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THE LOCAL AND GLOBAL VARIETIES
INDUCED BY NILPOTENT MONOIDS (*)

by Alex WEISS (*)

Communicated by J.-E. PIN

Abstract. - It is proved that MNIL * D = LMNIL. Thus the membership problems for the
semigroup variety MNIL * D and the category variety gMNIL are solved.

Résumé. - On démontre que MNIL * D — LMNIL. Alors tes problèmes d'appartenance pour la
variété de semigroupes MNIL * D et la variété de catégories gMNIL sont résolus.

1. PRELIMINAIRES

1.1. Goal

To soive the membership problem for the semigroup variety MNIL*D
and for the category variety induced globally by the monoid variety MNIL.

1.2. Introduction

This paper solves a difficult problem using the theory developped in{W&T]
and [T&W]. Some familîarity with the results and terminology of these
two papers is presupposed. The following proposition shows that the two
membership problems are really one and the same.

1.3. PROPOSITION: Let Y be a monoid variety, Then the following statements
are equivalent.
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340 A. WEISS

(i)
(ii) V induces globally and locally the same category variety,

(iii) Given any Jïnite category C whose base monoids are in V, there exists
an injective relational morphism from C to some monoid in V.

(iv) Over any graph, a local \-congruence is a V-congruence.

Proof: All the équivalences are demonstrated in [T&W] and [W&T]. •

1.4. Plan

The principal resuit [theorem (3.1)] shows that statement (iv) in the above
proposition holds for the monoid variety MNIL. The complete proof, howe-
ver, is long and complicated. Theorem (3.1) proves the resuit modulu the
construction of a certain function ƒ (n), to which the bulk of the paper is
devoted.

The plan of the paper is as follows. Section (2) contains the basic définitions
and notations. Section (3) contains the principal resuit. Section (4) contains
a number of technical lemmas. Finally, Section (5) contains the main lemmas
as well as lemma (5.6) which defines f(n) and complètes the proof of
theorem (3.1). The next section starts with a few facts about MNIL.

2. MNIL-CONGRUENCES

2 . 1 . DÉFINITION: Let A be an alphabet, xeA*. \x\a dénotes the number of
times the letter a appears in x. Let

xy={aeA\\x\a^l}

that is, xy is the alphabet of x. Next let

Notice that x,y =
Let x 8„ be the subword of x obtained by erasing from x all occurences of

the letters in x yn.
The following définition and lemma are borrowed from [S].

2.2. DÉFINITION: Define a congruence «B over A* as follows. For all x, y€Â*,

*~ny iff xJn=yyn and x8„=ty8a.
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LOCAL AND GLOBAL VARIETIES 341

2.3. LEMMA:

(i) &n is a finite index congruence over A*.
(ii) For ail n^O, &n 2 «B + 1 . D

2.4. DÉFINITION: Define a family of semigroups

M L ^ S G S | S is a semigroup with a zero,

this zero being the only idempotent ofS}.

Given a semigroup S, let

f S if Sis a monoid,
\ S U { 1 } if S is not a monoid.

So S' is always a monoid.
The next proposition is extracted from [S].

2.5. PROPOSITION (Straubing): The following families of monoids are ail
equal.

(i) The M-variety generated by

{ S ' | S G N I L } .

(ii) The family

{ S e M | there exists an n^O such that for ail
se S, sn = sn+1 and for ail seS

and ail idempotents e e S, es^se}.

(iii) The family

{S e M | there exists an v^O such that
for ail sçS, sn = sn+i and for ail x, yeS, xny=yxn}.

(iv) The family

{ S G M | there exists an n ̂  0 such that for ail

seS, sn = sn+l and for ail x, y0, yl9 . . ., yneS,

yQxyt. . -xyn — xnyQyi. . .yn

(v) The monoid variety generated by the monoids
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342 A. WEiss

{ A*/«n | A is an alphabet and n^0}. •

The monoid variety thus identified by the above statements in called MNIL.
For our work, characterizations (iv) and (v) are the most useful.

2.6. DÉFINITION: A (directed) graph G = (7, E, a, to) consists of a set V of
vertices, a set E of edges, and two functions a, CÙ : E -* V which assign to
each edge its begin and end vertex, respectively. We dénote by P the set of
ail (possibly empty) paths over G. We use the symbol ~ to dénote the
coterminamity relation on paths. Let G be a graph and let xe£*. Then xy
makes sensé whether x is a path or not. Now, if x e P, define

x v = { t ?e V | x can be factored as x — xox1 with XO(Û = X1OL = V } .

So x v is the set of vertices which x visits. Dénote by \x\v the number of
times that x visits the vertex v.

Let L dénotes the set of loops in G, while Lv dénotes the set of loops
about the vertex v.

Let ~ n be the family of MNIL-congruences induced by the family ^ n

over £*.

Define the relation Rn over G by

Rn= {(x", xn + 1 ) | x isaloop}

U {(j>o xyt. . . xyn, y0 yt. . . yn x") | y0, yu...9 yn, x are coterminal loops }

- • -xy» xnyoyt. . .yj\y0, yl9. . . , yn, x are coterminal loops}.

Note that in the définition of Rn we allow empty loops. Let P„ be the smallest
congruence over G which contains Rn. Once we show [lemma (2. 8) below]
that the P„'s have finite index, it follows by proposition (2.5) (iv), that the
P„'s are local MNIL-congruences.

2.7. NOTATION: Our first goal is to prove that the P„'s have finite index. To
do so, we need to introducé some notation. Let

Sn ̂  — EKJ {ej\e is a loop-edge and 1 g j g n}.

For ail k such that 2 S k S \ E | let

Informatique théorique et Applications/Theoretical Informaties and Applications



LOCAL AND GLOBAL VARIETIES 3 4 3

2.8 . LEMMA: For all xeP such that \xy\ =fc there exists xeSnk such that

Proof: We proceed by induction on k where l^fc<* | £ | . If | xy | =1 then
either x is an edge, in which case let x = x, or x = e> where e is a loop-edge
and j ^ 1. In the latter case let x = emin{Un\ In either case x pMx.

Next suppose that the induction hypothesis holds for fc^l, and let
|xy|=/e + l. If

let x = x. Else we shall construct a path x such that x (3n x and | x | < | x |. The
induction will then follow by itération.

Put some arbitrary but fixed ordering on £, As

it follows by the pigeon hole principle that there exists eeE such that
|x|ei>n|S„,>|+2.

If there are several such edges, choose the first in the £-ordering. Thus x
contains n | Sn k \ +1 non-overlapping segments, ail of which are coterminal
paths whose alphabet is of size gfe.

If one of these paths is empty, then e is a loop-edge and as |x | e>n, we
can construct x such that | x \e = n and x Pnx.

If none of the segments is empty, then, by induction, each of them is
^„-congruent to some path in Snk. Again, by the pigeon hole principle, at
least n+1 of them must be pn-congruent to the same path in Snk. Let
sl9 . . ., sn+1 be the first n+ 1 such pn-congruent paths and let s be the path
in Snk which is congruent to then. Then

x = xoslx1. . .sw + 1 xn + 1 pn

x o sx 1 : . . sx n + 1 pn

Xo S X j . . . Xn + i = X,

As x pw x and | x | < | x | we are done. •

2.9. LEMMA: pn is a finite index congruence over G.

Proof: There are no more than | Sn | E ( | ^„-classes.
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344 A. WEiss

3. THE PRINCIPAL RESULT

3,1 . THEOREM: Any local MNIL-congruence is an MNIL-congruence.

Proof: If 8 is a local MNIL-congruence, then there exists an n^O such
that S 2 Rn, and thus 8 2 P„. But by définition (2.6) and lemma (2.9), P„ is

a local MNIL-congruence. By proposition (2.5) (v), ~rt is an MNIL-

congruence. Thus if we can find a function ƒ=ƒ(«) such that P „ 2 ^ (n),

then this would prove that P„ is an MNIL-congruence and thus so is 8.

We now embark on the task of constructing ƒ (n). •

4. TECHNICAL LEMMAS

4 .1 . LEMMA: Let Ln ktV = S„ykn Lo. Let Ln k be any element of{Lnkv\veV}
of maximal cardinality. Let g (n) = n \ Ln ï ( E, | +1. Then for ail xeP and for ail
eeE, \x\e^g(n) implies that x contains n non-overlapping segments, ail of
which are ̂ „-congruent loops whose first edge is e.

Proof: As \x\e^g(n)9 x can be factorized as x = xoext. . .exgin). So x
con ta in s n | Ln ( E ( | loops a b o u t e a, namely, exu . . ., ex„ \L„ \E\\- ®^
l e m m a ( 2 . 8), there a re

such that for ail 1 ̂  i ̂  n | Ln \ E11, ex{ Pn xv By the pigeon hole principle, there
exists at least n of the ic£'s which are Pn-congruent to each other. Thus at
least n of exl9 . . ., exn t Ln f are pn-congruent to each other as well n

4.2. Remark: Notice that |<Snj£)| is a constructible upper bound to the
index of p„. Let kn be the cardinality of a maximal cardinality base monoid
of G*/Pn. Then \LnjE| | is a constructible upper bound to kn. Lemma (4.1)
would still be true with g(n) defined as nkn+\. However, while we do not
have an algorithm to décide for any paths x and y whether x $ny is true, we
do have an algorithm to décide whether x and y are p„-congruent to the
same path in Sn , E (. If they are then x finy is true, but even if not it may still
be the case that x$ny. Similarly, if x and y are coterminal loops, we can
décide whether x and y are Pn-congruent to the same loop in Snt] E,. Thus to
make the proofs to corne algorithmic, we must define g(n) as in lemma (4.1).

We now proceed with the lemmas.

Informatique théorique et Applications/Theoretical Informaties and Applications



LOCAL AND GLOBAL VARIETIES 345

4.3. LEMMA: For all n^O, p„ 2 pn+1, and P„ E «„.

Proof: The first statement follows from P n uR n + 1 . The second follows

from R n i ^ f l . •

4.4. LEMMA: Let x = ulnveP with leL. Let u = ulu2 with u1co = la. Then

Similarly, ifv = v1v2 with i^co^/a then x$nuv1l
nv2.

Proof: In fact, ulnv$nti1 lnu2v, since in the définition of Rn we allowed
empty loops. D

4.5. LEMMA: Let xeP and esEbe such that \x\e^g(n). Let l be any o f the
n $n-congruent non-overlapping loops starting with e which occur in x by
lemma (4.1). Let x = uxu2 be any factorization ofx such that i^co^/ot. Then
forallk^n

Proof: Write x = xoes1x1. . .esnxn where esu . . ., esn are the P„-congruent
loops. If / is any of them, we have

x = xoes1x1. . .es„xrtpn

x0Px1. . .x„p„

X Q i eSi X i . . . ^s„ x _ .

By lemma (4.4), we conclude that x P„ uln v and thus x P„ ulk v for all k ̂  n. D

4.6. DÉFINITION: We introducé the notion of a simple path.

Let xeP.x is said to be simple if f either x is an empty path, or for all
eexy, | x | e =l . Next we define a map s : P -> P which associâtes to ever y
path a simple path coterminal to it. If x is simple then s (x) = x. Else there
exists an edge which accurs in x at least twice. Introducé an ordering on x y
by the order in which the edges of x appear for the first time as x is scanned
from left to right. Let e be the first edge in x y which occurs in x more than
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346 A. WEiss

once. Then x can be factorized as x = x0ex1ex2 so that x0 is simple and
| x 2 | e = 0. Then define s(x) = xoes(x2).

4 .7 . LEMMA: Let x be a non-empty path. Then there exists r>0 such that

x = x 1 e 1 . . ,xrer

where eu . . ., ere£, s(x) — el...er, x~ex. . .e r and for ail 1 ̂  î ̂  r, x̂  is a
(possibly empty) loop about efa.

Proof: We proceed by induction on | x j .

If | x | = 1 then s(x) = x and r = L

If | x | > 1 then if x is simple, r = )x| . Else, as in (4.6), x = x 0 ex 1 ex 2 with

x0 being a simple path and s(x) = x0es(x2). If x2 is empty then s(x) = xoe so
r = I xo I + 1 - Else, as j x21 < | x |, by induction we may assume that there exists

« > 0 such that x2=z1e1. . .zueu where et. . .eu = s(x2) and x2~ex. . .eu.

Then x = xo(ex1)ez1ei. . .zueu. So r— | x o | + 1 +u and s(x) — xQeex. . .eu

and X^XQ^JL. . .eu. •

4 • 8. LEMMA: Let ulvlu2. , ,vm^lumbe a path and let z be a simple path such
that f or ail eezy,\u1, . ,u m | e ^(m-hl )g(n) . (Note that ux. . .um need not be a
path). Then

uivlu2. . .üm- i i imp l lw1 i ;1 . . .witlzwU2Vi. . ,wm

for some l^i^m. Furthermore, for ail eeE,

That is, z can be created in one ofuu...9 um without affecting the Vjys.

Proof: We proceed by induction on \z\.

If | z | = 1 then the resuit is trivial.

Else, suppose by induction that

W1i;1W2. . . l ^ - i t t ^ W i ! ? ! . . .W^ZWj^üj. . .Wm

for a simple path z, and let eeE be such that ze is a simple path and

By the pigeon hole principle, at least one of wlf . . . , wiU w( 2, . . ., wm

contains e at least g (ri) times. Call it x. By lemma (4.5), x$nulnv where / is
a loop starting with e. As z(ù = ea the resuit follows by lemma (4.4). •

Informatique théorique et Applications/Theoretical Informaties and Applications
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4.9. LEMMA: Let xeP and let z be a simple path such that for all eezy,
\ \ -\). Then

for some paths yu . . ., ym +19 and for all eeE,

Proof: We proceed by induction on i for l ^ i ^ m . The case i = l follows
by lemma (4. 8).

By induction suppose that after i—l steps with i> 1, we have

Then for all eezy,

Again using lemma (4. 8), we can create another z in one of ylt . . ., yt. •

4.10. LEMMA: Let h(ri) = (n+\)g(ri) + (n—\). Let xeP, and let z be a simple
loop about xco such that for all eezy, \x\e^h(n). Then

xpnxz.

Proof: By lemma (4.9),

As2a=-yn(û, yn is a loop. Then

4.11. LEMMA: Let xeP and let z be a loop about X(Ù such that for all eezy,
\x\e^h(n). Then

xp„xz.

Proof: Note that this lemma differs from the previous one in that z is no
longer required to be simple.
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We proceed by induction on \z\.

If | z | = 1 then z is simple, so we are done by lemma (4.10).

Else suppose that | z \ > 1 and let

z=y1el...yrer

where ex. . . er = s(z) and the j^ ' s are loops [see lemma (4.7)].

By lemma (4.10) we have

By induction on z for l ^ i ^ r w e shall now prove that

xex. . . e ^ x y ^ .

If i = 1 then x Pn xyl since y1 is a loop and | yx \ < \ z |.

If f > 1 then, by induction on i, we have

If f = n we are done. Else suppose that i<n. As \yi+i \ < |z | , we have

So

xe t . . .eiei^.l^nxe1. . . e^ £ + 1 e i + 1. (**)

Now, using (*) and (**), we have

xex. . .eiei+1$nxy1e1. . .yieiyi+xei+l.

This complètes the induction on z.

Now, setting z" = r, we obtain,

5. CONCLUSION OF PROOF

5.1. Remark: h (ri) is not large enough to qualify as /(n), but it is large
enough to handle a special case.

Informatique théorique et Applications/Theoretical Informaties and Applications
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5.2. LEMMA: Let x ~h{n)y and suppose that both xSh(M) and yàhin) are empty.
That is, for all e e X y =y y, | x \e ̂  h (n) and similariy for y. Then

Proof: Without loss of generality, assume that | x \ ̂  | y \. We start by
proving by induction on i for O^i^ |x | that there exist paths yt such that
y Pn y h yt anc* x have a common prefix of length i and for ail eeE, \y \e<L \yt |e.

For the case i = 0 let yö=y.
Now suppose that x—pau and yt=pbv where |/>| = i^0, a, beE and

y$npbv. If a — b we are done. Else, as | ^ i | a ^ | y |fl, it follows that
|y f |ö^/i(n)^g(n). So y£ contains n non-overlapping (3n-congruent loops star-
ting with the edge a. As aa = bai we can use lemma (4.5) to conclude that
yi$nplnbv where / is a loop starting with a. Let yi+1=plnbv, This complètes
the induction on i.

Now by setting i— |x | , we obtain j^Pnxz for some loop z. As yy=yty for
ail O^z^ |x| , we conclude that (xz)y—y y. So z y c x y = j ; y . Finally using
lemma (4.10), we have

xpnx2pnj . •

5.3. Remark: The next two lemmas are long and complicated, but the ideas
behind them are rather simple. The reader may wish to study first the final
lemma in order to see the meed for the two lemmas.

5.4. LEMMA: Let x «ffl«!(„)ƒ. Write

x = xoa1x1. . .akxk

where

Suppose that for ail i such that O^fc, x(-Sffi£|(n) is empty, and similariy for the
yt 's. Then x Pn x' and y §ny' where

vol. 20, n? 3, .1986
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where for all 0^f ^/c, x\ ^ny\ and either both x\ and y\ are empty or both
x- 5„ and y\ hn are empty.

Proof: Given paths p and q such that p 8„ and q 8„ are empty, we have

that p &nq iff py — qy andp~q. This observation will be used later.
We start by introducing some notation. Let

B = (a1...ak)y.

B0={eeE\\x\e<g(n)}.

For allO</< | £ | let

Finally let

Observe that B= \J BJt Observe further that if B = E then x=y and

this lemma is rat her trivial. Also, if B — % then k=Q so let x—x' and y=y'
and the lemma follows. Thus we may assume that 0< \B\ < \ E |. This implies
that there exists 0 ^ / ^ {E] such that B} = % but we shall not use this f act.

Given paths p and q, we say that q is f ulier than /?, written p^q, iff
py = qy and for all e e£ , ]/>|e^|#j£. This relation satisfies p^p and p^q
together with q^r implies p ^ r . Ho we ver, pSq and q^p does not imply
that p — q. But we do not need this last property.

The proof proceeds via a certain construction. We construct two séquences
of fuller and fuïler paths

which have certain properties. These properties will now be stated for the x
séquence. The corresponding properties for the y séquence can be obtained
by reading x for y and y for x in the obvious places,

(i) For ail / such that 0 ^ / ^ | JBJ,

x —xoalxl...akxk

that is, a t . . . ah is a subword of every path in the x séquence. Similarly for y.
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(ii) For ail O^i^k and for ail Og/£ | f i | , either x|°5fliEi-i(JI) and
Eï-tfr) are both empty or xf} and vf* are both empty. That is

U
OSj<\E\-l

Similarly for y.
(iii)

Similarly for y.
(iv) If for some 0 ^ / < | E| and for some O^i^

Similarly for y.
(v) If for some 0^7< \E\ and for some 0g i^ fe^ i ) y-xf > y#9 then x(I+1)

will be created from x(l) using Rffi£i-(/+i)(n)-transformations in such a way
that for ail O

Similarly for y.
We defer the detaiis of this construction to later in the proof of this lemma.

In the meantime, assuming properties (i) to (v), we have the following.

LEMME: For ail OgJ^ ]•£ j and f or ail O^i^fc,
either xfy—y^y

Proof: We proceed by induction on /.
If /=0 then the lemma is trivial. Thus assume that the lemma holds for

gï<]£|-; If x?>Y=>f y then xf +1>y = x| l )y=7f y=y?+l>y by (iv), so
the induction follows.

Now suppose that x\l) y^yf} y. Without loss of generality we may assume
that ffiy—xfyïfy.

Then by <v), x f + u y g yfy so ] xf+1)y | ^ |x?>y j +1^1+1. Next we show

If xf)ff—yf^y^ty we argue by symmetry. Else y\l)y $trictly contains xfJy
so

voL 20, n° 3, 1986



352 A. WEiss

Using this lemma we may conclude the proof of main lemma. From the
lemma we deduce that for ail O^i^fc, x | i £ | ) Y = j j | £ | ) y . Also, by (i),
x<<> ~yf> f or ail 0 ̂  / ̂  | E |. Thus setting x' = x( 'E ' > and ƒ = ƒ ' £ ' > and remem-
bering the observation made at the very beginning of the proof, the lemma
follows.

We shall now take up the details of the construction.

We proceed by induction on 0 ^ / ^ | E | .

As x = x(0) and y~yi0\ the case / = 0 is immédiate. So we pass to the
induction step. Assume that for some 0 ^ / < | £ | , x(0 and y{l) have been
constructed in accordance with properties (i) to (v).

We shall now construct xil+1Kyil+l) is constructed in an identical fashion.

Define a succession of f ulier and f ulier paths zitj for O^i^k and
0 ^ 7 ^ |;40Y — x\l)y\, with the j index varying faster.

The zu 0 are defined just for notational convenience.

zOiO = x(O and if i

We construct the zu j inductively to have the following properties.

(I) Zij^z^^a^f-iK . .akz£j\ that is, the zitj have a ^ . . ^ as a
subword.

(II) x{l)^zUj

(III) x{l)%\E\

(IV) If^y

be the edges in y\l) y — x\l) y ordered by their order of appearance in yf] as y\l)

is scanned from left to right. Then

In fact

{el9 . . ., ej} ^zï>J)yg\E\-(i+i)inY

Clearly z0 0 has these properties.

Suppose by induction that so does zt ;. If j — \yfy~x{{]y\ then the next
path is zi+l 0 and zi + 10 = zip so we are done.

Else suppose that 0^j< | y^ y — xf} y \. Once again we need a
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LEMMA: ^+ 1aez! i ( ; )v.

Proof: We proceed by induction on j with O^jS | Ĵ î1* Y — xJ1* y |.

If y' = 0 then either y\ii = e1p for some peP or yf) = ue1 w for some paths u
and w with uj ^ x-°y.

In the first case, e 1 a = ^ ° a = xjl)a = z|I'*0)a.

In the second case, e1a = «*G>exjl)v. By property (II) xj°v£zf t j )v, so
e1 aezj''t0)v. This complètes the 7 = 0 case.

No w let j ^ 0. Then either yf = ue} ej+lw for some u, w e P9 or
y\l) = uejpej+1 w for some u, p, w e P, where / ? y i xjf) y.

In the first case, e J+1a = ̂ co. By property (IV) and by the induction on
zt p we have ej e zfj) y. Thus,

ej+i0L — ej(ùe zf'Jl v.

In the second case, ej+1 a=p(oex\l)v g z\Uj)v. D

Thus we know that ej+1ezf>j)v. By the induction on / and property (ii),
we have \y\l)\ei+1^g^El~l(n). As / < | £ | , we use lemma (4.1) to create
g i E i -(/+ D Q^ o c c u r r e n c e s of €j+1 i n z0'. J) using only Hfl i E \ -a+ D ^-transforma-
tions, in such a way that the only segment of zi} to be affected is zf-S) itself.
This new path we call zi% j+l which differs from zt j only in that
zJ I%JVz{u+1).z l. fJ.+1 have been constructed in accordance with properties (I)
to (IV).

This complètes the induction on the zifj*s.

Now let x(l + 1) = zki | y p T _ x p T | . Then x(/ + 1) has properties (i) to (v).

This complètes the induction on /. •

5.5. LEMMA: Let x ~gin)y. Write

x = x o f l 1 x 1 . . .akxkx o f l 1 x 1 . . .akxk

where ax. . .ak = x&9iH)=ydgiM).

Then x pn x' and y Pn y' where

and
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and for ail O^i^lc, xI'5„ is empty, and similarly for y\.

Proof: Note that ax. . . ak = x ôff (n) implies that for ail O^ï^fc, xt is either
empty o r x ( Y i x y ? ( n ) , and similarly for yt.

Let B = (at. . . a j y . As in lemma (5.4), the resuit is immédiate unless we
assume 0 < \B\ < \E\,

We proceed with a construction similar to the one used in lemma (5.4) to
construct x ( ï + 1 ) from x(l).

Define a succession of fuller and fuller paths zip where OSa^/c and
0 ^ 7 ^ | * J Y | with the j index varying f aster.

We define zi0 for notational convenience only. We have zOïO = x and

^,0 = ̂ - 1 , 1 ^ - ^ 1 i n > 0 .

The zit j are constructed to conform to the following properties.

( i ) z i j — z i Q t j ) a 1 z { l i j ) . . . a k z k
l f j \ t h a t i s , a ± . . . a k i s a s u b w o r d o f z i y

(ii) x S zit j and x£ ̂  zf>j).

(iii) JCPBZIW.

(iv) If xty^% let {ey | 1^7^ jx£y |} be the edges in xfy in their order of
appearance in xt as xt is scanned from left to right. Then

\ e l 5 - • •> ^ / = Zi In-

We proceed by induction on zit r

As z0 0 = x} it has the above properties. Suppose by induction that zUj has
the above properties. If j= |x(-y | then Z/+lt0 is the next path in the séquence
and zi+10 = zitj, so the induction follows in this case.

Next suppose that 0 g y < |x ty\ . If | z \ u 3 l \ e j + l ^n , let zitj+l= zi%y Else
\z\itj)\ej+î<n. But as \zitj\ ^g(n), we may use lemma (4. 5) to create in
z\itS)n occurrences of ej+1 using /^-transformations, with the only segment
of zit j to be affected is zf'j) itself. We call the resuit of these transformations
Zj y + 1 , which differs from zUj only in that zf'j)^zftj+l), Thus zUj+1 has
properties (i) to (iv).

This complètes the induction on the zu y

Let x' = zkf | Xk y |. In an identical fashion one obtains y'.

Note that x' and y may contain edges of B, but those 5-edges must appear
in x and y at least n times. The edges which appear in x and y less than n
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times can not be affected by an ^„-transformation. We thus conclude that

5.6. FINAL LEMMA: Let

Then

P, 3 ~ f <„)•

Proof: Suppose that x &fin)y. Write

x = xoa1x1 . . .akxk

J^^i^i- . .akyk

where

By lemma (5.5) x pfl IE i (fc(ll)) x' and y$9\E\{hin))y' such that x' « f f i* i ( M B ) ) / and
x/ = xóa 1 x i . . .afcx^ and y' =y'oaly'l. . . a k X where for ail 0:§i^fc
x; Sfl i E i (h (fl)) is empty, and similarly for y\ hg i E \ {h (fl)).

Now, by lemma (5.4) we conclude that x' Ph (n) x'7 and y' ph ( B ) y
where X// = X/QÜ1X

/{. . . a k x^ and y" =y%o,xy{. . .akyk and for ail

O^zg/c, x-' ^^(r t) / ' and x-' 8ft(n) is empty and similarly for 3;^ Sft(n).

Thus, by lemma (5.2), for ail O^i^fc, xî'PnJ'"- S o ^ " P » / ' -

So we have the chain

* % I E i (A („)) *' P* („) ̂ " P B / ' Ph („)/ Pff I
 £ I (h („))ƒ• •
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