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EXACT AND ASYMPTOTIC DISTRIBUTIONS
IN DIGITAL AND BINARY SEARCH TREES *

by G. LOUCHARD (*)

Communicated by P. FLAJOLET

Abstract. - Combinatoriaî relations and classical analysis are used to dérive exact and asymptotic
distributions for the number of steps during a successful search in digital and binary search trees.

Résumé. - Diverses relations combinatoires et des méthodes d'analyse classique sont utilisées
afin de déterminer les distributions exactes et asymptotiques du coût d'une recherche avec succès
dans un arbre digital et dans un arbre binaire de recherche.

1. INTRODUCTION

A digital search tree (DST) is a data structure (binary tree) where keys are
représentée! by binary numbers (see Knuth [13], §6.3). Their bits are used
to govern searching to the left or right branch at each insertion (or search).

When the keys are uniform [0, 1] random variables, the asymptotic mean
and variance of JD, the number of steps in a successful search, are known
(Knuth [13], Ex. 6.3/27, Flajolet and Sedgewick [5], Kirschenhofer and
Prodinger [11]).

A binary search tree (BST) (Knuth [13], § 6.2.2) also stores the keys in
nodes but now, upon an insertion, the key is compared to the key present at
the node to govern the choice of the branch. The exact mean, variance and
distribution of JB (number of steps in a successful search) are known
[Knuth [13], Ex. 6.2.2/6, Brown and Shubert [2] eq. (4. 5)] when all permuta-
tions of keys have equal probability.

(*) Received July 1986, revised May 1987.
(1) Laboratoire d'Informatique Théorique, CP 212, Université Libre de Bruxelles, boulevard

du Triomphe, B-1050 Bruxelles, Belgique.
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480 G. LOUCHARD

The purpose of this paper is to obtain the asymptotic density and distribu-
tion function of JD and JB when the size of the tree is large. Our first
intention was to use a technique based on the Brownian Motion or on the
Poisson process, a technique that we applied to other complexity problems
in [14] and [15]. We soon discovered that this path was useless (see Section 3),
and turned instead to the direct approach, based on exact distributions. This
leads indeed to the solution of our problem: only combinatorial relations and
classical analysis are necessary.

The paper is organized as follows: in Section 2 we summarize basic nota-
tions and known results. Section 3 deals with exact distributions for JD.
Section 4 is devoted to asymptotic results for JD. Section 5 and 6 deal with
JB. Section 7 concludes the paper.

An appendix collects the combinatorial relations we need in the text.

A third classical tree, the trie structure, will not be considered hère: It
has been analysed, for instance, in Louchard [15], Pittel [16], Jacquet and
Régnier [9], Devroye [3].

2. BASIC NOTATIONS AND KNOWN RESULTS

Throughout the paper, n dénotes the number of keys in the DST or the
BST. The searched key is choosen at random among these n keys. Quantities
of interest are JD and JB that represent the number of steps necessary to
retrieve a key in a DST or a BST (the searched key is always assumed to be
in the tree). We let PD (ƒ) : = Pr [JD =j\ and PB (ƒ) : = Pr [JB =j] dénote their
probability distribution (probability of success at step j). Note that

V;>n. (1)

The following results are known:

THEOREM A: The asymptotic mean and variance of the number of steps JD
in a DST are given by

3
E(JD)= X JPD(/)-log2n + (y- l ) / ln2+--a + Ô(log2n) + 0(log2n/n) (2)

J = I
 2
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where

— y:=the cîassical Euler constant
00

- a := £ l / ( 2 ' - l ) = l + l/3 + l / 7 + . . . -1.60669...

— 6 (. ) is a (smalï) periodic fonction.

The proof may be found in Knuth [13], Ex. 6. 3/27, where a is given with
more précision, and in Flajolet and Sedgewick [5].

a-P + œ(log2 n)

where

- P: =

VAR(J£>)~

00

I 1/(2'-1)2

1

12

n2

6(ln2)2

1
+ (ln2)2

— a) (. ) is a {smalt) periodic function.

The proof may be found in Kirschenhofer and Prodinger [11]. •

THEOREM B: The mean, variance and probability distribution of the number
of steps JE in a BST are given by

+ - W - 3 (Knuth [13], §6.2.2).

where Hn:= ]T (l/k) = the n-th Harmonie number, Hn~\nn-\-y + 0 (1/ri).
k=i

VAR(JJB) is given in Knuth [13], ex. 6.2.2/6. With misprint corrections,
it yields

hence VAR (JE)-2 In n

where :=the Stirling number of the first kind (unsigned version). The

proof is given in Brown and Shubert [2], eq. (4. 5). •

vol. 21, n° 4, 1987
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For DST, the following quantities are of interest:
- B(iJ):=(i+j)\/(i\j\2i+j) i. e. the probability that among î+j (fair)

coin tosses, there are i success. It is the classical binomial distribution with

Q (oo) = 0.28879. . . (see Knuth [13], Ex. 6. 3/26 for more précision).
j

=(- iy + 1 El 1/(2*-1),

Note that jRO') = (-iy+ 12" J 'ü + 1 ) / 2 /6O') but we prefer to keep separate
notations to simplify some formulas

- {x}:=x-lx\.
For BST, the following quantities will be used:

-[;>[;]/«-•>•
, v):= normal (Gaussian) random variable with mean m and

variance v.

— Ç (z) : = the classical Riemann zêta function.

Ail our analyses are relative to n-^oo and ~ is assumed to mean:
asymptotic to, for n -> oo.

3. EXACT DISTRIBUTIONS FOR DIGITAL SEARCH TREES

We will firstly analyse the exact distribution PD (ƒ). This is given by:

THEOREM 1: The probability distribution of the cost JD o f a search in a
DST is given by

PD (l)=l/n.

Proof: The proof will be divided into two steps.

Informatique théorique et Applications/Theoretical Informaties and Applications
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(i) Obviously PD(l)=l/n. Let PD*(j) = PD [success at step;| failure at
step 1]. Of course PD(j) = (l -(\/n))PD*(j). PD*(2) is given by:

n—1 i = i L n ~ l l n ~ l n—\—i

- 1 , 0)x—?— (5)
n — 1

the binomial yields the left-right subtree décomposition, each bracket term
gives the probabihty for the searched key of falling into a left (or right)
subtree multiplied by the probabihty of success at step 1 in this subtree.

After elementary manipulations this leads to

V 2"
hence

We immediately see why the Brownian approach is doomed to failure: it
cannot take into account the term 1/2""* which is crucial in the following
steps.

(ii) To proceed by induction, we observe that an operator of type (5) (call
it TD), when applied to a term ((l/n) p""1), again yields

TD[ £ ):=B(0,n-l)x p""2

\ n J n-l
n-2

+*(„-i,o)x

—\ i n—l

l p(n-l)
For instance

PD* (2)= TD (—\ = — f - - Î - + 1V
l n j n-lV 2"-1 ;

n — 1 1 ->"- 1

vol. 21, n° 4, 1987
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Now, to obtain PD(j+\\ we see that application of TD to each term of
PD (ƒ) gives:

— 2j/n: arising from 2j~l/n

- R(j~k)/Q(k-\) (l-(l/2k))n-\ k = 2...j: arising from the corre-
sponding term in PD (ƒ)

— a term in X/2n~x: arising from 2j'1/n and ail terms k = \ . .j — 1 in

Direct computation of the coefficient X of 1/2""1 is complicated but
fortunately we can use (1); from (4) it follows that

The distribution function FD (/) = X PD (0 i s ê i v e n by:

THEOREM 2: T/ie distribution function of the cost JD o f a search in a DST
is given by

Proofi From (4), the first term is given by (l/n
o

Again from (4), the coefficient of I/O (fc-1)(1 — ( l^ ) )"" 1 becomes

£ 2j~iR(j — k — i) which gives 2kR(j — k) by simple induction. •
É = O

Remark: the expression (4) for PZ) (/+ 1) is curiously related to the probabil-
ity PC(j) derived by Flajolet in [4] for the approximate counting algorithm.
In our notation, Flajolet obtains

- i 2 * e ( i t - i ) \ 2 ' /

Informatique théorique et Applications/Theoretical Informaties and Applications
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The asymptotic corresponding mean is given by

- -

where o>(.) is a (small) periodic function. This resuit is proved in [4] by
Mellin transform techniques.

4. ASYMPTOTIC DISTRIBUTIONS FOR DIGITAL SEARCH TREES

The asymptotic distributions are given by:

THEOREM 3: The asymptotic distribution function and probability distribution
o f the cost JD of a search in a DST are given by the following équations: set
r\:=j-\og2n, withr} = O(l).

FDW-GDivi) (7)

where

2g(oo),4 2'
PD (j) = FD (j)-FD (/-1)~GD (r\)-GD (T\-\

Letting r\ ==ƒ — |_log2 nj— {log2 n }, asymptotically, the distributions are periodic
functions of log2 n.

Proofi Letting n -> oo in (6) [for FD (ƒ)], we readily obtain (7), as
ô (0 *• ô (°°)- We have no problem of passage to the limit as the series

£ IR (ï) | obviously converges.
o

The (discrete) asymptotic density for PD (ƒ) is immédiate from (7) [and
could also be derived from (4)].

We could refine on the validity intervals of (7), as Flajolet did for approxi-
mate counting in [4], Propositions 2, 3 and 4. We will not give the details
hère. •

vol. 21, n° 4, 1987
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Note that by (A. 4), (7) can also be rewritten as

GD(T1) = _ ? ! _ £ ^0 ( g-2-M-l-0_1 }

2 2 ( 0 0 ) ^ 0 21

Of course GD (r|) > 0. It is easy to check that GD (r\) • 1.

Indeed 2T1[e-2"("~ni"o-O°l] > - 2 i + 1 and

by (A. 3). Obviously, the asymptotic non-periodic term in the moments of
JD is given by:

THEOREM 4: The constant term E in the Fourier expansion (in log2 n) of the
moments of JD is asymptotically given by

£[JD - l o g 2 n ] ' ~ f + 0°Tif
J — oo

F o r instance the first terms of (2) can be easily rederived as follows. Let us

firstly simplify our expressions.

Set

Çx fco
<p(x):= GD (T|) dîi, \ | / ( x ) := [GD ( T I ) - l]dr |5

f
Jx

:= ftGI)(Tl)-l]T,dT,.
J

We obtain
+ 00

r
Jo

[GD{r])i]-GD(y\-l)^-l)]dr]-

]. (9)

Informatique théorique et Applications/Theoretical Informaties and Applications
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It is well known (see Johnson and Kotz [10], p. 272) that the extreme-value
distribution function e~e~x has mean y and variance n2/6. From this, we
deduce, from (8), after a few elementary manipulations, that

(10)

From (A. 3) the first two ternis'of (10) yield -(y-l) / ( ln2) .

By (A. 5) the last term gives — (1 —a). (9) now becomes
(3/2)—a + (y—l)/(ln2), which is exactly the dominant non-periodic part of
(2).

As we known the variance of the distribution e~e *, the dominant tenus
of the variance of JD could be derived by similar (but tedious) computation.

The Mellin transform techniques used in [4] allow the dérivation of com-
plete asymptotic forms for E(JD) and VAR (JD) from Theorem 3. We will
not pursue this matter here.

5. EXACT DISTRIBUTIONS FOR BINARY SEARCH TREES

We shall prove another form for the distribution. The proof is direct and
avoids the preliminary analysis of the unsuccessful search done by Brown
and Shubert [2] to prove (3).

THEOREM 5: The probability distribution of the cost JB of a search in a
BSTis given by

- .
n

Proof. (i) Clearly PB(l) = l/n. Let PB*(j) = PB [success at step j \ failure at
step 1], with PB (/) = (1 -(l/n))PB*(j). PB* (2) is given by:

n\_n—l t = i | _ n ~ l i n ~ l w — 1 — i j n —

vol. 21, n° 4, 1987
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this is similar to (5) with 1/n yielding the probability of left-right subtree
décomposition. This leads to

PB* (2)= - and PB(2)=~(l - - Y

(ii) we must now study the operator TB, as given by (12).

On 1/n2, this gives

J «L(«-l)2 t^ln-Ai) n-\ (n-l-0

by Knuth [12], Ex. 1.2.7/6.

Hence

More generally, for TB\ /n2 , we obtain\ /n2 ,

n-2

+ y.

»(»-i)b+i

by (A. 9). This proves (11). The form (3) given in Theorem B is now
immédiate from (11) and (A. 11). •

Informatique théorique et Applications/Theoretical Informaties and Applications
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j

The distribution function FB (j) = £ PB (i) and the generating function are

given by:
THEOREM 6: The distribution function of the cost JB of a search in a BST

is given by

1

n

The probability generating function is given by

(13)

Proof. FB is obtained by direct summation on (11), The generating function
GB(z) is easily derived as follows from (3):

2'"1 "

1 " [ni (2z?-l 1

by(A.lO). •

Ail moments of JB can be derived from (13), which may also be written

as

z

n(2z-l)

where

Kn+\)gn+1(z)-l], (14)

(15)

is the generating function of the number of comparisons in an unsuccessful
search for a (n-1) keys BST (see Knuth [13], Ex. 6.2.2/6).

vol 21, n° 4, 1987
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In our notation, the probability corresponding to (15) is given by Knuth

as H \2kln(n+ 1). See also Brown and Shubert [2], § 4, and Françon [6]

and [7],

Remark 2: (14) could also be derived in another way. Indeed, Knuth [13],
Ex. 6.2.1/25 gives a relation between internai and external nodes generating
functions. Translated into probabilities, this gives (14).

6. ASYMPTOTIC DISTRIBUTION FOR JB

We shall prove:

THEOREM 7: The probability distribution of the cost JB of a search in a
BS T tends to a Gaussian:

1/2(2Inn)

Proof: (13) is not simple enough to take the immédiate limit (as for instance
Knuth [12] proceeds in Ex. 1.2.10/13 for Goncharov's theorem), or use the
Central limit theorem (as done by Brown and Shubert [2] for the unsuccessful
search). But, by Cauchy's theorem, we obtain

27uJrz'+1n(2z-l)
(16)

where F is inside the analyticity domain of the integrand and encircles the
origin (it is easy to check that z=l/2 is not a pôle of this integrand). Set
j — 2 In n = |xa, with

a:=(21nn)1/2. (17)

We must let n -• oo in (16). We will use the saddle point method (see Greene
and Knuth [8], p. 74 for this type of technique).

Informatique théorique et Applications/Theoretical Informaties and Applications
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(i) Firstly we must study Gn{z) as n-»oo. From (A. 10) Gn can also be
written as

L k=2

by Euler's classical product formula (see Knuth [12], Ex. 1.2.7/24). (16) gives
now, asymptotically:

exp [h (z)] dz
:i]Tn(2z~l)r(\+2z)

with

(ii) We must now find the root of h' (s) = 0. Let z = 1 + e. (This choice will
be justifiée later on). We have by Abramowitz and Stegun [1] eq. ( 6 . 1 . 3 3 )
and (6 .3 .14) :

e)exp[-ln(l + 2

+

—!—+O(e2)
| _ ITZO /•("/£

vol. 21, n° 4, 1987
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Now

= 2 n + 4 z ( t o n ) n [ r ( l + 2 x ) ] _ ; a n ^ fc,
V 2 z n 2 z - 1 - T ( l + 2 z ) z

(l+2e) j
2(lnn

)
1+e

h/(s)~O leads to: s=l+u/cr + 0 (1/lnn), which justifies the previous choice
for z.

From (18), /T(s)~21nn (and fe* (s) = 0 (In n), fc£3).
The steepest descent method leads now to (we omit the details)

n(2s-l)r(l+2s)

From (16), we finally obtain

PB(j)~—=
p ( l + u/q)tt2 + 2 ^ 1

)L nT(3 + 2u/a) J'

But now, it is easily checked that (l + u/a) 2 ( l n n ) + ̂ - e M f f ^ 2 / 2 . We finally
deduce

PB(j) . l 2

which proves the theorem. Each term in the summation part of FB(j) (see
Theorem 6) can be analysed in the same manner and leads of course to a
Gaussian expression. •

5. CONCLUSION

A direct approach has allowed us to dérive the exact and asymptotic
distributions of the number of steps in DST and BST. The first asymptotic
distribution is related to the extreme-value classical distribution, the other
one is simply Gaussian. We intend to pursue this direct approach on m-ary
search tree analysis.
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APPENDIX

(i) Using two classical Euler identifies, we will dérive several sommation
formulas we need in the text. These identities are:

k = 0 \ -

fc=O

(for a simple proof see Knuth [13], Ex. 5.1.1/16). As mentioned in
Knuth [13], Ex. 6.3/26, it is easy to extract from (A.2) two expressions for

G (oo):
let first z= -1/2, q = 1/2, this gives

00

Q(oo)=-IK(0. (A. 3)
i=0

Letting now z = —1/4, 4= 1/2, we obtain

00

2fi(oo)=-£2-'a(0. (A.4)
£ = 0

Multiplying (A, 2) by z and differentiating with respect to z gives

n (i+qkz)\i+z i 7-^-l=i+ i (i+i)2v«-W n d-«*).
*=o L i=ol + qzj i - i / fc-i

Letting z= -1/2, q = 1/2 gives

[ - E ^ T 1 = - E0"+1)^(0- (A.5)
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Set z= -u/2 , q =1/2 in (A.2). This yields the generating function of R(ï):

GO

= - I « ' * ( Q . (A. 6)

Set z = u, <?= 1/2 in (A. 1). This gives

OO 00 ;

(This identity is also used by Flajolet and Sedgewick in [5]).
Multiplying (A. 6) by (A. 7) leads to

1 " ' R(i-k) ' R(i-fe) , .. o.
= — X M y — -, hence — V — = 1. (A. 8)i=0 k% Q(k)

(ii) A few relations on | '* | will be now established.

We start from

Define

1Y &-&[$'
and more generally

n-'\ , , ,
(A. 9)

It is easily seen that the generating function of is given by

LJ
ion of is gi

say and

Gn(l) = n. (A. 11)

Informatique théorique et Applications/Theoretical Informaties and Applications
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We know (see Knuth [12], § 1.2.9 eq. (27) that

z (z+ l ) . . . (z + n — 1)= £ zJ, hence

Note that \ n appears in another context: it is the probability of (ƒ— 1)
LJ J/

changes of the maximum in Algorithm M of Knuth [12], § 1.2.10.
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