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AN APPLICATION OF m-ARY TREES TO THE DESIGN
OF DATA STRUCTURES FOR GEOMETRIC SEARCHING

PROBLEMS (*)

by M. TALAMO (*) and G. GAMBOSI (*)

Communicated by G. AUSIELLO

Abstract. - An efficient solution to the ECDF searching problem is presented which extends to
ECDF counting.

Such solution relies on the use of m-ary trees combined with the introduction of particular
cumulated sets and makes it possible to obtain parametric bounds which allow to "t«ne" the data
structures introduced.

Résumé. - Dans cet article on présente une solution efficiente au problème de la recherche
ECDF, que Von peut appliquer aussi au problème général ECDF.

La solution est basée sur l'usage d'arbres m-aires et d'ensembles cumulatifs, et nous permet
d'établir des limites paramétriques pour la complexité des algorithms proposés.

1. INTRODUCTION

Searching or counting ail points included in some interval in a d-dimen-
sional space is one of the fundamental problems in Computer Science and,
in particular, in the fast growing field of Computational Geometry. Such
problems are differently denoted depending on the type of intervals consi-
dered. In particular:

— The ECDF (searching-counting) problem [8] regards intervals open at
left, i. e., given a set of points S and a point x = (x1? x2, . . ., xd), it asks for
ail points z = (zu z2, . . ., zd) in S such that zt gj xf (i= 1, . . ., d).

— The Orthant (searching-counting) problem [15] concerns intervals open
either at left or at right, i. e., given a set of points S and a point
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x = (xti x2, . . -, xd), it asks for ail points z—(zu z2, . . ., zd) in 5 such that,
for each * = 1, . . ., d, either zt ^ xt- or zt ^ xf.

— The (Orthogonal) Range (searching-counting) problem [5] treats the
case of closed intervais, i. e. given a set of points S and two points
x = (xl9 x2, . . ., xd) and y=(ylt y2, • • -, yd\ it asks for ail points
z = (zl, z2, . . ., zd) in S such that x,. ̂  ^ ^ j>s (z = l, . . ., d).

Many efforts have been devoted to the design of data structures for set S
and of search algorithms on such structures which allow an efficient treatment
of such queries, and a large amount of papers which are concerned with the
définition of upper and lower bounds for such problems is available in the
literature. The ECDF searching/counting problems were introduced in [8] in
the framework of statistics, while [1] gives a recursive solution to the problem
as an example of the gênerai paradigm of multidimensional divide and
conquer. A solution for the case à~1 has been developed in [11] by réduction
to a paper stabbing problem.

In gênerai, however, the ECDF problems have been studied in the frame-
work of the more gênerai (orthogonal) range searching/counting problems.
Such problems have been extensively studied for their relevance, mainly
in the context of database physical organization [2, 3, 12], leading to the
introduction of quad trees and multidimensional binary (k — d) trees [16].

Successively, the concept of decomposable searching problem, introduced
in [4], applied to range searching has led to the design of more efficient
data structures [6, 26] and to the introduction of dynamization capabilities
[19, 7, 22, 20, 28]. In particular, Willard [26] obtained data structures with
query time g (w) = O(lgd"1n), space S(w) = O(nlgd~1n) and preprocessing

Recently, Chazelle [10] applied the approach of filtering search to range
searching obtaining a saving of lglgn on the space bound.

Lower bounds for orthogonal range searching queries are discussed in
[13, 14, 27] under different computation models, while in [17, 23, 9] some
relations between range searching and other geometrie problems are pre-
sented.

The basic idea of this paper is to introducé a second type of divide and
conquer, together with the one drived from the usual techniques of partition-
ing the interval considered allowing the représentation of overlapped régions.
Such a new approach is defined by introducing for each interval R a séquence

Informatique théorique et Applications/Theoretical Informaties and Applications



GEOMETRIC SEARCHING PR0BLEM$ 167

of b sub-intervals R%9 . . ., Rj, such that:

1. Rt c: R and R{ <= R{+x for each i^ 1, , , ., fc~1.

2. K^a,
It is easy to realize that this décomposition is powerful enough to express

the interval partitioning typical of divide and conquer: in fact, denoting as
low (R) {up (R) respectively] the lower (upper) of interval K, such a partition
is defined by Qow'dJJ, np(RJ], [ u p ^ ) , up(K2)], , . . , [upd^), 'up(Rb)].
Such solution will make it possible, for a given i, to access in a single step
all points less than up (Rt) and, at the same time, to (eventually) décompose
interval [up^^), up(iîi+1)] ([lowCKi), up(Rx)] for the lowest sub-interval).
Hençe, only one interval will be considered for each level of décomposition
in an ECDF query, thus obtaining access to igb n nodes.

In Paragraph 2 the basic solution to the ECDF searching/counting problem
is presented: such a solution is based on the approach introduced above and
on an extension of the concept of "layered tree" definçd in [26] to m-ary
trees. A data structure is introduced which solves the ECDF searching
(counting) problems with query time Q (ri) = O (lf$~ * n + k% where k is the
dimension of the output, (O(l^~lri))9 space S(n)-O(n(blgdn)d"1) and pre-
proçessing time P(ri) = O(n(blgbri)d~l), where n is the number of points
considered and b the degree of the partition introduced.

In particular, for b = lgn/lglgn such bounds beçome:

respectively, thus improving the results of [26] with respect to query time. In
gênerai, however, ranging b in [1, . . ., \S'\] makes it possible to obtain data
structures ranging from a matrix représentation to a pure range tree.

In Paragraph 3 spme considérations on possible extensions and related
works are presented.

2. THE DATA STRUCTURE

The solution presented hère relies on the recursive décomposition of sets
of points belonging to Rd into disjoint subsets of (approximately) the same
size according to their x^coordinate: hence, given a (generic) set S g Rd of
S | points in a d-dimensional space which are ordered according to their x±-

coordinate, such a set is decomposed in b subsets (corresponding to intervais
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168 M. TALAMO, G. GAMBOSI

on the xx axis) where

| S 1 H S 2 | = . . . = | S » - i | = - ^ - and |

Furthermore, for each set S a (cumulative) function ƒ : [1, . . ., b] -* 2S is
defined such that ƒ (i) = U Sj. It is easy to realize that

Jû i

for î = l , . . . , 6 - 1 and f(b) = S.

Hence, each set St will contain ail points in S contained in a particular
interval [ais ai+1] on the x1-axis (where ax = — oo and ab+1 = + oo), while each
set ƒ (0 includes ail points in the interval [au ai+x]. In figure 1 an example
of such a décomposition is presented for a case with d = 2, b = 3, \S | = 10.

Such a décomposition can be represented by a fc-ary tree T such that each
node represents a subset of S (in particular an interval on the total ordering
given by the xt-coordinate). In the following, we will dénote as:

— S (ri) the set of points represented at node n;

— Si (ri) the ï-th son of node n in T.

— ̂  (ri) the value ƒ (i) of the function ƒ relative to set S (ri);

— Xi (p) the value of the i-th coordinate of point p.

In particular, for d = 29 we will dénote xt (p) as x(p) and x2 (p) as y(p).

Each node n in T will have the following structure (see fig. 2):

1. A set of b pointers su . . ., sb to the sons sx (n), . . ., sb(ri) of n. Pointer
s, will point to the node ri such that S (ri)-St.

2. A set of b pointers fl9 . . ., fb to the structures representing sets
/ i (n), • * -, fb («), if such sets do exist.

In figure 3 a first example of such a structure is given for the case presented
in figure 1, where pointers s( are drawn as thick Unes while pointers ft are
represented by thin lines.

Let us now turn to the organization of sets ft (ri). For the sake of simplicity,
let us consider the case d~2: in such a situation, a structure qui te similar to
the "layered trees" presented in [26] will be used. In such an approach, the
sets ̂  (ri) associated to a node n are implemented as arrays of points ordered
according to their ^-coordinate. Moreover, for each point pj in fb(ri)
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S1={1,7,9 f10}

S2={ 3,4,5,8 }

f , ={1.7,9,10}

f 2={1,3,4,5,7,8,9,10}

f3={1,2,3,4,5,6,7,8,9,10 }=S

Figure 1.

Figure 2.

vol. 23, n° 2, 1989
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Figure 3.

j = 1, , . ., j fb(n)\, there exist 2b— 1 pointers subdivided in two sets:

1. fc—1 "brother pointers" Bjn(l), . . ., Bs,„(b-l) such that Bj%n(k\
fc = I, . . «, fr— 1 points to the element q in fk (ri) such that y(q) is the greatest
value of the ordinate for points in fk(n) less than or equal to y (Pj).

2. b "downpointers" Dj „(1), . . ., Djn(b) such that Djn(k) k=l, . . ., b
points to the element q' in fb (sk (ri)) such that y (q') is the greatest value of
the ordinate for points ïnfb(sk(ri)) less than or equal to y(Pj)-

These pointers will be indeed represented by the indexes of points q and q'
in fk (ri) and fb (sk (ri)) respectively.

In figure 4 the same example of figure 3 is presented with sets f^ri)
structured as above. For the sake of simplicity only pointers relative to the
représentation of point 5 at the first level have been drawn. Both brother
pointers and downpointers have been drawn as dashed lines.

Two dictionaries dict and dic2 are moreover defined such that:

1. Given a point/?, du^ gives, in time O(lgn), the rank rx(p) of p in the
ordering of points in S U {p} according to their abscissa.

2. Given a point p, dic2 gives, in time O (lg ri), the rank ry (p) of p in the
ordering of points in S U {p} according to their ordinate.

Informatique théorique et Applications/Theoretical Informaties and Applications
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-J35 7 9S 1 4 10]

m

Figure 4.

Such dictionaries can be implemented by e. g. balanced trees (AVL trees,
2-3 trees, etc).

It is now possible to state the following theorem:

THEOREM 1: Given a set S of points in a d-dimensional space, the data
structure presented above makes H possible to solve the ECDF searching
problem with bound on the query time:

— Q(n) = O (lgf~l n -f k), where fc is the dimension of the output, for d > 2;

Proof: Let us again consider first the case d = 2: then, the following algo-
rithm can be designed in order to answer efficiently to ECDF searching
queries.
ECDF searching algorithm
begin

"détermine on dicj and dic2 the ranks rx(p) and ry(p)";
node-access (rx (p\ ry (p), root, | S |)

end
where:
procedure node-access (rx, ry, node, n);
var i, j: integer;
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begin
ï:=(ncdivfc) + l;
if i > 1 then

"output all points p} infi_1 (node) with ; g Bryt node (i — 1)";
if "node synode) exists" and {rxmodb ^ 0) then

begin
if i ^ b then

node-access (rx — n* i div fc, Dry node (i), st (node), n div b)
else

node-access (rx — «* i div 6, Dry node (i), s£ (node), n mod b)
end

end;

For A = 2, it is easy to realize that Q (n) = O (depth (T) + lg « + k) and, since T
is a balancée 6-ary tree, Q (n) = O (\gbn + lgn + fc) with fc the number of points
resulting from the query: this gives a bound O (lg n 4- fe).

In the case d > 2 sets /f (n) can be structured as &-ary trees for dimension
à— 1: this gives the gênerai bound Q (n) — O (lg^"1 n-hfc). •

THEOREM 2; Gffen a 5et S of points in a d-dimensional space, the data
structure presented above makes it possible to solve the ECDF searching
problem with space S (n) = O («(ftlg^n)11"1).

Proof: For d = 2, each point /? G S occurs at most b lg6 n times in T, since it
can occur in ail sets fi(ri) i= 1, . . ., b in a node for at most all nodes in a
path from root (T) to a leaf, hence in \gb n.

For d > 2, the following récurrence holds, where R (d) is the maximal
number of times a point p can occur in a structure for a set S, with | S | = n,
in d dimensions:

which gives the gênerai expression

1 and S(n) = O(«(61&n)--1). D

THEOREM 3: Gïuen a set S of points in a d-dimensional space, the data
structure presented above makes it possible to solve the ECDF searching
problem with preprocessing time P(ri) = O (n(b\gbri)*'1).

Proof: For d = 2, the cost of building a single node representing m points
is

C(m) = 0[bm/b+ X — 1 which gives C(m) = O(bm).
\ i = \ b )

This results in a cost O (b n) to build ail nodes at a same level in T and in
a global preprocessing time P(n)—O (ni>lg*n).
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For d>2, assume P(n) = O(h(b\ghrif~1) for dimension à. Then, the cost
of building a single node representing m points in à+ 1 dimensions will be:

where the first term is due to the cost of deriving sets ƒ•(«), i = 1, . . ., b— 1,
and SfoCn)), z= l , . . ., b. The second term represents the cost of building
the structures at dimension d for sets 5 (st (n)), while the third term accounts
for the cost of building the structures at dimension d for sets fi (ri).

Hence, C (m) = O(mb(b \gb m)d " l ) and, as a conséquence,

and P (») = O (n (b \gb rif) for a d+ 1 dimensional structure. •

COROLLARY 1: It is possible to design a data structure which supports ECDF
searching queries with bounds:

- S(n) = O(n(\gn/\g\gn)2d~2);

- P(n) = O(n(\gn/\g\gn)2d-2).

Proof: Dérives simply by substituting b with lgn/lglgn. •

The data structure above can be suitably modified in order to obtain an
efficient solution to the ECDF counting problem. In order to do that it is
possible to simply eliminate sets /j(n), i= 1, . . . , & — 1: the value Bry „(i) will
give the number of points with ordinate less than or equal to ry in the f-th
sub-interval of the interval on the x axis represented at node n. Figure 5
shows such a modification for the same example of figure 4.

It is easy to dérive the following theorem.

THEOREM 4: Given a set S of points in a d-dimensional space, the data
structure above makes it possible to solve the ECDF counting problem with
bounds:

) = O(n(blgbn)d-1);
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ligure 5.

Proof: Concerning query time, let us consider the following algorithm
operating on the structure above:

ECDF counting algorithm
begin

N:=0;
"détermine on dic^ and dic2 the ranks rx(p) and ry(p)";
node-access (rx (p), ry (p), root, | S \, N);
"output JV"

end.
where:

procedure node-access (rx, ry, node, n, N);
var i, j : integer;
begin

d f c( )
if i > 1 then N = N+B,?,node(ï-l);
if **node s£(node) exists and (rxmodb # 0) then

begin
if i ^ b then
node-access (rx — n*idivb, />ry>node(0, Si(node), ndivô, N)

else
node-access (rx—n*ïdivfo, Orynods(iX s(-(node), nmodb, N)

end
end;

Such an algorithm returns into variable N the number of points satisfying
the ECDF query in a time which equals that of the ECDF searching algorithm
of theorem 1 without the factor k representing the cost of enumerating all
points in the output. Moreover, the space and preprocessing bounds can be
easily verified to be the same as above. •
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3. CONCLUSIONS

In this paper, a data structure has been présentée! which supports a
parametrization of its structure and, then, of the related bounds on time and
space. It has been shown that, for a suitable value of such a parameter it is
possible to obtain quite good performances on query time.

It seems worth of further investigation the extension of such an approach
to the more gênerai orthant and orthogonal searching/counting problems;
moreover, due to the introduction of m-ary trees, it seems interesting to
investigate the use of such a structure on secondary memory.

REFERENCES

[1] J. L. BENTLEY, Multidimensional Divide and Conquer, Communications of A.C.M.,
vol. 23, 1980, pp. 214-229.

[2] L L. BENTLEY, Multidïmensïonal Binary Search Trees Usedfor Associative Search-
ing, Communications of A.C.M., vol. 18, 1975, pp. 509-517.

[3] J. L. BENTLEY, Multidimensional Binary Search Trees in Database Applications,
I.E.E.E. Trans, on Software Engineering, vol 5, 1979, pp. 333-340.

[4] L L. BENTLEY, Decomposable Searching Problems, Information Processing Letters,
vol. 8, 1979, pp. 244-251.

[5] J. L. BENTLEY and J. H. FRIEDMAN, Data Structures for Range Searching, Comput-
ing Surveys, vol 11, 1979, pp. 397-409.

[6] J. L. BENTLEY and H. A. MAURER, Efficient Worst-case Data Structures for Range
Searching, Acta Informatica, vol. 13, 1980, pp. 155-168.

[7] J. L. BENTLEY and J. B. SAXE, Decomposable Searching Problems # 1: Static to
Dynamic Transformations, Journal of Algorithms, vol. 1, 1980, pp. 301-358.

[8] J. L. BENTLEY and M. I. SHAMOS, A Problem in Multivariate Statistics: Algorithm,
Data Structure and Applications, Proc. 15th Annual Allerton Conf. on Communica-
tion, Control and Computing, 1977, pp. 193-201.

[9] J. L. BENTLEY and D. WOOD, An Optimal Worst-case Algorithm for Reporting
Intersection of Rectangles, I.E.E.E. Trans, on Computers, vol. 29, 1980,
pp. 571-577.

[10] B. M. CHAZELLE, Filtering Search: a New Approach to Query Answering, Proc.
24th I.E.E.E. Symp. on Foundations of Computer Science, 1983, pp. 122-132.

[11] B. M. CHAZELLE and H. EDELSBRUNNER, Linear Space Data Structures for two
Types of Range Search, Tech. Report 202, Inst. of Computer Science, University
of Graz, 1985.

[12] R. A. FINKEL and J. L. BENTLEY, Quad Trees: a Data Structure for Retrieval of
Composite Keys, Acta Informatica, vol 4, 1974, pp. 1-9.

[13] M. F. FREDMAN, A Lower Bound on the Complexity of Orthogonal Range Queries,
Journal ACM28, 1981, pp. 696-706.

[14] M. F. FREDMAN, Lower Bounds on the Complexity of Some Optimal Data Structu-
res, SIAM Journal on Computing 10, 1981, pp. 1-10.

vol. 23, n° 2, 1989



176 M. TALAMO, G. GAMBOSI

[15] H. N. GABOW, J. L. BENTLEY and R. E. TARJAN, Scaling and Related Techniques
for Geometry Problems, Proc. 16th Symp. on Theory of Computing, 1984,
pp. 135-143.

[16] D. T. LEE and C. K. WONG, Worst Case Analysis for Région and Partial Région
Searches in Muîtidimensional Binary Search Trees and Balanced Quad Trees, Acta
Informatica, vol. 9, 1977, pp. 23-29.

[17] D. T. LEE and C. K. WONG, Finding Intersection of Rectangles by Range Search,
Journal of Algorithms, vol. 2, 1981^ pp. 337-347,

[18] D. T. LEE and C. K. WONG, Quintary Trees: a File Structure for Muitidimensionai
Database Systems, A.C.M. Trans, on Database Systems, vol. 5, 1980, pp. 339-353.

[19] J. VAN LEEUWEN and D. WOOD, Dynamization of Decomposable Searching Prob-
iems, Information Processing Letters, vol. 10, 1980, pp. 51-56.

[20] G. S. LUEKER and D. E. WILLARD, A Data Structure for Dynamic Range Queries,
Information Processing Letters, vol. 15, 1982, pp. 209-213.

[21] J. NIEVERGELT, H. HiNTERBERGER and K. SEVCIK, The Grid File: an Adaptable,
Symmetrie Multikey Data Structure, A.C.M. Trans, on Database Systems, vol 9,
1984, pp. 38-71.

[22] M. H. OVERMARS, The Design of Dynamic Data Structures, Lecture Notes on
Computer Science, Vol. 156, Springer Verlag, New York.

[23] M. H. OVERMARS, The Equivalence of Rectangle Containment, Rectangle Enclosure
and ECDF Searching, Tech. Report RUU-CS-81-1, Dept. of Computer Science,
University of Utrecht, 1981.

[24] J. T. ROBINSON, The K-D-B Tree: a Search Structure for Large Muitidimensionai
Dynamic Indexes, Proc. of the SIGMOD Conference, 1981, pp. 10-18.

[25] J. VUILLEMIN, A Unifying Look at Data Structures, Communications of A.CM.,
Vol. 23, 1980, pp. 229-239.

[26] D. E. WILLARD, New Data Structures for Orthogonal Range Queries, S.I.A.M.
Journal on Computing, Vol. 14, 1985, pp. 232-253.

[27] D. E. WILLARD, Lower Bounds for Dynamic Range Queries That Permit Subtrac-
tion (to appear).

[28] D. E. WILLARD and G. S. LUEKER, Adding Range Restriction Capability to Dynamic
Data Structures, Journal A.CM., Vol. 32, 1985, pp. 597-617.

Informatique théorique et Applications/Theoretical Informaties and Applications


