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A NOTE ON THE ITERATION OF INFINITE MATRICES (*)

by Wolfgang WECHLER (1)

Communicated by J. E. Pnsr

Abstract. - Sufflcient conditions for the existence of the itération (star) of an infinité matrix
over an arbitrary semiring are presented.

Résumé. - On établit des conditions suffisantes pour l'existence de Vitération d'une matrice
infinie sur un demi-anneau arbitraire.

1. INTRODUCTION

Kuich and Urbaneck [3] have recently introduced infinité linear System
over formai power series. Under a certain mild assumption such Systems have
a unique solution which may be obtained by the itération of the associated
coefficient matrix. Therefore, the problem arises how to compute this itéra-
tion.

Hère we will deal with infinité matrices over arbitrary semirings. For
infinité matrices in Jacobi form a gênerai criterion for the existence of the
itération will be established. But only for special infinité matrices in Jacobi
form called Dyck matrices the itération can be computed if we suppose that
a related finite System of équations is solvable.

2. BASIC NOTIONS

A semiring is an algebraic structure (R, +, . ,0,1) consisting of a carrier
set R, two binary opérations + and . and two nullary opérations (constants)

(*) Received June 1985, revised November 1987.
l1) Technische Universitât Dresden, Sektion Mathematik, DDR-8027 Dresden.
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O and 1 such that
1. (R, + ,0) is a commutative monoid,
2. (R, ., 1) is a monoid with 0 as multiplicative zero, Le. 0.a = 0 = a.0 for

all a of R,
3. a.(è + c) = a.fc + a.c and (a + b).c~a.c + b.c for all a, è, c of £.
Semirings shall be denoted by their carrier sets.
Examples. 1. The Boolean semiring E = { 0,1} is determined by 1 + 1 = 1.
2. The natural numbers N form a semiring with respect to common opéra-

tions.
3. Let M be a monoid. The power set P(M) of M is a semiring if addition

and multiplication of two subsets A and B of M are defined by

A + B = A U B (set-theoretic union)

and

A.B = {ab\aeAz.nàbeB}.

The constants are 0 = 0 and 1 = { e } where e is the unit of M. If we take the
free monoid X* generated by an alphabet X, then we obtain the semiring
P (X*) of all formai languages over X. •

Let R be a semiring and m,neN. RmXn dénotes the set of all (finite) mxn-
matrices A = (aij) with atjeR for i= l , . . .,m and7 = 1, . . .,n. Addition and
multiplication are defined as usually. Let A = (atj) and B = (btJ) be two mxn-
matrices. The sum is given by A-\-B — (aij-\-bij), Let A = (aij) be an Ixm-
matrix and B = (fey) be an m x n-matrix. The product is given by

* = ( Z aik-bkj\ Obviously, Rnxn forms a semiring with the null matrix

On and the identity matrix En as constant éléments.
Any m x n-matrix A can be partitioned into submatrices. Assume

m^ml-\-. . . +mfe for some k> 1 and n = n1 +. . . +nx for some />1 . The
partition of A into submatrices A^eR****"* for i= l , . . .,fe and j = l, . . .,/
will be denoted by ̂ 4 = (^l7).

The tensor product of an k x J-matrix A = (ai^ and an m x n-matrix B = (fĉ )
is an k.mxl. n-matrix A ® J5 defined by submatrices as f ollows
,4 <g) B = (dij B). Notice ,4 (g) B = (AbtJ).

As infinité matrix 51 over a semiring R is defined to be a mapping

91: NxN-+K
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written as usually 2ï = (a0) with ao = 2I(z,j) for iJeN, R^xM dénotes the set
of all infinité matrices over R. Sum and product of infinité matrices can be
generalized in a straightforward way. Given two infinité matrices 2t = (aij)
and 93=(b0), the sum 21 + 93 = (atj + b^) is well-defined, while the product is
in gênerai only definable under some restrictions. If 21 is row finite, i. e. in
each of its rows there is only a finite number of nonzero coefficients, or 93 is
column finite, i. e. in each of its columns there is only a finite number of
nonzero coefficients, then 2193=( £ ciik.bkJ) is well-defined.

keN

Every row and column finite infinité matrix 21 can be represented in Jacobi
form, that means there is a partition of 21 into submatrices Aip iJeN, such
that

fo r \ i — j \ > \ .

The set of ail infinité matrices in Jacobi form shall be denoted by (R)W x W .
Clearly, (R)^xPbl forms a semiring with the infinité null matrix O and the
infinité identity matrix (S as constant éléments.

Let SReH N x N . We dénote by

901 =
A 93

the partition of ÏR into submatrices where A is a finite quadratic matrix and
£> is an infinité matrix. (93 resp. £ are infinité matrices but with only a finite
number of rows resp. columns.)

Now we are going to describe infinité matrices in Jacobi form more
detailed. Let $0ie(R)^ x r \ By définition $01 can be decomposed into finite
submatrices 2R = (My) such that M o = 0 for |i— j | > l . Setting An = Mn n,
Bn — Mnn+1 and Bn~Mn + l n for ne N, S0Î can be represented as foliows

Ao

Bo

0

0

Bo

Ar

Bi

0

0

Bi

A2

B2

0 . . .
0 . . .

B2 . . .
A3 . . .
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166 W. WECHLER

Moreover, $0? is the sum SOI = $1 -f 93 where $ï is the quasidiagonal matrix

Ao
0

0

0

0

At
0

0

0

0

A2

0

0 . . .
0

0

A3 ...

which may be regarded as an infinité direct sum 91= © An of the finite
ne M

matrices An, ne N, and 93 is given by

93 =

0

Bo

0

0

Bo

0

Bi

0

0

Bx

0

B2

0 . . .
0 . . .

B2 . . .
0 . . .

93 is equivalently defined by an infinité séquence (93n)„eW of infinité matrices
as follows 93 = 93O and

nel

where bn is an infinité row vector with Bn at the first place and 0 else and bn

is an infinité column vector with Bn at the first place and 0 else.

If the infinité séquence (93„) is constant, i.e. 33 = 33„ for all neN, then S is
called a Dyck matrix of order 1.

To define Dyck matrices of order k> 1 some préparations are necessary.
Let A be a finite matrix and 501 be an infinité matrix in Jacobi form with
gH = (My). The tensor product A ® 2R is defined by A ® m = (A ® M£j). Now>
93 is said to be a Dyck matrix of order k, fc = l> if 93„ + 1=£ f c® 93n for all
neN, where Ek is the identity /cxk-matrix. A Dyck matrix is completely
determined by B = B0 and B~B0. Therefore, we will write 93 = Ak(B, B).
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0

0

a

0

a

0

0

a

0

â

0 . . .

0 . . .

a . . .

0 . . .
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Example. Given a set X, we consider the matrix 93 over the semiring P (X*)
of formai languages over X— {a,a} :

93 =

93 is a Dyck matrix of order 1, where a and a are regarded as 1 x 1-matrices.
Latter on we will see that 93* exists and its coefficient at the place (0,0)
equals the Dyck language of order 1 with a and a as generators. •

3. ITERATION OF INFINITE MATRICES

A semiring R is called itérative if R is additionally equipped with a partial
unary opération * satisfying the following conditions:

1. Let reR. If r* exists, then r* = l + r . r * .
2. Assume that s e R is a solution of the équation x — a + r.x for a,reR,

that means s = a + r.s. Then r* exists and s = r*,a holds.

In case r* exists for a given element r of .R, r* is said to be the itération
of r.

Since for a semiring .R the set of ail finite n x n-matrices over .R forms a
semiring too, the notion of itération for any finite square matrix is well
defined now. Notice that Rn x n is itérative whenever R is itérative which may
be proved by Conway's method [2]. In contrast to this finite case the set of
ail infinité matrices over R does not form a semiring. But nevertheless we
will also say without any further explanation that an infinité matrix 91* is
the itération of a given infinité matrix SU if 2t* = g-h2I2l* and 93 = (£ + 2193
implies 93 = 21*. Observe that necessarily 21 must be row finite.

By an easy calculation one proves the following propositions.

PROPOSITION 1: For infinité matrices 21 and S in Jacobi form

1. (2I + 93)* = 2I*(932Ï*)*

2. (2t93)* = g + 2I(932ï)*93

holà if one of the both sides of each équation exists. •

Generalizing Conway Theorem [2] for finite matrices one gets
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168 W. WECHLER

PROPOSITION 2: Let SDI be an infinité matrix in Jacobi farm partitioned as
follows

A 33

where A is a finite square matrix. Then

m*= (£ + £,4*93)*

if all occuring itérations on the right hand side exist. •

If yjl is an infinité matrix in Jacobi form, then 2R = with 31 = © An

and 33 is recursively defined by 23 = 93O and

93 „ = O K
K 33„+i

By Proposition 1, SR* =21* (3331)*. Assume that all X* exist, then 9t* exists
too and 91* = ® A*. Hence, it remains to consider the itération of 9331* in

order to iterate 9W.

Thus the itération of 33 shall be studied firstly.

PROPOSITION 3: Let S be defined as above. If there is an infinité séquence
(Dn)ne^ of finite square matrices such that

1. D* exists

2. DH=BnD*+lBH

for all n e N , then 93* exists.

Proof: Define 33* = (££>„) as follows

for n ^

for

for

Under the assumptions (1) and (2) we may show by induction that 93* fulfils
the équation 93* = (£ + 3333*. D

Informatique théorique et Applications/Theoretical Informaties and Applications
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As a conclusion we dérive an existence criterion for the itération of an
infinité matrix 9Ö1 in Jacobi form represented as follows

Ao
Bo
0

0

Bo
*i

*i

0

0

Bi

A2
B2

0

0 ...

B 2 ...

A3 ...

THEOREM 4: Let W be an infinité matrix in Jacobi form presented as above.
The itération ÏÏR* of SR exists if

1. 4 * exists for ail ne M.

There is an infinité séquence (Dn)n€m offinite square matrices Dn such that

2. D* exists for ail ne N and

3. Dm = BHAm + xD*+iBHAHforallneN. •

We are now going to investigate the itération of Dyck matrices. Let
^8-Ak(B,B) be a Dyck matrix of order k. Since, by définition, B belongs to
RnXnk and B belongs to RnkXn for some n ^ l , both matrices B and B can
be decomposed into k quadratic submatrices Ax, . . .,Ak and Âu . . .,Ak>

respeçtively. This shall be expressed by 93 = \(AU . . ., AkiÂl9 . . . ,Â k ) .

THEOREM 5: Let 33 = Afc(yl1, . . .9Ak, Âv,..9Âk) be a Dyck matrix of

order k. If the matrix équation

(*)

has a unique solution, then S * exists.

Proof: Let 23 — Ak(Al5 . . .,Ak,Âu . . *>Âk) be a Dyck matrix of order fe.
Then, by définition

93 =

with Bn+1=Ek®Bn and Bn+

as well as B0 = (Â1, . . ., Âk)
T.
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Assume that the équation (*) has a unique solution D*. Setting

we get D* = En + DD*.
Now define an infinité séquence (D„)neW of finite square matrices Dn as

follows

D0 = D

Dn + 1 = Ek®Dn forall neH,

By means of Proposition 3 we will prove that 33* exists. Taking into account

D*+1=Eh®D* forall neM

we easily see that assumption (1) of Proposition 3

D* exists for all ne M

is fulfilled.
It remains to verify, by induction over n, that assumption (2) of

Proposition 3

forall neN

is satisfied too.
For n = 0we have

= B0(.Ek<g>D$)B0

= B0D*B0.

Induction step: Assume Dn_x = Bn_lD*Bn_1.
An easy calculation yields

= (Ek ® B„ _ J (Ek ® D *) (Ek ® Bn _ y)

= BnDt+lBn.
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Hence, by Proposition 3, 95* exists. •
Observe that the coefficients of S* can effectively be computed by means

of Proposition 3 as indicated in the proof.

Remark: Let us consider the semiring of formai languages. If the matrices
Al9 . . ., Ak, Âl9 . . ., Âk reduces to single letters al9 . . ., ak, al9 . , ., ak, then
the solution of the équation (*) equals the Dyck languages of order k
{cf. [1]).
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