the substitution defined by:
'(jci) = x1 and <p'(xd = (x2xf)*xi+1(x* x2)* for i£2. We define cr/k,/ft + 1 by

(1) holds obviously, and (2) too, since (p

DÉFINITION 13: If 0<i<k, we shall dénote Aki the set of the words w
belonging to X% holding a group of x{ whose length is not j w j .

We have

If weXg then the groups of xi+1 in a word w'ecp"1 (w) have the lengths of
the groups of xt in w for every ie{ 1, . . ., k}. lts groups of xx have any
lengths. Hence <p~x (̂ 4ft) is the set of the words of X%+ u in which for some i
such that 2i^i<k+\ a group of xt and the group of xk+1 have different
lengths. Le. <p~1(Aki) = Afc+li+1 and

(4)

Similarly let w be a word in X%. Let us consider the groups of xt in w:

w = x\ixhx\*xi2 , . , x\*xikx\^

Informatique théorique et Applications/Theoretical Infonnatics and Applications
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where k=\nxi(w)| and Vy, ij> 1. Then

Let w' be a word in (xfx2)*<p'(w)(x2ixî)*. The groups of x£+1 in w' have
the lengths of the groups of xt in w for every ze { 2, . . ., £}. The groups of
x2 in w' have any lengths. And the groups of xx of w appear among those of
w'. More precisely every group x{ of xx in w becomes in w' a factor belonging
to (xfx2)*x{(x2xf)*, i.e. a group of x2 of any length X, whose members
alternate with X+\ groups of xu among which one is x{, Hence
(xf x2)*(p'(^4fc)(x2x^)* is the set of the words of Xk+U in which for some
ie { 1, 3, . . ., k} a group of xt and the group of xk+x have different lengths.
Le.

U3U-..VAk+Uk. (5)

(4) and (5) add and yield

Remark: This proof works only if A:^2. For instance in a word of A3

either a group of x2 and the group of x3 have different lengths and then it
belongs to (p~1(A2), or a group of ^ and the group of x3 have different
lengths and then it belongs to (^Î^2)*9'(^2)(JC2JCÎ)** On the other hand
A1 = 0. Hence of uf2(A1)

LEMMA 14: Ak^S^ for any fc^2.

Proof: We shall prove it inductively.
• A2 is the set of the words in {xu x2 }* in which two consécutive groups

of xx have different lengths or the number of x2 is not the length of the last
group of JCX. Le.

This proves that A2tk

m Let k be an integer greater than 2. Let us assume that
Lemma 13 yields that Ak— afk_ltfk(Ak_\). Hence Ak^Ak_1. This proves

D
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Proof of lemma 12 Let k be an integer such that k^2. According to
lemma 14, fk is a S^-function. For anyjefl, k] and any ieN+ we have

so that xk is the only letter occuring i - l times in fk{ï) for every /. Hence
xfk = xk. Since

IA (01 = /* — 1, (6)

we have

Hm \fk(i)\/i= co,
i -* oo

proving thereby that fk(M+) holds no infinité regular language. We have
shown that fk is a structure function. (6) results in the second assertion of
lemma 12. So

This proves that/fc+1 {ri)eo(Jk{n)\ while lemma 13 proves tha t / k ^/* + 1 . So
the third assertion of lemma 12 holds. •

V. THE LANGUAGE RELATED TO A STRUCTURE FUNCTION

1. Définition of Lg

Let g: N+ -+X* be a structure function. Let bu am and b^ be three letters
not belonging to X. We shall define a language Lga(X\j{bu aœ, b^})*.
Lg is a subset of the regular language

that we shall call its frame. We define the structured part of Lg to be

Sg= U (6Î

the unstructured part of L^ to be

^ = ( è * LU
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and the extended structured part of Lg to be

Eg={weFg,\w\Xg+l = \w\aJ.

These three languages are subsets of Fr Since \g(i) \x +1 = i, we notice that

DÉFINITION 14: The above définitions of Sg, Ug and Eg allow us to define Lg

as the union of Eg and Ug. It is also the disjoint union of Sg and Ug,

L=Ea\JU=SaUUa.

Figure 2.

Figure 2 represents the various languages, we just defined.

Sg is not a context-free language. (We shall not prove it.) But since g is a
S#-function, U<S* and it is obvious that Ea<S=. Hence Ua and Ea are
context-free languages, and so is Lr
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2. Lower bound on pT .

Let neN + . Let us get a lower bound on pL (ri). Let/? — g(n). Let se be the
automàton depicted in figure 3.

Figure 3.

In this figure

stands for

where w = yx . . . y^
This automaton has n states. It is made of a simple path of length n - 1

leading from the only initial state to the only final state. Every arc of this
path is labeled by two letters in such a way that the whole path is labeled
by ô""1"1*0 0 1^^) and by b^1. There is also an arc leading from the final
state to the initial state labeled by am. So se recognises a word of
(b\ LU X*) (am b%)* if and only if it is

for some me N. This word belongs to Lg only if m=p and then it belongs to
Sg. Thus the shortest (and only) word in L(sé) Ç\ Lg is

Hence

(1)
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Remark: \b\ 1 *9ip)*g(p)\ = n — 1 and the letter bx is used to ensure that
the path labeled by bn

1~
1~^9ip)lg(p) is a simple path (Le. a path holding no

loops) of maximal length (n-l) in an n state automaton. Similarly bœ is
used to ensure that the loop labeled by a^b^1 is a simple loop of maximal
length.

3. Upper bound on pL .

Let n e N +. Let sé be any automaton with n states recognising at least one
word in Lg LU S1*. Let w be a shortest word in (Lg LU s*)C\L(sé). We
shall give an upper bound on | w|, that dépends only on n and not on sé so
that it will be also an upper bound on pLg(n). Let us consider a successful
path y in sé labeled by w.

• First let us assume that (Ug LU S*) D L (sé) / 0 .
Let W be a shortest word in (Ug LU . r ^ n ^ O ^ ) . Then

because of the définition of rational index, w' belongs to (Lg LU 5*) O -
whose shortest word is w. Hence w I ^ I w' I. Thus I w I ^ p^ («).

• Let us assume now that Ug LU 5* and L(sé) are disjoint.
Then every word in (Lg LU s*)C\L(sé) belongs to Sg LU 5*. Thus u>

belongs to Sg LU 5* and

I •

we(bf LU g(/?) LU

I . l ^

for some positive interger p. Braces show upper bounds on the Iengths of
parts of w, that we shall prove.

First let us prove that there are at most n — 1 letters in w bef ore the first
aœ. Let us assume that this part of w holds a loop. If the label of this loop
belongs to bf LU 5* then it can be removed yielding a shorter word than w
belonging to Sg LU 5*. This is a contradiction. Hence the label of this loop
does not belong to b% LU 5*. Since #(f\l +) holds no infinité regular language,
we can change g(p) into a word of X* — g (^ + ) by iterating this loop. This
transforms w into a word of (Ug LU s*)f\L(sé). This is a contradiction.
Hence the prefix of w belonging to bf LU g(p) UJ s* holds no loop.

If we remove loops from the part of w belonging to è* uu s*5 then w
changes into a shorter word of L(jé) C\ (S9 LU S*). This is a contradiction.
We have proved that the overbraced parts of w contain no loops. Hence
their Iengths are smaller than n. w is made of p+ 1 parts, whose Iengths are
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at most n—l, and/? times the letter a^. Hence its length is at mostpn + n— 1.
We have \g(p) | ^ n — 1. Hencep^g(n). Thus in this case we have

| M ; | ^ « - \+g{n)n.

The results in the two cases, we have looked at, can be summarized by

|w|^max(pUg(«), n~\+g(n)n).

Hence

pVa(n\ n-\+g{n)ri). (8)

4, Value of pLg

Since Ug^S± proposition 1 yields

while lemma 11 states lim g(n) = oo. Hence
rt -* 00

g

Hence for large enough n we have

Hence (7) and (8) and theorem 4 yield

PL5 («) = PL? («) = « - 1 + g(«) « for large enough «.

We have proved the theorem:

THEOREM 6: If g is a structure function, then LQ is a context-free language,
whose rationa! index is

?Lg («) = PL9 (n) = n ~l + g(n)n M large enough n.

DÉFINITION 15: If k is a integer greater than 1, then Lfk will be denoted by
Lkfor simplicity.

According to theorem 6, the language Lk is a context-free language, whose
rational index is

^ J « for
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The following section is concerned with relationship between domination
of structure functions and domination of their related languages.

5. Comparison of the various Lg.

THEOREM 7: Let f and g be two structure functions, Iff^.g then Lf^.Lg.

Proof: Using the rational transduction <pf ff:X*->Y*, we shall build a
rational transduction cp' such that

<P'(£ƒ) = £.• (9)

If weFj then it belongs to (bf w1)w2 for some unique wteX* and
w2e(aoab%)* and we define cp'O) to be (bf (pr g(w1))w2.

Hw$Ff then we define cp' (w) to be 0 . Since <p/f g is a rational transduction
and Ff is a regular language, it follows that q>' is a rational transduction.
The properties of <pft g yield properties of 9':

• <P/, , (**)=** hence <p'(Ff) = Fr

• If w1 e l * and w\ e<pft g(wj) then | wt | = | w[ \x hence cp' (.E'j) = £"5.

• 9/, , ( * * - ƒ (N+)) = Y*-g(N + ) hence <p'(D»= D,.
• These last two points prove (9). D

We shall use the notation 7(n)eO(g(O(«)). It means that J{n)eO{g
(h(n))) for some function heO(ri). In other words

3/*:N+^N + , 3c>0, 3«0, V«>n0, h (n) ̂  en and/ (n)S

Eliminating h yields

3n0, Mn>n0, J(n)^c max
ie [0, en]

Since g is increasing, it becomes

3 o 0, 3 n0, VM>« 0 , / («) ^ eg (en

or in other words, for some positive c and large enough n we have ƒ 00 ^
(en). We can.also write

3e>0, lim

n -

Anyway, it is simpler to write/(n)eO(g:(O(n)) since it saves quantificators.
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Similarly f(ri)eo (g(O (n)) means

or

3c>0, Vc'>0, 3n0, Vn>n0, J(n)^c'g(cn).

LEMMA 15: Let f and g be two structure functions. IfLf^Lg, thenJ(ri)eO(g
(O(n))) [i. e. for some c and for large enough n we havef(n)^ eg(en)].

Proof: According to theorem 6,

?Lg (n) = n-l+g(n)n and pLf (ri) = n-\+]i (n) n

for large enough n. Since Lf^Lg, theorem 3 proves that for some integer c
we have

So that for large enough n we have n— 1 +ƒ(«)«^en— \+g(cn)en i.e. J

(ri)^c— 1 +g(cn)c3 which proves that ƒ (ri)<2cg(cri), since g(cri)^ 1. D
Theorem 7 and lemma 15 combine immediatly into the lemma:

LEMMA 16: Let f and g be two structure functions. IffSg thenJ{n)eO(g

LEMMA 17: Let f and g be two partial increasing functions from N+ to H + .
The three following properties cannot all be true.

• For some integer d, f(ri)eO (nd).

m g (n) e o (f (O («))).

• ƒ (H) e O (g (O («))).

Proof: Let assume all the three properties to be true. The last two properties
result in f(n)eO(o(f(O(O(n))))) = o(f(O(n))). Since ƒ is increasing, this
means that for some positive integer c we have lim f(cn)/f(ri)=oo. So that

n-> oo

we can fïnd an integer n0 such that for any n^n0, we have ƒ (cn)/f (n)^2 cd.
Then we can inductively prove that for any positive integer / we have
f(cln0)^2lcldf(n0), so that
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and thus lim sup f (n)/nd= oo. This is contrary to the first property. D
n-*oo

Theorem 7 has the corollary:

THEOREM 8: Let f and g be two structure fonctions. If f > g then Lf>Lg.

Proof: f^g, hence Lf^Lg. J and g are two increasing positive partial
functions, verifying gto(J) and J(n)^n. So that according to lemma 17, we
cannot haNeJ{ri)eO(g(O{ri))). Lemma 15 yields then that Lg£Lf. D

For instance if k^2 then Lk + 1 <Lk.

VI. THE LANGUAGE RELATED TO A FINITE SEQUENCE OF STRUCTURE
FUNCTÏONS

The purpose of this section is to build for every finite séquence of structure
functions gl9 . . ., ge a context-free language whose rational index is

® ( n O êi(n) )• Hence it will follow that for every séquence ku . . ., ke of

integers greater than 1, the séquence of structure functions fkl, . . ., fke yields
a context-free language, whose rational index is @(n1 + 1/fci+ • * * +1/fee)s So that
for every rational number X greater than 1, we can find a context-free
language whose rational index is 0 (/?*-).

In order to avoid a lot of subscripts and ellipses (« . . . ») and to make the
proofs clearer, we shall first handle a séquence ƒ, g, h of three structure
functions, and then we shall generalize the results to any séquence of structure
functions.

1, Définition of Lf ff h

Let ƒ : N + -> X*9 g : N + -* F* and h : N + -^ Z* be three structure
functions. We assume that X, Y, Z and {bl9 a2, b2, a3, b3, aœ, 6^, # } are
four disjoint alphabets. Lf g> h will be a language on the alphabet

Y{JZ{j{bu a2, b2, a39 b3, an, b^},

but to define it we shall use the larger alphabet

Y\JZ\j{bl9 a2, b29 fl3, b^a^ b^ # }.

Lety4cQ* and 5c=Q* be two languages and / be an integer greater than 1.
We define A ]t B to be the set of the words of A in which every factor a^ b%
is replaced by a word of atB, in which every occurence of bx is replaced by
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an occurence of bt. More precisely A J\iB=xUB(A) where xt .B is the substitu-
tion defined by:

xUB(x) = x for any other letter

where (pfrl b. is the strictly alphabetic morphism, which replaces b1 with bt

and keeps the other letters unchanged. f has interesting obvious properties:

• î is associative: For any languages A, B and C and any integers i and y
greater than 1, the two languages (A^iB)J\JC and A | t{B] jC) are equal, so
that we can dénote them A^B^jC.

• If A and B are context-free languages, then so is A î £ ,0,

• If i? is a regular language, then A]{B^A.

m If A and i? are both regular languages, then so is A ̂ tB.

At last we define x to be the rational transduction, which keeps words
containing at least one # and then erases all the # in the kept words. Le.
if A cz Q* then x# (A) = x{#)(An&*# Ü*). For instance

x#({dbc,dbb#c, #cb#b}) = {dbbc,cbb}.

We can now define Lf St h. As Lg is a subset of its frame
è*)*, similarly L / t fli h will be a subset of its frame, which

is to be the regular language

F,. 9, h=FfUF9UFh = <J>X^X*){a2{b*2iuY*) a3(b3 LU Z*)(aœZ>* )•)•)*.

We define the structured part of Lf gt h to be

$ f, s, h = ^ / î 2 Sfl T 3 *̂ ft

and the extended structured part of Lf> g% h to be

Sr
/j 9t h is not a context-free language, but Ef g h is.

We define Uft 9t h, the unstructured part of Lf g hi to be the set of the
words w in i^ f 2 ,Fff î 3 /^ such that at least one of the words of Ff9 Fg and
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Fh involved in the construction of w is unstructured, L e,

Uf, «. » = % i(Ff U # tf/)Ï2(F, U # tf,)Ï3(F» U # £/*))

} U # tf,) Î2Fg Î3 F,) U (Ff T2 (F, U # tf,) Î3 ̂ ) (10)

Conversely Ff, g h - Uf, g, h is made of the words w belonging to Ffï 2Fg
J[ 3Fh

such that none of the words of Ff, Fg and Fh involved in the construction of
w is unstructured. I. e.

Ef, e, k- Uf, ,. h = (Ff- Uf)U(Fg- Ug)U(Fh~ Uh).

Hence

g, h- Uf, g, h)

=(Ef n (F, - Uf)) u(Egn (Fg - ug)) u(£hn (F„ - uh))
= S f î 2 Sg î 3 Sh

DÉFINITION 16: The above définitions of Sf g> h, Eft 9J h and Ufs 9t h allow us
to define Lf g^ h as the union of its extended structured part and its unstructured
part, and it is also the disjoint union of its structured part and its unstructured
part.

^f, e, h =
 Ef, ,. *U ü>. ,. k = Sf9 g> h U Uft 9, h.

Figure 2 still holds. Uf9 Ug and Uh are dominated by S± and Ff, Fg and
Fh are regular languages, hence (10) proves that Uft 9t h^S*. Hence Lf gt h

is a context-free language.

We can express Lf g% h in an another way. Fft 9t h is the union of the sets

P

(bt LU a) f ] ( «2 (*S LIJ p() n («3 (bt LU Yl. ;) (aœ b*x)'>, J)
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where

peN,

y* for l^i^p,

for l^i^p and 1 è/^?£.

C//.f ^ A is made of those sets verifying the condition

or
3i, p ,er*~g(N+) (CJ

or
3i , 3y, Yit

ƒ ff ft is made of the sets verifying the condition

and
Vi, Ifcl^+l^ft (Ce)

and
Vz V/ I Y- -I H-1 = r •

Lf 9t h is made of the sets verifying at least one of the two conditions (Ce)
and (CJ . Sf\ 9t h is made of the sets verifying (Ce) but not (Cu) i. e.

and

Vf, h = g(qù ( Q
and

Hence

S/.,.»= U (èÏQj/(/;))nU U

U
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2. Lower bound on pL h

Let n be a large enough integer such that the three integers p=f(n), q = g
(ri) and r = h{ri) exist. We want to obtain a lower bound on pL h(n). Let
$$ be the automaton depicted in figure 4.

Figure 4.

This automaton has n states. It is made of a simple path of length n — 1
leading from the only initial state to the only final state. Every are of this
path is labeled by four letters in such a way that the path is labeled by each
of the four words é?-1"1 f{pUf (p), èr1~ ls(*)lg(?),2>3~1~ l ' t(r)l^0) and
b"^1. There is also an arc leading from the final state to the initial state
labeled by the three letters a2, a3 and a^. So the set of the words of Fft ff h

that $$ recognizes is

It is disjoint with Ufi ^ ft, but it has exactly one element of Sfi 9t h, which is

whose length is n — 1 +p{n + q(n + rn)), Hence

pLf § h (n) ^ n - 1 + ƒ (n) (n + g (n) (n + K(ri) «)). (11)

3. Upper bound on pL h

Let ne N + . Let sé be any automaton with n states recognizing at least one
word in Lf g> fcLU 5*. Let w be a shortest word in (Lft g fti_u j*) C\L(<$tf). We
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shall give an upper bound on | w |, that dépends only on n and not on sf so
that it will be also an upper bound on pLf h{ri). Let us consider a successful
path y in sé labeled by w.

• First let us assume that (Uft 9t hin s*) O L{sf)^0'.
As in the previous section, we can conclude that | w\^pUf h(ri).
• Let us assume now that Uft 9i hms* and L{sé) are disjoint. Then every

word in (Lf ff hujs*)C\L(<sé) belongs to Sft g> ALU J*. Thus w belongs to
Sft g> h LU s* and

we(b* LU ƒ(/>))

I. |<« |

! •

for some non négative integers/?, £l9 . . ., ^p; ru u . . ., ru q. for 1^/^/?. As
in the previous section overbraced parts of w hold no loops. Hence their
lengths are smaller than n. As in the previous section we have | f(p)\ t^n— 1.
Hence p^f(n), Similarly for every / in {1, . . ., r} we have q^gty). And
for every i and j we have ru j^h(n). All of this allows us to compute an
upper bound on \w\. Indeed:

The results in the two cases, we have looked at, can be summarized by

|w |^max(p^ g h{nl n-\+J(n)(n + g{ri){n + îi{ri)n))).

This upper bound on | w\ is also an upper bound on pL h(n).

4. Value of pLf ^ h

As in the previous section we can conclude that

Pi,, ,. h.(«) = PLS, gth(n) = n~\

+ ?(n)(n + g(ri)(n + K(ri)n)) for large enough «.
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5. Generalization to more than three levels

In the same way we built Lf% g> h, we can define the language Lgi . . ., 9e

for any séquence gu . . .,ge of structure* functions. In order to describe
precisely this language we must change slightly the notations used so far. We
assume that gt: N+ -> Yf for any ze[l, e], and that Yx . . . Ye and
{b u a2, b2, . . ., ae, be, am9 bœ, # } are disjoint. We defïne

fl^iU . . . U Y€\J {bu a29 b29 ..^a^b^a^b^ # }.

Indeed these are the notations used so far except for Yl9 Y2 and Y3, which
were called X, Y and Z.

We defîne

E9U

# Ugi)U . . . UF,eU #
U9L,

Obviously the previous results generalize:

THEOREM 9: If gx, - . -, ge
 are structure fonctions on disjoint alphabets, tken

Fgu ge is a regular language, Egi g& and Lgi . . ., 9e cire context-free
languages, Ugi ge = S± and for large enough n we have

6. Main example

DÉFINITION 17: For any positive integers i andj we defïne the alphabet

U j ~ \ X î p X 2 p * • • > x i j j *

DÉFINITION 18: We define x^j'.Xf -> Xftj to be the strictly alphabetic iso-
morphism, which adds the second subscript j to every letter. I. e. x( j (xt) — xl j
for every / e [ l , i\.
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DÉFINITION 19: Let kl9 . . . ,ke be afinite séquence ofintegers greater than 1.
Then Lklt . •. ., ke will be a short notation for

Remarks: This notation is compatible with the notation Lk defined in the
previous section to mean Lfk for an integer k> 1, if we identify Xk and Xki x.

- The functions i'j are needed only to ensure, that the structure functions
1*!, i ° fkl9

 l*2,2°A2 he, e ° 7ke use disjoint alphabets (Jffcl> l9 . . ., Xke> e).
Theorem 9 yields that Lky ke is a context-free language, whose rational

index is

for large enough n. So that

THEOREM 10: Le/ r e Q H [1, + oo[. T/ie« there exists a context-free language
L such that pL (n) = pL (n) e 0 (nr).

Proof: If r = 1 then L = 5^ works, since pS;t (/z) = ps^ («) = 2 « - 1 G 0 («).
• Let us assume r > l . Then r~pjq for some integers /> and q such that

0<q<p. Hence r= l+(p~q) l/q and we can choose L = Lq . >q. D

p —4f times

We study now the domination between the various Lgi Qe. The three
following theorems will provide an easy way to build infinité strictly increasing
or strictly decreasing séquences of context-free languages.

THEOREM 11: Let gu . • -,ge and hu . . .,he be two séquences of structure
functions, Ifgi^htfor all i, then Lgit ge^Lhl he, if these two languages
exist.

Proof: Let us assume that g£ : N + -> Y? and ht : M + -> Zf for i = 15 . . ., e.
The existence of Lgi ge means, that the e+\ alphabets
{ bua2,b2, . . .,ae,be,am,b^ # } and Yl9 . . ., Ye are disjoint. Similarly, the
existence of Lhl he means, that the e+\ alphabets Z 1 ; . . . 5 Z e and
{ bua2,b2, . . .,ae9beJaœ9bm, # } are disjoint

For every / in { 1, . . . ,e } , we have g^h^ This means, by définition, the
existence of a rational transduction ag.y h. : Yf -> Zf with some properties. We
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define the rational transduction ot : bf LU Yf -> 6? LU Z? such that

— i

It is the rational transduction which maps every word in bf LU W onto
bf LU afl.f fc.'(w) for every word weYf,

We define

Çlg=YxU ...UYeU{ bua2tb2, . . . , a € , ^ ù 0 0 ? ô 0 0 , # }

and

We are now ready to define the rational transduction a " : Q* -» Qjf such that

• If wen*-F f f l 9e then a"(w) = 0 .

• Let us assume now that w e i ^ , l9e- Then we have

^2 n (û3^2!i3 n
'4=1

Pi2 f e - l

n (û.«i2 «.(fl

where

peN, aebf LU Ff

pi2eN, aii2eb%in Y* fot'l^i^p,

Pi2fi3eN, OLi2ti3eb$ LU 7 | for I ^ ï 2 ^ p and I^i3^

Pi2, . . . , ^ N , ai2, . . . ) i e e è * uj y j for l ^ i 2 ^ ,
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Then we defïne

a" (w) = CTl(a) f i (a2°2(<*i2) U ( «3 ̂ K , ^ ) U
n = i \ »3 = i \ U =

The graph of the transduction a" is

*. . .)*)*)*

where Z£ dénotes the graph of the rational transduction ot. The product of
the two regular sets amb%xambl^(aaD9e)(baa9E)*(e9aa0)(E9bo0)* and the
graphs of rational transductions S l5 . . .,2^ are rational subsets of Q*xQ*
and so S" too. This proves that a" is a rational transduction.

As in the proof of theorem 7 the properties of the a '̂s result in

<*"(tf,i J = t f * i . .-...*. and o"(E81 g2) = Ehl he hence
^"(L§1 9e) = Lhu . . . , , , and Lgl, . . . . , . £ I * l f . . . ( V •

Theorem 11 has the corollary:

THEOREM 12: Le? g1? . . ,,ge and hu . . ,,he be two séquences of structure
functions on disjoint alphabets such that g^hifor all z, and giQ<hiQfor some

Proof: This theorem can be proved in the same way as theorem 8:

For all z, since g^h^ lemma 16 yields

£ («) e O & (O (/i)))

For z0 we have
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These facts result in

On the other hand we have pLh h (n)eO(ne+ x).

Lemma 17 yields then that pLh h (ri)$O(pLg g (O(n))) so that
lemma 15 yields that Lgi ge£Lhl^ he. D

Hence, if ku . . ., ke and lu . . ., /e are two different séquences of integers,
such that for all i we have 2^kt^li3 then Lfcl ke>Lllf . . . f i e.

NOTATION: Let (g1? . . . ,ge) be a fînite séquence of length e. We shall dénote
by (gu . . .,ge, ge) the fînite séquence of length e—\ obtained by the
removal of gc,.

THEOREM 13: Let e be an integer greater than 1. Let gu . . .,gebe a séquence

of structure functions. Let efe{ 1, . . .,e}. Then

3e*

Proof: We shall only prove this theorem in the case e = 4 and e' = 2. The
proof is similar in the gênerai case.

L e t / : N + ->JT*5 g:N+^ F*, / i : N + ^ Z * and / : N + -»T* be four struc-
ture functions, such that X, 7, Z, 71 and { 6 l9 a2, b2, a3, b3, a4, Z>4, a^,
0̂0? # } a r e fiye disjoint alphabets. We shall prove that

A/\ 5» h, ï > ^ / / , ft, i*

For that we choose a word wx in ^ S , , ! ^ and a positive integer nQ

such that g(ng) exists. Then we transform every word belonging to
Lf.g.h.in FfUig&gW1^ FhU Fi) into a word of ^ î a ^ î a ^ by
removing all the factors of the form g C ^ ) ^ " 1 <23 and then by decreasing
by one the subscripts of the letters è3, a4 and b4. The removed factors follow
the occurrences of a2-

Indeed this transformation is a bijection from

a3 F J 4 Ft)

onto Lf h u and it can be performed by the reciprocal of a morphisme (p.
Let us detail this. Let us defïne

Q = XU F U Z U 7 U {bl9a2ib2iaZib^aAibA9a^b^ # } .
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Let ng(resp. nh and nt) be the least integer, for which g(resp. h and I) is
defïned. Let

be the word in a3 Sh | 4 St having a minimal number of occurrences of

Let

w2 has been chosen such that

V u e O » , w2ue

We define the morphism

<p:

by

if xe(XUZUT)

Then obviously
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So that Lf gy h) ! ^ L / t h t (. On the other hand we have

so that

and we can conclude as in proof of theorem 12, that Lf Kl^Lf> ff h f. D

E. g. let ku...,ke be a séquence of integers greater than 1. Let
e f e{ l , ...,<? } . T h e n L k l t . . ,,

VII. OTHER EXAMPLES OF STRUCTURE FUNCTIONS

1. First example: a structure function leading to a context-free language whose
rational index is © (n In n)

DÉFINITION 20: Let ^ e x p = {a,b } and

i\-> bab1 ab3 ab1 . . . aft2 '"1"1 =

Let us show that/exp is a structure function and Xj =a:

• ^xp-/exp(N + ) = (^xp-b(ab*)*) U V # (*£„,| . l 'a, | • |,b*)(ab*)* so
that according to lemma 9 X^xp-fexp(N+)^S^.

• V i e N + , | / e x p ( 0 | o = / - l .

• V i e N + , | / e x p(01 = 2 ' - 1 , so that

i -> oo

Hm | / e x p ( f ) | / i=oo and /exp(«) = [ l n 2 n \ .
i -
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Theorem 6 yields that L/ex is a context-free ianguage and for large enough
n we have

pL/exp W
 = ^/exp (») = « ~ ï + nA*p {n) = n-\+n[\n2n\~n ln2 n.

2. Second example: a structure fonction leading to a context-free Ianguage
whose rational index is 0 (n In In n)

Let us defîne a new notation in order to express the next examples.

DÉFINITION 21: IfieN + and w is a word, such that \w\^2i~x — 2, then we
define

i. e. a copy offexp(i) in which we have replaced the suffix 6 | w | + 1 with cw. If
| w | > 2' ~1 — 2 then fexp (i) ends with too few b 's and Fexp (i, w) is not defined.

E.g. F^i^d2fexp(2)) = babab*abcd2bab and Fexp(3,d2/exp(2)) is not
defined.

Hence, in particular

|F e x p ( i» | = 2'-l
and

LEMMA 18: Let f: N+ -> Xbe a S ±-function. Let X be a subset of X, Then

the function g:i\-+ F&xp( | ƒ (i) \x>+l9f (0) is a S^-function.

Note that X and { a, b, c } are not necessarily disjoint.

Proof: Let us define 7 = I U { û , è , c } . Let us define the rational trans-
duction x:{a, £ }* -• 7* whose graph is made of all the couples

2 e7* . Then

In this union the first term is regular. The two following terms are dominated
by S^, since /exp and ƒ are S^-functions. And the last one is dominated
by S # . This proves that y * - g ( ^ + ) ^ S * . •
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LEMMA 19: Let f :N+ ̂ Xbe a S ̂ function. Let JC be a subset of X, Let z
be a letter, which does not belong to X. Then the function g: 11—> ƒ (z)
is a S^-function.

Proof: Let us define Y=X\j{z}. Then

In this union the first term is regular. The second term is dominated by S±,
since ƒ is a S^ -function. And the last one is dominated by S±. This proves
that Y*-g(N+)SS*. D

For / = / e x p , X=Xexp, Xf={a} and z = d this lemma yields, that

is a S± -function.

Lemma 18 yields for f=gl9 X= {a,b,d} and X = { a,b }, that

g2: i^F^{2\fxv(i)d-')

is a S± -function.

Indeed g2 (0 is defined for every ieN+ and |g2 (0 |d= ' ~ 1
| g 2 ( 0 | - 2 2 I - l . So that lim |£2(0|/*'= o° an<i g2 i

s a structure function.
i -* oo

According to theorem 6, Zff2 is a context-free language, and for large enough
n we have

3. Third example: a structure function Ieading to a context-free language whose

rational index is 0 (n Vin «).

Let A: be an integer greater than 1. For ƒ=fk and X = X ' = Xfc lemma 18
yields, that the function g3 : zi-> Fexp(i

k
y fk(i)) is a 5^-function. Indeed it is a

structure function such that xg2 = xk and |g 3 ( ï ) | = 21*—1. According to
theorem 6, Lff is a context-free language, and for large enough n we have
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4. Fourth example: a structure function leading to a context-free language
whose rational index is 0 (n^)

We define gA to be the partial function such that g4 Qï) is defined only if n
is a power of 2, and then

w h e r e y [ y j
Remark: j is the only positive integer such that ƒ ^ 2 z'2<(/+ l)2-

LEMMA 20: g4 is a structure function verifying |g4(2*)| = 2 | l ' ( l W 2 ) l - 1 and

Proof: In order to prove that g4 is a structure function, we define

g'4:

Let X=X2 LJ {a, è, c, d). We have g4(M+) <= X* and we are going to prove
that X*—g4(N+) is equal to the union B of the following eight languages:

B1=X*-d*{a,b}*X%cX%a*b +

B2 = V*{d*,\. | ,8, | . \,{a,b}*)X*cX*a*b +

= d*{a,b}*X*2 c{X*-f2(N +))a*è+

} 2 | . |X2 + | . |c,s,| . \,X*2a*)b+

. |e + 2| .

For any integer i, g'4 (z) does not belong to this union because

g'i(i)ed*{a,b}*X*cX*2a*b+
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= 2 e - 1 = <ƒ - 1) + (2 i2 ~ ƒ ) = | f2 0) a2i2 - ?

This proves that g 4 ( ^ + ) and B are disjoint, i. e.

• Conversely let w be a word in X* — 5. w belongs to X* — Bx i. e.

wed*{a,b}*X$cX*a*b+.

Since w belongs neither to B4 nor to B5 nor to B6, we have

i. e.

for some i\ z, 7, r G f̂J + and p, q e N.

Since w does not belong to B2, we have /7 = 2 r " l É

Since W does not belong to B ^ w e h a y e f' _ 1 = / _ 1 ^ e< f' = /.

Since w does not belong to B7, we have 2i2 — \=(j2—l) + q i.e. q = 2z2 —y2.

Since w does not belong i?8, we have 2y 4-1 = q + r z. e.

? ̂  0 and r > 0 hence ƒ g 2 Ï2 < (ƒ + l)2 , Ï. «. j = \ fî] • We have proved
that w = g4(0- Hence

We have proved that g^ (M + ) = X* - B i. e.

.0! is a regular language, and B2 . . . B8 are languages dominated by S^.
This proves that g'^ is a S^-function.

Since | g'A (i) \{ X2> c} = z' +y — 1, lemma 18 yields that g4 is a S^-function too.
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Hence g 4 (2') ==/r
exp (*"+.ƒ, g'4(i)) is defined when i is large enough.

We have

and

so that

lim |g4(2')|/2- = oo.
i -* oo

Thus g4 is a structure function and x9A ~d. D

Let n be an integer large enough for gA(n) to exist Then g^in) is the
largest integer p such that

Hence p is the largest power of 2, say 2\ such that

This inequality is equivalent to the following ones:

This upper bound on i cannot be an integer, so that the largest i is

and the largest p is

^ l)j e nJÏ- 1 2O (1) - @ (w^
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Theorem 6 yields that Lg4 is a context-free language, such that for large
enough n we have

pLff4 0 0 = PL94 (n) = n-

This kind of construction may be generalized:

5. Fifth example: structure functîons leading to a context-free language whose
rational index is 0 (nx) for an algebraic number X > 1

The main example of structure functions was the family of /k 's. For any
integer k greater than 1, we have/k(«)e0(ft1/fc). We extend this notation for
other non intégral numbers:

LEMMA 21: LetX be an irrational algebraic real number greater than 1. Then
we canfind a structure function ƒ \ suchjx(ri)e®(nlix).

Proof: Let P be a minimal polynomial of X, i. e. a polynomial of minimal
degree with intégral coefficients such that P(X) —0. Let m be the degree of
P. Let us assume

Since P is irreducible, X is a simple root of P, L e.

and Pf(X)^0, where P' is the derivative of P. If F(T)<05 then we replace P
by — P in order to ensure that

P'(X)>0.

P' is a continuous function. Hence we can find two rational numbers p1/q1

and p2i<}2 s u c n

11

Hence

Vrel^- .XI, P(0<0,
L?i L

K,^\, P(0>0.
J <
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The integers pu qx, p2 and q2 are now fixed, and we shall use them to
defïne fx.

Let

U 2 k

Let i be a positive integer. An integer j vérifies the conditions

(12)

-îmP(//O>o

fnP((j+l)/i)>0

if and only if it vérifies

1. e.

qx i i q2

and then

Furthermore, if i^nx then (13) and (12) are equivalent, Le, |_i"Aj is the only
integer j verifying (12). If i<n1 then (12) may have no solution or it may
have the unique solution \_iXj.

We defïne the two alphabets

D={du . . . ,</9}

^ = { * - i ^m+l5 ÛS b, c9 c'}.

The structure function ƒ x will be defined on the alphabet
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For every positive integer i for which (12) has a solution j we define

X - l l 11 \aXk ) \aXm+l

\ J

and

A (20=F„p(f, A(0).

The letters of D are used as separators.
The factor dlc

f2t~1 ensures that a letter occurs 2'—1 times in f'x(i) and
thusin/^(2f) too.

The factor d2fexp(i) gives a relation between i and 21.
The factor d3c

j~x ensures that a letters occurs j— 1 times mf'x{ï) so that
we can define Fcxp(j\f;(i)).

The factors ^ ^ ^ ( i + D , d5a
q^~^\ d8b~impufi) and rf8i

w«^+ivo corre-
spond to (12).

The factor d6fm(i) gives a relation between z and z* for every £e[0, m].

The factor d1fm(j) gives a relation between j and ƒ for every A:e[0, w].

JQ (ax£ym k)axm + 1 is used to construct the number

ft-0 /

(//ï)fc Ï"1, which is the number of occurrences of xfc, from the numbers f and
f1"*, for every k in [0, m]. The factor (ax^)1™ k is preceded by Xfc.i and
followed by axk+1 for every k in [0, iw]. This explains what x_1 and a x m + 1

are for. z™PO/0 i s t n e linear combination of these numbers Fn~kjk
9 whose

coefficients are those of P. These coefficients may not have all the same sign,
but in the equality

-imp(J-)+ Y max(05 ^k)i
m~kf= X max(05 -a k)zw- f c / + 0

\ij k=o k=o

both sides are sums of non-negative numbers. This is why this factor appears
twice.

In the same way the number im P((j+ l)/i) is built in the third line of the
expression oïf{(i).
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Let K=(DX*)*. The language Q.*-f'x(N+) is the union of the following
languages Gu . . .,G12.

1 = Q*-(d1c'*d2{a,b}*d3c*d4a
+d5a

+d6X%

= Kd2({a,b}*-fcxp(N+))K

= V# (rf, <f+, | . |, e, | . |, d2{a, b}*)K

*a+, q2\. U, c ,„ 4 )+| . |a> K,p2\ . |{-6> Xm}, d6XJK

c*, qi\.\,K,\. \a+Pl\. \lé6tXm), d5a
+d6XJK

(d2{a, b}*,\. U K, | . \Xm, d6XZ)K

(d3c*, \.\C,K,\. \Xm, d,Xl)dsb
+ K

* (d3c*, \.\,K,\. l^XDd^K

= K U VAdeK, \nXk\,Kd9X*xk_1, \ . \a, {ax^)+)axk + tQ*K
k = 0

m

nXm_k\,d8b*d9X*a, | . |, x^)

|è+ I max(05 afc)| . \Xk, e,
k = 02 max(0? - . \Xk, x ^

12
These twelve languages are dominated by S#. Hence £2*—A'(N+)= U G( is

dominated by S^ too. So ƒ [ is a S^-function.

Since | / i ( 0 | c = y ~ l s lemma 18 yields that/x is a 5^-function.
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and fx{i) is defined when i^nx. Hence A(2f) is defined when i is large
enough.

We have

and

|A (201 = 2^-1 = 2 ^ - 1

so that

lim|A(20|/2'=oo.
i -» oo

Thus fx is a structure function and xfx = c'.

Like in the fourth example we get

Jx („) = 2l u +Iog2 "JAJ G 0 (n1A

and

1 ). D

THEOREM 14: Let X be an algebraic number greater than 1. Then there exists
a context-free language L such that pL (n) = pL (n) e 0 (nx).

Proof: X may be expressed as X=l + l/Xi + . . . + l/Xe9 where every Xt is
an irrational algebraic number greater than 1. Then lemma 21 and theorem 9
can be applied to copies oîfXv . . .,fxe on disjoint alphabets. This complètes
the proof. D

THEOREM 15: Let X and |i be two algebraic numbers such that l<X,<|i.
Then there exist two context-free languages L% and L^ such that:

Proof: We may have n = A,+ l/ke + 1 + . . . + l/Xe, for some irrational alge-
braic numbers Xe+1 . . . Xe. greater than 1. We define Lx and L^ like in the
previous proof. Theorem 13 yields, that
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We can also build structure functions fx such that fx(n)eQ(n1/x) for some
transcendental numbers X, e. g. n//6:

6. Sixth example: a structure function leading to a context-free language whose
rational index is 0 ( « 1 ^

The construction of this structure function is based upon the equality

6 h f'
First we define the function

a:

• v K IM/J
We define then g6 to be the partial function such that g6 (n) is defined only
if n is a power of 2, and then

o n
We can prove easily that g6, like gA, is a structure function, that xg =x 4 ,
and that | g6 (2f) | = 2lV«^J - 1. We have

and thus

V6

so that
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and

7. Other examples and generalization

• Let <ëx be the set of context-free languages, whose extended rational
index is in O(nx) for any real number greater than 1. It is a rational cone,
i.e. it is closed for rational transductions. If l<À,<|i then you can find a
rational number p/q between X and |i. There exists a context-free language
whose rational index is in &(np/q). This language belongs to fé^ —#*,. This
proves that ^ is a proper sub-cone of ^ . Hence the family (^X e ] l ï ^ is a
strictly increasing family of cones with the same cardinality as M.

• The structure functions g2 and g4 of second and fourth examples, and
theorem 9 yield for instance that there exists a context-free language whose
rational indexes for large enough n are:

\{n){n + nJ5(n)))

• We could, with this technique, build a context-free language, whose
rational indexes are in ®(nn).

• The technique used in this paper can be sophisticated: We can replace
the language S*, omniprésent in this paper, by a generator of the rational
cône of linear languages, like the only language solution of the équation
L = aLâ{JbLb\J {e}, whose rational index is in 0(n2). Then the structure
functions could involve décimal numbers and arithmetical computations on
these numbers. In this way we can obtain a context-free language L such
that pL (n) = pL (n) and | pL (n) — rf | < 1 for large enough n.

• Let A be the set of all the numbers À,e]l, oo[ such that there exists a
context-free language whose rational index is 0 (nx). Since the non-isomorphic
context-free languages form a denumerable set, A is denumerable too.
Ho wever it holds all the algebraic numbers greater than 1, and seemingly

any computable number greater than 1 like n, e, e + n, 2 + cos Ve
f«

or 2 +In /8 + cos x dx, for which there exists an efficient algorithm to

Jo
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compute as many of its digits as you wish. So here is an open problem: can
we fïnd an explicit number in ]1, oo[ —À ?
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