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COMPLETING CODES (*)

by A. RESTIVO (*), S. SALEMI (X) and T. SPORTEIXI (*)

Communicated by J.-E. PIN

Abstract. - The problem to characterize those finite codes that can be embedded in a finite
maximal code is investigated.

The main results, which give some necessary conditions for the embedding, are obtained by using
factorizations of cyclic groups.

Résumé. - Nous étudions le problème de caractériser les codes finis qui peuvent être inclus dans
un code maximal fini.

Les résultats principaux, qui donnent des conditions nécessaires pour V inclusion, sont obtenus en
utilisant les factorisations des groupes cycliques.

1. INTRODUCTION

The theory of (variable length) codes takes its origin in the theory of
information and comunication devised by C. Shannon in the 1940s. It has
been later developed in an algebraic direction by M. P. Shutzenberger and
his school in connection to automata theory, combinatorics on words, formai
languages and semigroup theory. A complete treatment of the theory of codes
until very recent developments may be found in [1],

An important notion in this theory is that of maximal code: a code is
maximal if it is no proper subset of any other code in the same alphabet. It
is not difficult to see that any code is included in a maximal one. However
there exist finite codes which are not included in any finite maximal code.
An example containing only four words was given in [9] as the smallest
member of an infinité family of codes which do not have a finite completion.
The same example had been given by A. Markov in [7].

(*) Received November 1986, revised April 1987.
(*) Dipartimento di Matematica ed Applicazioni, Université di Palermo, Via Archirafi 34,

Palermo (Italy).
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136 A. RESTIVO, S. SALEMÏ, T. SFORTELU

One of the main ope» problems on codes is to eharaeteri&e those finîte
codes that ean be embedded in a finite maximal code, i e. that have a finite
completion. It i$ not even presently known whether this prperty is effectively
decîdable.

In this paper we inve&tigate thîs problem»
In section 2 the basîe définitions and some non trivial eompktion proce*

dures are presented. In partieular we dérive that any two-element code has a
fînite completîon and we conjecture the same resuit for three-element codes.

In section 3 we show the retetionship between this problem and an old
conjecture of Schut^enberger oonceming the optirnajity of prefix codes. The
construction of a fînîte completion for a special code recently introduced by
P. Shor would gtve a counterexampîe to this conjecture. ActuaUy the results
of this paper suggest that Shorts code does not have a finite completion,

In section 4 factoriiatioös of oycîic groups are introduced as a tool to
study the problem of code c^mpletian. We obtain only partial results. In
particular some neG^ssary conditions for a code to have a finite compîetîon
are given, generalizing previousiy published résulta A conjecture on factoma-
tions of cyclic poups îs aïso praposed, whieh indireetly supports the validîty
of Schut^nbexger*S; canjecturev

Let us fïnally vemwtk thât the results mê the probJems rised in this paper
show the deep interconnections between âlgebraîe and information theoretical
argunientsu

% mmmnam AND, PREUMINARY RESULTS

Let i be a finit© alphabet mû 4* the free monoM generat^l by A As
usual the éléments; of 4 are ealled letters* the éléments of A* words and by
\u\k denoted the tength of the word t* i i * The empty word ïs dénotée by
1 and the set of son empty wotds of 4* by 4 # .

Thus 4 + M . * - h M X m a snbset of 4% X* dénotes the
generateé by M and JC* =*X*-~%,

A set X e 4* is a code if

for

n y m # 1 , X** x ^ . . -, », x ^ yUî y%> ,_..,%
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COMPLETING CODES 137

and

In other words X is a code if the submonoid X* generated by X is free
and of base X.

A code X^= A* is maximal {in 4*) if it is not properly included in any
other code Y ^ A*.

A set X s A* is complete if for all we A\ A* wA*nX**0-
Equivalently, X is a complete set if every word of A* is factor of some

word in X*,
A set I e A* is thin if there exists at least one word weA* such that

i * w i * O ^ = 0 . Finite sets and recognizable (by a finite automaten) sets
are in particuiar thin sets.

The following foundamental result of M. P. Schutzenberger states the
équivalence, for these codes, of the notion of maximality and completeness
(see [IJ).

THEOREM 1 (Schutzenberger): A thin code is maximal if and only if it is
complete.

Let X ü A* be a code. Any maximal code Y <i A* which contains X is
called a completion of X.

PROPOSITION 1: Every code X £ A* has a completion.

Proof: It is suffices to apply Zorn's lemma to the family:

/ = { y c A*jY code and Y 2 X).

A code X is a prefix code if no word of X is prefix of another word of X.
It is well known {see [1], cp. 2) that one can associate to a prefix code, over
a k-letter alphabet, a fe-ary tree in such a way that the leaves of the tree
represent the words of the code. A fe-ary tree is complete if all the nodes which
are not leaves have exactly k successors. As a conséquence of theorem 1, it
is easy to verify that a thin prefix code is maximal if and only if the
corresponding tree is complete.

For any finite subset X of A* we dénote by d(X) the maximal length of
words in X.

PROPOSITION 2: Any finite prefix code X has a finite completion Y and,
moreover, d(Y) = d(X).

Proof: It suffices to complete the tree corresponding to X

vol. 23, n° 2, 1989



138 A. RESTIVO, S. SALEMI, T. SPORTELLI

Of course proposition 2 holds true also for suffix codes which are obtained
from the prefix ones by using the reverse opération.

Proposition 2 is no more true for gênerai codes, as discovered in [9]: there
exist finite codes which are not contained in any finite maximal code. The
smallest example known is the code

X={a5, ba2, ab, b} (see [9] or [1], p. 64).

The main problem we hère consider is to characterize those finite codes
which have a finite completion. It is not even presently known whether this
property is effectively decidable. The simplest example were the answer is
unknown is the code

X={a5b,a2b, ba, b}.

In section 4 we shall find that any completion of X has words of length
^ 42 and we conjecture that X does not have a finite completion.

If we replase "finite" by "recognizable" a positive resuit has been obtained
by Ehrenfeucht and Rozenberg [4].

THEOREM 2 (Ehrenfeucht, Rozenberg): Every recognizable code has a reco-
gnizable completion,

The proof of this theorem gives also a procedure to complete a code. The
procedure, which runs for any thin code, is the following. Let X g A* be a
thin code which is not complete.

Then there exists a word y e A* such that:
(i) y is unbordered, Le. y A* f\A+y=yA*y, and
(ii) y is not completable in X, L e. A* y A* C\ X+ =0.
One then considers the set U=A* — X* — A* y A* and builds the code

Y=X\Jy(Uy)*. It is not very difficult to verify that Y is complete and
theref ore maximal. Moreover, if X is recognizable, Y is still recognizable.

Remark that this procedure gives, in any case, an infinité completion. Thus
it does not give us any information about the main problem we have
considered, i. c. whether a finite code is included in a finite maximal code.

Let us now introducé the notion of composition of codes (see [1], p. 71).
Let X and Z be codes over the alphabet A such that I * c Z * g A*. Let p
be a bijection of a new alphabet B onto Z that can be extended to an
isomorphism of B* and Z* (since Z is a code). The set 7=p~ 1 (X) is then a
code over the alphabet B. We say that X is composed of the codes Y and Z
and we write X—Y^Z.

Informatique théorique et Applications/Theoretical Informaties and Applications



COMPLETING CODES 139

It is easy to prove that X is a maximal code if and only if Y and Z are
maximal codes.

Example 1; Let A = {a, b, e} and X={a, b, acb}.
Consider the code Z = {a, b9 eb},
One has X* g Z*. Let B = {x, y, z} and P such that

P (*) = «,

Then

and

In other words, X is obtained by replacing in Y the letters x, jy, z by the
corresponding words of Z.

Let I c i * b e a composed code, X= 7 ° z , with Z e i * , y g B*, p the
bijection of B onto Z. Let Zj c ,4* be a code containing Z, let p t be the
extension of P to a bijection of a new alphabet Bt^ B onto Z l s and let
Yt g Bf be a code containing y. We then define a new code Xt containing
X, by composing Yx and Z^

The following proposition is a conséquence of this construction.

PROPOSITION 3: Let X be a finite code obtained by composition of codes
having a finite completion, Then X has a finite completion.

From this and proposition 2 we obtain the following corollary. Let us first
introducé the following terminology.

A code is called prefix-suffix composed if it is composed by prefix and
suffix codes.

COROLLARY 1: Every finite code, which is prefix-suffix composed, has a finite
completion.

We show the completion procedure by an example.

Example 1 (continued).

Consider the code X={a, b, acb} = Y°Z. Z is a prefix code.

A completion of Z is: Zt = {a, b, cb, ca, ce}.

vol. 23, n° 2, 1989



140 A. RESTJVO, S, SAUEMÏ, T, SPORTELU

Let Bl = {x, j , z, s, t} 2 B and îet $t: Bt-*Zt be the extension of
defined as:

The code F={x, 3?, xz} c s* is a suffix code and it has (in Bf) the
following completion Yt:

The code

Xx= F1oZ1 = p i(Y1) = {a, b, acb, ca, ce, beb^ ebeb, cacb, cccb}

is a f inite completion of X.
From previous results one can dérive a resuit for "small" codes. The next

theorem considers codes X with CardCX) = 2.

THEOREM 3: Every two-element code is prefix-suffix composed*

Proof: Let X= {u, v} be a code over the alphabet A. By well known results
in the theory of free monoids (see for istance [1], p. 49), X is a code if and
only if u and v are not powers of the some word. We prove now the theorem
by induction on the integer K=\ u| + j v j . To left out the case of a trivial two-
word code, the smallest k we must consider is K=3; consequently, X has
either the form X={ab, b) or the form X={ab, a}, with a, beA. So the
statement is true for K= 3.

Let us now suppose that it is true for K<n and consider the code X= {w, v}
with | u | +1 v j = n. If X is not a prefix code, then one of its éléments, say u> is
prefix of v: v=uw. Consider the set X/ = {«, w}. X' is a code, otherwise u
and w are powers of the some word and so also u and v are powers of the
some word, against the fact that {u, v} is a code. Moreover | u | +1 w | < n and
then, by the induction hypothesis, X' is prefix-suffix composed. If p is a
bijection of a new alphabet B = {x, y} onto X' defined as P(x) = u, P(y) = w,
it is easy to verify that X~X' ° Y> where Y—{x, xy} ^ B* is a suffix code.
Thus X is prefix-suffix composed.

COROLLARY 2: Every two-word code has a finite completion.

Informatique théorique et Applications/Theoretical Informaties and Applications



COMPLETING CODES 141

The smallest known example, previously reported, of a code having no a
finite completion, contains four words. It remains the case of codes with
three words. Some partial results, similar to those in the proof of previous
theorem, support the conjecture that such codes have a finite completion. In
particular we propose the following conjecture:

CONJECTURE 1: Every three-word code is prefix-suffix composed.

3. SCHUTZENBERGER'S CONJECTURE ANDSHOR'S CODE

The problem to characterize those finite codes that can be embedded in a
finite maximal code is related to a conjecture formulated about thirty years
ago by M. P. Schutzenberger. This is perhaps the main open problem in the
theory of variable-length codes.

We need the following définition.
Two words u, veA* are said to be commutatively equivalent if, for any

letter aeA, the numbers of occurences of a in « and i? are equal. The notion
is extended to subsets of A*y Le. X9 7 c A* are commutatively equivalent
if there exist a one-to-one correspondance between X and Y exchanging
commutatively equivalent words.

CONJECTURE (Schutzenberger): Any finite maximal code is commutatively
equivalent to a prefix code (or, for short, is commutatively prefix),

Example 2: Let A = {a, b} and consider the code

X={aa, ab, aab, abb, bb}.

X is neither a prefix code, nor a suffix code, but is commutatively equivalent
to the prefix code

Y—{aay ab, baay bab, bb}.

This conjecture takes its motivation in a problem of information theory
(see [8]). Let us consider a source of information defined by an alphabet B
and a Bernoulli distribution n on the words over the alphabet B. Let us
dénote by A the alphabet of the noisless channel through which a trasmission
is realized by an encoding oc: B -• A*. This defines a code X=OL(B) over the
alphabet A. If all the letters of A have the some cost, the average cost of the
trasmission is precisely the average length (with respect to 7t) L (X, n) of the
code X. The classical inequalities allow an inferior bound on L (X, n), which
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142 A. RESTIVO, S. SALEMI, T. SPORTELLI

is the entropy of the source; and it is well known that the minimum may be
reached within the class of prefix codes.

In a gênerai case the letters of A have inequal cost, l e. there is a cost
function y: A+ -• R which is extended to the éléments of A* by additivity:

+ . . . + y(an).

In this case the average cost of the transmission is:

x e X

where p(x) is the probability n(b) of the symbol beB coded by the word
xeX.

One can then ask the question whether, in this more gênerai case, the
minimum cost may still be reached within the class of prefix codes.

As one can easily verify, two commutatively equivalent codes have the
same cost. By remarking that the minimum cost requires (at least in the case
of a two letters alphabet) a maximal code, one dérives that the solution of
Schutzenberger's conjecture would give a positive anwer to the problem of
optimality of prefix codes.

Recently Peter Shor [10] has constructed a (non maximal) finite code which
is not commutatively prefix:

b

ba

ba1

ba13

a3b

a3ba2

a3ba4

a3ba8

a*b

a»ba2

a*ba*

a*ba6

ailb

allba

allba2

It is not known whether Shor's code has a finite completion: if yes, then
the Shutzenberger conjecture would be false. By using techniques of section 4,
we find that any completion of this code has words of length ^ 90 and we
conjecture that it does not have a finite completion.

4. CODES AND FACTORIZATIONS OF CYCLÏC GROUPS

In this section we show that the problem of finite completion of codes is
related to some problems concerning the factorizations of cyclic groups.

Informatique théorique et Applications/Theoretical Informaties and Applications



COMPLETING CODES 143

Let Z„ be the group of integers modulo n, and let P, Q be two subsets of
Z„. The pair (P, Q) is a factorization of Z„ (see [5]) if each element of Z„
may be expressed uniquely as the sum, modulo n, of an element of P and an
element of Q. The factorization is elementary if one can take the sum as in
the natural numbers (without modulo n).

Exemple 3; Consider the group Z6. The pait

P i -{0 ,2 ,4} , Ôi = {0,5}

is a (non elementary) factorization of Z6. The pair

P2 = {0,2,4}, Q2 = {0, 1}

is an elementary factorization of Z6.

Remark 1; If (P, Q) is a factorization of Zn, it is obvious that Card(P)
Card(Ö) = n. It follows that Zp, with p a prime number, admits only the
trivial factorization P = Zm 6 = {0}.

In [6] Krasner and Ranulac give a method to construct all the elementary
factorizations of Z„. This method has been used in [9] to construct all finite
maximal codes X over the alphabet {a, b} such that each word of X contains
at most once the letter b. Recently, C. De Felice [2] has extended this con-
struction to codes such that each word has at most twice the letter b.

The structure of gênerai factorizations still remains unknown to a large
extent. The only known results concern particular groups. A subset P of Zn

is said to be periodic if there exists an element teZ, t =£ 0, such that P = P + t
(modn). Zn is said to be "good" if in every factorization (P5 Q) at least one
factor is periodic. Otherwise it is called "bad". Unfortunately for our pro-
blems, there exist bad groups: the smallest example is Z72. G. Hajos (see [5])
gives a method to construct all the factorizations of a good group. This
problem remains unsolved for bad groups.

Let us now introducé the notion of unambiguous pair. Let T, R be two
subset of the set N of natural numbers. The pair (T, R) is unambiguous if,
for any t, t'eT, r, r'eR, t + r = t' + r' implies t = t' and r = r'. If (T, R) is an
unambiguous pair and (P, Q) & factorization of Zn such that T^P and
R E 8> w e say that (T, R) is embedded in (P, g).

Given an unambiguous pair (T, R) and a group Z„, the problem whether
(T, R) is embedded in a factorization of Z„ is trivially decidable. The following
remark will be usefull in the sequeL
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144 A. RESTIVO, S. SALEMI, T. SPORTELLI

Remark 2: If (T, R) is an unambiguous pair, with T, R # (0}5 as a
conséquence of remark 1, it cannot be embedded in a factorization of Zp

with p a prime number.
The following problem appears more difficult.

Embedding problem: given an unambiguous pair (T, R\ décide whether
there exist a group Zn and a factorization (P, Q) of Ztt such that (T, R) is
embedded in (P, Q).

Example 4; Consider the unambiguous pair:

r={0, 5}, « = {0,3,7}.

(T, R) can be embedded in the following factorization of Z15:

P-{0,5 ,10}, Ô = {0, 1,3,4, 7}.

Example 5: Consider the unambiguous pair

T={0, 1}, R-{032, 5}.

We are not able to décide the embedding problem for this pair. With a
computer we have found that (T, R) cannot be embedded in a factorization
of Zn for n ^ 42.

A solution to the embedding problem can be given only in some particular
case: the gênerai problem remains open (the difficult is perhaps related to
the existence of "bad" groups). We are not even able to prove the existence
of unambiguous pairs for which the embending problem has a négative
answer. However we propose the following conjecture.

CONJECTURE 2: Consider an unambiguous pair of the form:

where p is a prime that does not divide k. Then (T, R) cannot be embedded
in a factorization of a cyclic group.

The pair of the example 5 satisfies the condition of the conjecture.
We now turn back our attention to codes and state their link with factoriza-

tions of cyclic groups.

In the sequel we shall consider codes X over the alphabet A = {a, b} which
satisfy the supplementary condition that one letter, say b> is a code word,
i. e. beX. For istance, Shor's code vérifies this condition.

Informatique théorique et Appîications/Theoretical Informaties and Applications
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To eaeh finite code i» this famüy we associate a pair (Tt R) of sets of
integer defined as foUows:

LEMMA: ( T, R) is an unambiguous pair, Moreover, if X is a finite maximal
code, (T, R) is a factorization afZ^ where n is the integer such that a"eX

Proofi Let us first prove that (T, R) is unambiguous. Assume the contrary;
there exist then four words

a*b\ é^ b'a*, Wa'eX suchthat

By recalling that beX, it is easy then to verify that the word

has two different factorizations in éléments of X, against the hypothesis that
X is a code.

Assume now that X is a finite maximal code. Theii it is weïï knowm that
there exists an integer n such that o"eX. Let 4 bç the maximal fength of
words m X Since X is maximal, by theorem 1„ for aiïy natural tn the word

is factor of some word of X*. There exist then integers q> ty ry kyj
that the following faetorization holds:

with

^ and

This ineens that for any m there exist rei^ and tmT such that
m^r^-t (mod n). Thi§ concludes the proof.

6c C«tsicîer the code

h bob,

The pair ( Ï ; W) assoeiated to X is:

(T% R) is a faetomatioit of Z$~

vol 23, n° 2» 1989
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An immédiate and remarkable conséquence of the previous lemma gives a
necessary condition for a code to have a finite completion.

THEOREM 4: Let X be a finite code over the alphabet {a, b} such that beX.
If X has a finite complétions then the pair (T, R) associated to X can be
embedded in a factorization of a cyclic group.

If the word an belongs to X, then we know the group Zn in which (T, R)
has to be embedded. The following corollary, which generalizes some results
obtained in [3], gives a method to construct codes having no finite completion.

COROLLARY 3: Let X g {a, b}* be a code such that a", beX, If the associated
pair ( T, R) cannot be embedded in Zn, then X has no finite completion.

In particular, by using remark 2, we obtain the following interesting state-
ment.

COROLLARY 4: Let (T, R) be a non trivial unambiguous pair and let p be a
prime number such that

T, reR}.

The set

X=ap\JaTb\JbaR

is a code that has no a finite completion.

Example 1: Let p = 5, T={0, 1}, K = {0, 2}. The code X={a\ ab, ba\ b}
has no a finite completion. This is precisely the smallest known example of
code having no a finite completion, reported in section 2.

If X H a* = 0 , the situation is completely different, since the group Zn, in
this case, is not given and we are not able to solve the embedding probîem.
This is the case of Shor's code. The pair associated to Shor's code is

T={0,3, 8, 11}, £ = {0,1,7,13,14}.

It is not known whether this pair can be embedded in a factorization of a
cyclic group. By computer we have found that it cannot be embedded in Zn

for n ^ 90. This means that any completion of Shor's code has words of
length > 90.

Let us remark that the pair associated to Shor's code contains the pair

T={0, 3, 8}, l? = {0, 1}

Informatique théorique et Applications/Theoretical Informaties and Applications



COMPLETING CODES 147

which satisfies the condition in conjecture 2. As a conséquence we conjecture
that Shor's code has no a finite completion and then that it cannot produce
a counterexample to the Schutzenberger's conjecture.

As another example, consider the code reported in section 2 as the simplest
example of code for which is unknown whether it has a finite completion.
The associated pair is given in example 5 and it also satisfies the condition
in conjecture 2. This suggest that it has no a finite completion. Actually our
arguments and computer vérifications prove only that any completion of this
code has words of length > 42.
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