INFORMATIQUE THÉORIQUE ET APPLICATIONS

Alex Weiss
 The local and global varieties induced by nilpotent monoids

Informatique théorique et applications, tome 20, n ${ }^{\circ} 3$ (1986), p. 339-355

http://www.numdam.org/item?id=ITA_1986__20_3_339_0
© AFCET, 1986, tous droits réservés.
L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE LOCAL AND GLOBAL VARIETIES INDUCED BY NILPOTENT MONOIDS (*)

by Alex Weiss $\left({ }^{1}\right)$

Communicated by J.-E. Pin

Abstract

It is proved that MNIL* $\mathbf{D}=\mathbf{L M N I L}$. Thus the membership problems for the semigroup variety MNIL * D and the category variety gMNIL are solved.

Résumé. - On démontre que MNIL $* \mathbf{D}=\mathbf{L M N I L}$. Alors les problèmes d'appartenance pour la variété de semigroupes MNIL $\# \mathbf{D}$ et la variété de catégories $\mathbf{g M N I L}$ sont résolus.

1. PRELIMINARIES

1.1. Goal

To solve the membership problem for the semigroup variety MNIL * D and for the category variety induced globally by the monoid variety MNIL.

1.2. Introduction

This paper solves a difficult problem using the theory developped in [W \& T] and $[\mathrm{T} \& \mathrm{~W}]$. Some familiarity with the results and terminology of these two papers is presupposed. The following proposition shows that the two membership problems are really one and the same.
1.3. Proposition: Let \mathbf{V} be a monoid variety. Then the following statements are equivalent.

[^0](i) $\mathbf{V} * \mathbf{D}=\mathbf{L V}$.
(ii) \mathbf{V} induces globally and locally the same category variety.
(iii) Given any finite category C whose base monoids are in \mathbf{V}, there exists an injective relational morphism from C to some monoid in \mathbf{V}.
(iv) Over any graph, a local \mathbf{V}-congruence is a \mathbf{V}-congruence.

Proof: All the equivalences are demonstrated in [T \& W] and [W \& T].

1.4. Plan

The principal result [theorem (3.1)] shows that statement (iv) in the above proposition holds for the monoid variety MNIL. The complete proof, however, is long and complicated. Theorem (3.1) proves the result modulu the construction of a certain function $f(n)$, to which the bulk of the paper is devoted.

The plan of the paper is as follows. Section (2) contains the basic definitions and notations. Section (3) contains the principal result. Section (4) contains a number of technical lemmas. Finally, Section (5) contains the main lemmas as well as lemma (5.6) which defines $f(n)$ and completes the proof of theorem (3.1). The next section starts with a few facts about MNIL.

2. MNIL-CONGRUENCES

2.1. Definition: Let A be an alphabet, $x \in A^{*} .|x|_{a}$ denotes the number of times the letter a appears in x. Let

$$
x \gamma=\left\{a \in A \|\left. x\right|_{a} \geqq 1\right\}
$$

that is, $x \gamma$ is the alphabet of x. Next let

$$
x \gamma_{n}=\left\{a \in A \|\left. x\right|_{a} \geqq n\right\} .
$$

Notice that $x, \gamma=x \gamma_{1}$.
Let $x \delta_{n}$ be the subword of x obtained by erasing from x all occurences of the letters in $x \gamma_{n}$.
The following definition and lemma are borrowed from [S].
2.2. Definition: Define a congruence \approx_{n} over A^{*} as follows. For all $x, y \in A^{*}$,

$$
x \approx_{n} y \quad \text { if } f \quad x \dot{\gamma}_{n}=y \gamma_{n} \text { and } \quad x \delta_{n}=y \delta_{n}
$$

2.3. Lemma:

(i) \approx_{n} is a finite index congruence over A^{*}.
(ii) For all $n \geqq 0, \approx_{n} \supseteq \approx_{n+1}$.
2.4. Definition: Define a family of semigroups
$\mathbf{N I L} \xlongequal[=]{=} \in \mathbf{S} \mid S$ is a semigroup with a zero,
this zero being the only idempotent of $S\}$.
Given a semigroup S, let

$$
S^{\cdot}=\left\{\begin{array}{cc}
S & \text { if } \quad S \text { is a monoid } \\
S \cup\{1\} & \text { if } \quad S \text { is not a monoid. }
\end{array}\right.
$$

So S^{*} is always a monoid.
The next proposition is extracted from [S].
2.5. Proposition (Straubing): The following families of monoids are all equal.
(i) The M-variety generated by

$$
\left\{S^{\bullet} \mid S \in \mathbf{N I L}\right\}
$$

(ii) The family
$\{S \in \mathbf{M} \mid$ there exists an $n \geqq 0$ such that for all

$$
\begin{aligned}
& s \in S, s^{n}=s^{n+1} \text { and for all } s \in S \\
& \qquad \text { and all idempotents } e \in S, \text { es }=s e\} .
\end{aligned}
$$

(iii) The family
$\{S \in \mathbf{M} \mid$ there exists an $v \geqq 0$ such that

$$
\text { for all } \left.s \in S, s^{n}=s^{n+1} \text { and for all } x, y \in S, x^{n} y=y x^{n}\right\}
$$

(iv) The family
$\{S \in \mathbf{M} \mid$ there exists an $n \geqq 0$ such that for all

$$
\begin{aligned}
& s \in S, s^{n}=s^{n+1} \text { and for all } x, y_{0}, y_{1}, \ldots, y_{n} \in S \\
& \left.\qquad y_{0} x y_{1} \ldots x y_{n}=x^{n} y_{0} y_{1} \ldots y_{n}=y_{0} y_{1} \ldots y_{n} x^{n}\right\}
\end{aligned}
$$

(v) The monoid variety generated by the monoids
vol. $20, n^{\circ} 3,1986$

$$
\left\{A^{*} / \approx_{n} \mid A \text { is an alphabet and } n \geqq 0\right\} .
$$

The monoid variety thus identified by the above statements in called MNIL. For our work, characterizations (iv) and (v) are the most useful.
2.6. Definition: A (directed) graph $G=(V, E, \alpha, \omega)$ consists of a set V of vertices, a set E of edges, and two functions $\alpha, \omega: E \rightarrow V$ which assign to each edge its begin and end vertex, respectively. We denote by P the set of all (possibly empty) paths over G. We use the symbol \sim to denote the coterminamity relation on paths. Let G be a graph and let $x \in E^{*}$. Then $x \gamma$ makes sense whether x is a path or not. Now, if $x \in P$, define

$$
x v=\left\{v \in V \mid x \text { can be } f \text { actored as } x=x_{0} x_{1} \text { with } x_{0} \omega=x_{1} \alpha=v\right\} .
$$

So $x v$ is the set of vertices which x visits. Denote by $|x|_{v}$ the number of times that x visits the vertex v.

Let L denotes the set of loops in G, while L_{v} denotes the set of loops about the vertex v.

Let \approx_{n} be the family of MNIL-congruences induced by the family \approx_{n} over E^{*}.

Define the relation R_{n} over G by
$R_{n}=\left\{\left(x^{n}, x^{n+1}\right) \mid x\right.$ is a loop $\}$
$\bigcup\left\{\left(y_{0} x y_{1} \ldots x y_{n}, y_{0} y_{1} \ldots y_{n} x^{n}\right) \mid y_{0}, y_{1}, \ldots, y_{n}, x\right.$ are coterminal loops $\}$
$\cup\left\{\left(y_{0} x y_{1} \ldots x y_{n}, x^{n} y_{0} y_{1} \ldots y_{n}\right) \mid y_{0}, y_{1}, \ldots, y_{n}, x\right.$ are coterminal loops $\}$.
Note that in the definition of R_{n} we allow empty loops. Let β_{n} be the smallest congruence over G which contains R_{n}. Once we show [lemma (2.8) below] that the β_{n} 's have finite index, it follows by proposition (2.5) (iv), that the β_{n} 's are local MNIL-congruences.
2.7. Notation: Our first goal is to prove that the β_{n} 's have finite index. To do so, we need to introduce some notation. Let

$$
S_{n, 1}=E \cup\left\{e^{j} \mid e \text { is a loop-edge and } 1 \leqq j \leqq n\right\} .
$$

For all k such that $2 \leqq k \leqq|E|$ let

$$
S_{n, k}=\left\{x \in P \| x \mid<k\left(n\left|S_{n, k-1}\right|+2\right)\right\} .
$$

2.8. Lemma: For all $x \in P$ such that $|x \gamma|=k$ there exists $\bar{x} \in S_{n, k}$ such that $x \beta_{n} \bar{x}$.

Proof: We proceed by induction on k where $1 \leqq k \leqq|E|$. If $|x \gamma|=1$ then either x is an edge, in which case let $\bar{x}=x$, or $x=e^{j}$ where e is a loop-edge and $j \geqq 1$. In the latter case let $\bar{x}=e^{\min (j, n)}$. In either case $x \beta_{n} \bar{x}$.

Next suppose that the induction hypothesis holds for $k \geqq 1$, and let $|x \gamma|=k+1$. If

$$
|x|<(k+1)\left(n\left|S_{n, k}\right|+2\right)
$$

let $x=\bar{x}$. Else we shall construct a path \bar{x} such that $x \beta_{n} \bar{x}$ and $|\bar{x}|<|x|$. The induction will then follow by iteration.

Put some arbitrary but fixed ordering on E. As

$$
|x| \geqq(k+1)\left(n\left|S_{n, k}\right|+2\right),
$$

it follows by the pigeon hole principle that there exists $e \in E$ such that $|x|_{e} \geqq n\left|S_{n, k}\right|+2$.

If there are several such edges, choose the first in the E-ordering. Thus x contains $n\left|S_{n, k}\right|+1$ non-overlapping segments, all of which are coterminal paths whose alphabet is of size $\leqq k$.

If one of these paths is empty, then e is a loop-edge and as $|x|_{e}>n$, we can construct \bar{x} such that $|\bar{x}|_{e}=n$ and $x \beta_{n} \bar{x}$.

If none of the segments is empty, then, by induction, each of them is β_{n}-congruent to some path in $S_{n, k}$. Again, by the pigeon hole principle, at least $n+1$ of them must be β_{n}-congruent to the same path in $S_{n, k}$. Let s_{1}, \ldots, s_{n+1} be the first $n+1$ such β_{n}-congruent paths and let s be the path in $S_{n, k}$ which is congruent to then. Then

$$
\begin{gathered}
x=x_{0} s_{1} x_{1} \ldots s_{n+1} x_{n+1} \beta_{n} \\
x_{0} s x_{1} \ldots s x_{n+1} \beta_{n} \\
x_{0} s s^{n} x_{1} \ldots x_{n+1} \beta_{n} \\
x_{0} s^{n} x_{1} \ldots x_{n+1}=\bar{x} .
\end{gathered}
$$

As $x \beta_{n} \bar{x}$ and $|\bar{x}|<|x|$ we are done.
2.9. Lemma: β_{n} is a finite index congruence over G.

Proof: There are no more than $\left|S_{n,|E|}\right| \beta_{n}$-classes.

3. THE PRINCIPAL RESULT

3.1. Theorem: Any local MNIL-congruence is an MNIL-congruence.

Proof: If δ is a local MNIL-congruence, then there exists an $n \geqq 0$ such that $\delta \supseteqq R_{n}$, and thus $\delta \supseteqq \beta_{n}$. But by definition (2.6) and lemma (2.9), β_{n} is
a local MNIL-congruence. By proposition (2.5) (v), \approx_{n} is an MNILcongruence. Thus if we can find a function $f=f(n)$ such that $\beta_{n} \supseteqq \gtrsim_{f(n)}$, then this would prove that β_{n} is an MNIL-congruence and thus so is δ.

We now embark on the task of constructing $f(n)$.

4. TECHNICAL LEMMAS

4. 5. Lemma: Let $L_{n, k, v}=S_{n, k} \cap L_{v}$. Let $L_{n, k}$ be any element of $\left\{L_{n, k, v} \mid v \in V\right\}$ of maximal cardinality. Let $g(n)=n\left|L_{n,|E|}\right|+1$. Then for all $x \in P$ and for all $e \in E,|x|_{e} \geqq g(n)$ implies that x contains n non-overlapping segments, all of which are β_{n}-congruent loops whose first edge is e.

Proof: As $|x|_{e} \geqq g(n), x$ can be factorized as $x=x_{0} e x_{1} \ldots e x_{g(n)}$. So x contains $n\left|L_{n,|E|}\right|$ loops about $e \alpha$, namely, $e x_{1}, \ldots, e x_{n\left|L_{n,|E|}\right|}$. By lemma (2.8), there are

$$
\bar{x}_{1}, \ldots, \bar{x}_{n\left|L_{n,|E|}\right|} \in L_{n,|E|, e \alpha}
$$

such that for all $1 \leqq i \leqq n\left|L_{n,|E|}\right|$,ex $\mathcal{x}_{i} \bar{x}_{i}$. By the pigeon hole principle, there exists at least n of the \bar{x}_{i} 's which are β_{n}-congruent to each other. Thus at least n of $e x_{1}, \ldots, e x_{n \mid L_{n,|E| \mid}}$ are β_{n}-congruent to each other as well.
4.2. Remark: Notice that $\left|S_{n,|E|}\right|$ is a constructible upper bound to the index of β_{n}. Let k_{n} be the cardinality of a maximal cardinality base monoid of G^{*} / β_{n}. Then $\left|L_{n,|E|}\right|$ is a constructible upper bound to k_{n}. Lemma (4.1) would still be true with $g(n)$ defined as $n k_{n}+1$. However, while we do not have an algorithm to decide for any paths x and y whether $x \beta_{n} y$ is true, we do have an algorithm to decide whether x and y are β_{n}-congruent to the same path in $S_{n,|E|}$. If they are then $x \beta_{n} y$ is true, but even if not it may still be the case that $x \beta_{n} y$. Similarly, if x and y are coterminal loops, we can decide whether x and y are β_{n}-congruent to the same loop in $S_{n,|E|}$. Thus to make the proofs to come algorithmic, we must define $g(n)$ as in lemma (4.1).

We now proceed with the lemmas.
4.3. Lemma: For all $n \geqq 0, \beta_{n} \cong \beta_{n+1}$, and $\beta_{n} \cong \bar{\approx}_{n}$.

Proof: The first statement follows from $\beta_{n} \supseteqq R_{n+1}$. The second follows from $R_{n} \subseteq \bar{\approx}_{n}$.
4.4. Lemma: Let $x=u l^{n} v \in P$ with $l \in L$. Let $u=u_{1} u_{2}$ with $u_{1} \omega=l \alpha$. Then

$$
x \beta_{n} u_{1} l^{n} u_{2} v
$$

Similarly, if $v=v_{1} v_{2}$ with $v_{1} \omega=l \alpha$ then $x \beta_{n} u v_{1} l^{n} v_{2}$.
Proof: In fact, $u l^{n} v \beta_{n} u_{1} l^{n} u_{2} v$, since in the definition of R_{n} we allowed empty loops.
4.5. Lemma: Let $x \in P$ and $e \in E$ be such that $|x|_{e} \geqq g(n)$. Let l be any of the $n \beta_{n}$-congruent non-overlapping loops starting with e which occur in x by lemma (4.1). Let $x=u_{1} u_{2}$ be any factorization of x such that $u_{1} \omega=l \alpha$. Then for all $k \geqq n$

$$
x \beta_{n} u l^{k} v
$$

Proof: Write $x=x_{0} e s_{1} x_{1} \ldots e s_{n} x_{n}$ where $e s_{1}, \ldots, e s_{n}$ are the β_{n}-congruent loops. If l is any of them, we have

$$
\begin{gathered}
x=x_{0} e s_{1} x_{1} \ldots e s_{n} x_{n} \beta_{n} \\
x_{0} l x_{1} \ldots l x_{n} \beta_{n} \\
x_{0} l^{n} x_{1} \ldots x_{n} \beta_{n} \\
x_{0} l^{n} l^{n} x_{1} \ldots x_{n} \beta_{n} \\
x_{0} l^{n} e s_{1} x_{1} \ldots e s_{n} x_{n} .
\end{gathered}
$$

By lemma (4.4), we conclude that $x \beta_{n} u l^{n} v$ and thus $x \beta_{n} u l^{k} v$ for all $k \geqq n$.
4.6. Definition: We introduce the notion of a simple path.

Let $x \in P . x$ is said to be simple iff either x is an empty path, or for all $e \in x \gamma,|x|_{e}=1$. Next we define a map $s: P \rightarrow P$ which associates to every path a simple path coterminal to it. If x is simple then $s(x)=x$. Else there exists an edge which accurs in x at least twice. Introduce an ordering on $x \gamma$ by the order in which the edges of x appear for the first time as x is scanned from left to right. Let e be the first edge in $x \gamma$ which occurs in x more than
once. Then x can be factorized as $x=x_{0} e x_{1} e x_{2}$ so that x_{0} is simple and $\left|x_{2}\right|_{e}=0$. Then define $s(x)=x_{0}$ es $\left(x_{2}\right)$.
4.7. Lemma: Let x be a non-empty path. Then there exists $r>0$ such that

$$
x=x_{1} e_{1} \ldots x_{r} e_{r}
$$

where $e_{1}, \ldots, e_{r} \in E, s(x)=e_{1} \ldots e_{r}, x \sim e_{1} \ldots e_{r}$ and for all $1 \leqq i \leqq r, x_{i}$ is a (possibly empty) loop about $e_{i} \alpha$.

Proof: We proceed by induction on $|x|$.
If $|x|=1$ then $s(x)=x$ and $r=1$.
If $|x|>1$ then if x is simple, $r=|x|$. Else, as in (4.6), $x=x_{0} e x_{1} e x_{2}$ with x_{0} being a simple path and $s(x)=x_{0}$ es $\left(x_{2}\right)$. If x_{2} is empty then $s(x)=x_{0} e$ so $r=\left|x_{0}\right|+1$. Else, as $\left|x_{2}\right|<|x|$, by induction we may assume that there exists $u>0$ such that $x_{2}=z_{1} e_{1} \ldots z_{u} e_{u}$ where $e_{1} \ldots e_{u}=s\left(x_{2}\right)$ and $x_{2} \sim e_{1} \ldots e_{u}$.

Then $x=x_{0}\left(e x_{1}\right) e z_{1} e_{1} \ldots z_{u} e_{u}$. So $r=\left|x_{0}\right|+1+u$ and $s(x)=x_{0} e e_{1} \ldots e_{u}$ and $x \sim x_{0} e e_{1} \ldots e_{u}$.
4.8. Lemma: Let $u_{1} v_{1} u_{2} \ldots v_{m-1} u_{m}$ be a path and let z be a simple path such that for all $e \in z \gamma,\left|u_{1} \ldots u_{m}\right|_{e} \geqq(m+1) g(n)$. (Note that $u_{1} \ldots u_{m}$ need not be a path). Then

$$
u_{1} v_{1} u_{2} \ldots v_{m-1} u_{m} \beta_{n} w_{1} v_{1} \ldots w_{i, 1} z w_{i, 2} v_{i} \ldots w_{m}
$$

for some $1 \leqq i \leqq m$. Furthermore, for all $e \in E$,

$$
\left|u_{1} \ldots u_{m}\right|_{e}=\left|w_{1} \ldots w_{i, 1} w_{i, 2} \ldots w_{m}\right|_{e} .
$$

That is, z can be created in one of u_{1}, \ldots, u_{m} without affecting the v_{j} 's.
Proof: We proceed by induction on $|z|$.
If $|z|=1$ then the result is trivial.
Else, suppose by induction that

$$
u_{1} v_{1} u_{2} \ldots v_{m-1} u_{m} \beta_{n} w_{1} v_{1} \ldots w_{i, 1} z w_{i, 2} v_{i} \ldots w_{m}
$$

for a simple path z, and let $e \in E$ be such that $z e$ is a simple path and

$$
\left|w_{1} \ldots w_{i, 1} w_{i, 2} \ldots w_{m}\right|_{e} \geqq(m+1) g(n) .
$$

By the pigeon hole principle, at least one of $w_{1}, \ldots, w_{i, 1}, w_{i, 2}, \ldots, w_{m}$ contains e at least $g(n)$ times. Call it x. By lemma (4.5), $x \beta_{n} u l^{n} v$ where l is a loop starting with e. As $z \omega=e \alpha$ the result follows by lemma (4.4).
4.9. Lemma: Let $x \in P$ and let z be a simple path such that for all $e \in z \gamma$, $|x|_{e} \geqq(m+1) g(n)+(m-1)$. Then

$$
x \beta_{n} y_{1} z y_{2} \ldots z y_{m+1}
$$

for some paths y_{1}, \ldots, y_{m+1}, and for all $e \in E$,

$$
|x|_{e}=\left|y_{1} z y_{2} \ldots z y_{m+1}\right|_{e} .
$$

Proof: We proceed by induction on i for $1 \leqq i \leqq m$. The case $i=1$ follows by lemma (4.8).

By induction suppose that after $i-1$ steps with $i>1$, we have

$$
x \beta_{n} y_{1} z y_{2} \ldots z y_{i}
$$

Then for all $e \in z \gamma$,

$$
\left|y_{1} y_{2} \ldots y_{i}\right|_{e} \geqq(m+1) g(n) \geqq(i+1) g(n) .
$$

Again using lemma (4.8), we can create another z in one of y_{1}, \ldots, y_{i}.
4.10. Lemma: Let $h(n)=(n+1) g(n)+(n-1)$. Let $x \in P$, and let z be a simple loop about $x \omega$ such that for all $e \in z \gamma,|x|_{e} \geqq h(n)$. Then

$$
x \beta_{n} x z .
$$

Proof: By lemma (4.9),

$$
x \beta_{n} y_{0} z y_{1} \ldots z y_{n} .
$$

As $z \alpha=y_{n} \omega, y_{n}$ is a loop. Then

$$
\begin{gathered}
x \beta_{n} y_{0} y_{1} \ldots y_{n} z^{n} \\
\beta_{n} y_{0} y_{1} \ldots y_{n} z^{n} z \\
\beta_{n} y_{0} z y_{1} \ldots z y_{n} z \\
\beta_{n} x z .
\end{gathered}
$$

4.11. Lemma: Let $x \in P$ and let z be a loop about $x \omega$ such that for all $e \in z \gamma$, $|x|_{e} \geqq h(n)$. Then

$$
x \beta_{n} x z
$$

Proof: Note that this lemma differs from the previous one in that z is no longer required to be simple.

We proceed by induction on $|z|$.
If $|z|=1$ then z is simple, so we are done by lemma (4.10).
Else suppose that $|z|>1$ and let

$$
z=y_{1} e_{1} \ldots y_{r} e_{r}
$$

where $e_{1} \ldots e_{r}=s(z)$ and the y_{i} 's are loops [see lemma (4.7)].
By lemma (4.10) we have

$$
x \beta_{n} x e_{1} \ldots e_{r} .
$$

By induction on i for $1 \leqq i \leqq r$ we shall now prove that

$$
x e_{1} \ldots e_{i} \beta_{n} x y_{1} e_{1} \ldots y_{i} e_{i}
$$

If $i=1$ then $x \beta_{n} x y_{1}$ since y_{1} is a loop and $\left|y_{1}\right|<|z|$.
If $i>1$ then, by induction on i, we have

$$
\begin{equation*}
x e_{1} \ldots e_{i} \beta_{n} x y_{1} e_{1} \ldots y_{i} e_{i} . \tag{*}
\end{equation*}
$$

If $i=n$ we are done. Else suppose that $i<n$. As $\left|y_{i+1}\right|<|z|$, we have

$$
x e_{1} \ldots e_{i} \beta_{n} x e_{1} \ldots e_{i} y_{i+1} .
$$

So

$$
\begin{equation*}
x e_{1} \ldots e_{i} e_{i+1} \beta_{n} x e_{1} \ldots e_{i} y_{i+1} e_{i+1} . \tag{**}
\end{equation*}
$$

Now, using (*) and (**), we have

$$
x e_{1} \ldots e_{i} e_{i+1} \beta_{n} x y_{1} e_{1} \ldots y_{i} e_{i} y_{i+1} e_{i+1} .
$$

This completes the induction on i.
Now, setting $i=r$, we obtain,

$$
x e_{1} \ldots e_{r} \beta_{n} x y_{1} e_{1} \ldots y_{r} e_{r}=x z
$$

So $x \beta_{n} x e_{1} \ldots e_{r} \beta_{n} x z$.

5. CONCLUSION OF PROOF

5.1. Remark: $h(n)$ is not large enough to qualify as $f(n)$, but it is large enough to handle a special case.
5.2. Lemma: Let $x \bar{\approx}_{h(n)} y$ and suppose that both $x \delta_{h(n)}$ and $y \delta_{h(n)}$ are empty. That is, for all $e \in x \gamma=y \gamma,|x|_{e} \geqq h(n)$ and similarly for y. Then

$$
x \beta_{n} y
$$

Proof: Without loss of generality, assume that $|x| \leqq|y|$. We start by proving by induction on i for $0 \leqq i \leqq|x|$ that there exist paths y_{i} such that $y \beta_{n} y_{i}, y_{i}$ and x have a common prefix of length i and for all $e \in E,|y|_{e} \leqq\left|y_{i}\right|_{e}$.

For the case $i=0$ let $y_{0}=y$.
Now suppose that $x=p a u$ and $y_{i}=p b v$ where $|p|=i \geqq 0, a, b \in E$ and $y \beta_{n} p b v$. If $a=b$ we are done. Else, as $\left|y_{i}\right|_{a} \geqq|y|_{a}$, it follows that $\left|y_{i}\right|_{a} \geqq h(n) \geqq g(n)$. So y_{i} contains n non-overlapping β_{n}-congruent loops starting with the edge a. As $a \alpha=b \alpha$, we can use lemma (4.5) to conclude that $y_{i} \beta_{n} p l^{n} b v$ where l is a loop starting with a. Let $y_{i+1}=p l^{n} b v$. This completes the induction on i.

Now by setting $i=|x|$, we obtain $y \beta_{n} x z$ for some loop z. As $y \gamma=y_{i} \gamma$ for all $0 \leqq i \leqq|x|$, we conclude that $(x z) \gamma=y \gamma$. So $z \gamma \leqq x \gamma=y \gamma$. Finally using lemma (4.10), we have

$$
x \beta_{n} x z \beta_{n} y
$$

5.3. Remark: The next two lemmas are long and complicated, but the ideas behind them are rather simple. The reader may wish to study first the final lemma in order to see the meed for the two lemmas.
5.4. Lemma: Let $x \approx_{g^{|E|}{ }_{(n)}} y$. Write

$$
\begin{aligned}
& x=x_{0} a_{1} x_{1} \ldots a_{k} x_{k} \\
& y=y_{0} a_{1} y_{1} \ldots a_{k} y_{k}
\end{aligned}
$$

where

$$
a_{1} \ldots a_{k}=x \delta_{g|E|_{(n)}}=y \delta_{g|E|_{(n)} .}
$$

Suppose that for all i such that $0 \leqq k, x_{i} \delta_{g}|E|_{(n)}$ is empty, and similarly for the y_{i} 's. Then $x \beta_{n} x^{\prime}$ and $y \beta_{n} y^{\prime}$ where

$$
\begin{aligned}
& =x_{0}^{\prime} a_{1} x_{1}^{\prime} \ldots a_{k} x_{k}^{\prime} \\
& =y_{0}^{\prime} a_{1} y_{1}^{\prime} \ldots a_{k} y_{k}^{\prime},
\end{aligned}
$$

where for all $0 \leqq i \leqq k, x_{i}^{\prime} \gtrsim_{n} y_{i}^{\prime}$ and either both x_{i}^{\prime} and y_{i}^{\prime} are empty or both $x_{i}^{\prime} \delta_{n}$ and $y_{i}^{\prime} \delta_{n}$ are empty.

Proof: Given paths p and q such that $p \delta_{n}$ and $q \delta_{n}$ are empty, we have that $p \approx_{n} q$ iff $p \gamma=q \gamma$ and $p \sim q$. This observation will be used later.

We start by introducing some notation. Let

$$
\begin{gathered}
B=\left(a_{1} \ldots a_{k}\right) \gamma . \\
B_{0}=\left\{e \in E \|\left. x\right|_{e}<g(n)\right\} .
\end{gathered}
$$

For all $0<j<|E|$ let

$$
B_{j}=\left\{e \in E\left|g^{j}(n) \leqq|x|_{e}<g^{j+1}(n)\right\} .\right.
$$

Finally let

$$
B_{|E|}=\left\{e \in E \|\left. x\right|_{e} \geqq g^{|E|}(n)\right\}=x \gamma_{g}|E|_{(n)} .
$$

Observe that $B=\bigcup_{0 \leqq j \leqq|E|} B_{j}$. Observe further that if $B=E$ then $x=y$ and this lemma is rather trivial. Also, if $B=\emptyset$, then $k=0$ so let $x=x^{\prime}$ and $y=y^{\prime}$ and the lemma follows. Thus we may assume that $0<|B|<|E|$. This implies that there exists $0 \leqq j \leqq|E|$ such that $B_{j}=\emptyset$, but we shall not use this fact.

Given paths p and q, we say that q is fuller than p, written $p \leqq q$, iff $\mathrm{p} \gamma=\mathrm{q} \gamma$ and for all $e \in E,|p|_{e} \leqq|q|_{e}$. This relation satisfies $p \leqq p$ and $p \leqq q$ together with $q \leqq r$ implies $p \leqq r$. However, $p \leqq q$ and $q \leqq p$ does not imply that $p=q$. But we do not need this last property.

The proof proceeds via a certain construction. We construct two sequences of fuller and fuller paths

$$
\begin{aligned}
& x=x^{(0)} \leqq x^{(1)} \leqq \ldots \leqq x^{(|E|)} \\
& y=y^{(0)} \leqq y^{(1)} \leqq \ldots \leqq y^{(|E|)}
\end{aligned}
$$

which have certain properties. These properties will now be stated for the x sequence. The corresponding properties for the y sequence can be obtained by reading x for y and y for x in the obvious places.
(i) For all l such that $0 \leqq l \leqq|E|$,

$$
x^{(l)}=x_{0}^{(l)} a_{1} x_{1}^{(l)} \ldots a_{k} x_{k}^{(l)}
$$

that is, $a_{1} \ldots a_{k}$ is a subword of every path in the x sequence. Similarly for y.
(ii) For all $0 \leqq i \leqq k$ and for all $0 \leqq l \leqq|E|$, either $x_{i}^{(l)} \delta_{g^{\prime}|E|-l}{ }_{(n)}$ and $y_{i}^{(l)} \delta_{g|E|-1}{ }_{(n)}$ are both empty or $x_{i}^{(l)}$ and $y_{i}^{(i)}$ are both empty. That is

$$
x_{i}^{(l)} \gamma \cap \underset{0 \leqq j<|E|-l}{\cup} B_{j}=\emptyset .
$$

Similarly for y.
(iii) For all $0 \leqq l<|E|$

$$
x^{(l)} \beta_{g|E|-(l+1)(n)} x^{(l+1)} .
$$

Similarly for y.
(iv) If for some $0 \leqq l<|E|$ and for some $0 \leqq i \leqq k$

$$
x_{i}^{(l)} \gamma \supseteqq y_{i}^{(l)} \gamma \text { then } x_{i}^{(i+1)}=x_{i}^{(l)} .
$$

Similarly for y.
(v) If for some $0 \leqq l<|E|$ and for some $0 \leqq i \leqq k y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma \neq \emptyset$ then $x^{(l+1)}$ will be created from $x^{(i)}$ using $R_{g|E|-(l+1)(n)}$-transformations in such a way that for all $0 \leqq i \leqq k$

$$
x_{i}^{(i+1)} \gamma \supseteqq y_{i}^{(i)} \gamma .
$$

Similarly for y.
We defer the details of this construction to later in the proof of this lemma. In the meantime, assuming properties (i) to (v), we have the following.

Lemme: For all $0 \leqq l \leqq|E|$ and for all $0 \leqq i \leqq k$,
either $x_{i}^{(l)} \gamma=y_{i}^{(l)} \gamma$
or $\left|x_{i}^{(l)} \gamma\right| \geqq l$ and $\left|y_{i}^{(i)} \gamma\right| \geqq l$.
Proof: We proceed by induction on l.
If $l=0$ then the lemma is trivial. Thus assume that the lemma holds for some $0 \leqq l<|E|$. If $x_{i}^{(l)} \gamma=y_{i}^{(l)} \gamma$ then $x_{i}^{(l+1)} \gamma=x_{i}^{(l)} \gamma=y_{i}^{(l)} \gamma=y_{i}^{(l+1)} \gamma$ by (iv), so the induction follows.
Now suppose that $x_{i}^{(i)} \gamma \neq y_{i}^{(i)} \gamma$. Without loss of generality we may assume that $y_{i}^{(l)} \gamma-x_{i}^{(i)} \gamma \neq \emptyset$.

Then by (v), $x_{i}^{(l+1)} \gamma \supseteqq y_{i}^{(l)} \gamma$ so $\left|x_{i}^{(l+1)} \gamma\right| \geqq\left|x_{i}^{(l)} \gamma\right|+1 \geqq l+1$. Next we show $\left|y_{i}^{(l)} \gamma\right| \geqq l+1$.

If $x_{i}^{(l)} \gamma-y_{i}^{(l)} \gamma \neq \emptyset$ we argue by symmetry. Else $y_{i}^{(l)} \gamma$ strictly contains $x_{i}^{(l)} \gamma$ so

$$
\left|y_{i}^{(l)} \gamma\right|>l \text { so }\left|y_{i}^{(l+1)} \gamma\right|=\left|y_{i}^{(l)} \gamma\right| \geqq l+1 .
$$

Using this lemma we may conclude the proof of main lemma. From the lemma we deduce that for all $0 \leqq i \leqq k, x_{i}^{(|E|)} \gamma=y_{i}^{(|E|)} \gamma$. Also, by (i), $x_{i}^{(l)} \sim y_{i}^{(l)}$ for all $0 \leqq l \leqq|E|$. Thus setting $x^{\prime}=x^{(|E|)}$ and $y^{\prime}=y^{(|E|)}$ and remembering the observation made at the very beginning of the proof, the lemma follows.

We shall now take up the details of the construction.
We proceed by induction on $0 \leqq l \leqq|E|$.
As $x=x^{(0)}$ and $y=y^{(0)}$, the case $l=0$ is immediate. So we pass to the induction step. Assume that for some $0 \leqq l<|E|, x^{(l)}$ and $y^{(l)}$ have been constructed in accordance with properties (i) to (v).

We shall now construct $x^{(l+1)} \cdot y^{(l+1)}$ is constructed in an identical fashion.
Define a succession of fuller and fuller paths $z_{i, j}$ for $0 \leqq i \leqq k$ and $0 \leqq j \leqq\left|y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma\right|$, with the j index varying faster.

The $z_{i, 0}$ are defined just for notational convenience.
$z_{0,0}=x^{(l)}$ and if $i \geqq 0$,

$$
z_{i, 0}=z_{i-1,\left|y_{i}^{(l)}{ }_{1}{ }_{\gamma}-x_{i-}^{(i)}{ }_{1} \gamma\right|, ~}
$$

We construct the $z_{i, j}$ inductively to have the following properties.
(I) $z_{i, j}=z_{0}^{(i, j)} a_{1} z_{1}^{(i, j)} \ldots a_{k} z_{k}^{(i, j)}$, that is, the $z_{i, j}$ have $a_{1} \ldots a_{k}$ as a subword.
(II) $x^{(l)} \leqq z_{i, j}$ and $x_{i}^{(l)} \leqq z_{i, j}^{(l)}$.
(III) $x^{(l)} \beta_{g^{|E|-(l+1)}{ }_{(n)}} z_{i, j}$.
(IV) If $y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma \neq \emptyset$ let

$$
\left\{e_{j}\left|1 \leqq j \leqq\left|y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma\right|\right\}\right.
$$

be the edges in $y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma$ ordered by their order of appearance in $y_{i}^{(l)}$ as $y_{i}^{(l)}$ is scanned from left to right. Then

$$
\left\{e_{1}, \ldots, e_{j}\right\} \subseteq z_{i}^{(i, j)} \gamma
$$

In fact

$$
\left\{e_{1}, \ldots, e_{j}\right\} \subseteq z_{i}^{(i, j)} \gamma_{g}|E|-(l+1)_{(n)}
$$

Clearly $z_{0,0}$ has these properties.
Suppose by induction that so does $z_{i, j}$. If $j=\left|y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma\right|$ then the next path is $z_{i+1,0}$ and $z_{i+1,0}=z_{i, j}$, so we are done.

Else suppose that $0 \leqq j<\left|y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma\right|$. Once again we need a

Lemma: $e_{j+1} \alpha \in z_{i}^{(i, j)} v$.
Proof: We proceed by induction on j with $0 \leqq j \leqq\left|y_{i}^{(l)} \gamma-x_{i}^{(l)} \gamma\right|$.
If $j=0$ then either $y_{i}^{(l)}=e_{1} p$ for some $p \in P$ or $y_{i}^{(l)}=u e_{1} w$ for some paths u and w with $u \gamma \cong x_{i}^{(l)} \gamma$.

In the first case, $e_{1} \alpha=y_{i}^{(l)} \alpha=x_{i}^{(l)} \alpha=z_{i}^{(i, 0)} \alpha$.
In the second case, $e_{1} \alpha=u \omega \in x_{i}^{(l)} v$. By property (II) $x_{i}^{(l)} v \subseteq z_{i}^{(i, j)} v$, so $e_{1} \alpha \in z_{i}^{(i, 0)} v$. This completes the $j=0$ case.

Now let $j \geqq 0$. Then either $y_{i}^{(l)}=u e_{j} e_{j+1} w$ for some $u, w \in P$, or $y_{i}^{(l)}=u e_{j} p e_{j+1} w$ for some $u, p, w \in P$, where $p \gamma \subseteq x_{i}^{(l)} \gamma$.

In the first case, $e_{j+1} \alpha=e_{j} \omega$. By property (IV) and by the induction on $z_{i, j}$, we have $\mathrm{e}_{\mathrm{j}} \in z_{i}^{(i, j)} \gamma$. Thus,

$$
e_{j+1} \alpha=e_{j} \omega \in z_{i}^{(i, j)} \nu
$$

In the second case, $e_{j+1} \alpha=p \omega \in x_{i}^{(l)} v \subseteq z_{i}^{(i, j)} v$.
Thus we know that $e_{j+1} \in z_{i}^{(i, j)} v$. By the induction on l and property (ii), we have $\left|y_{i}^{(l)}\right|_{e_{j+1}} \geqq g^{|E|-l}(n)$. As $l<|E|$, we use lemma (4.1) to create $g^{|E|-(l+1)}(n)$ occurrences of e_{j+1} in $z_{i}^{(i, j)}$ using only $R_{g|E|-(l+1)}(n)$-transformations, in such a way that the only segment of $z_{i, j}$ to be affected is $z_{i}^{(i, j)}$ itself. This new path we call $z_{i, j+1}$ which differs from $z_{i, j}$ only in that $z_{i}^{(i, j)} \neq z_{i}^{(i, j+1)} \cdot z_{i, j+1}$ have been constructed in accordance with properties (I) to (IV).

This completes the induction on the $z_{i, j}$'s.

This completes the induction on l.
5.5. Lemma: Let $x \bar{\approx}_{g(n)} y$. Write

$$
\begin{aligned}
& x=x_{0} a_{1} x_{1} \ldots a_{k} x_{k} \\
& y=y_{0} a_{1} y_{1} \ldots a_{k} y_{k}
\end{aligned}
$$

where $a_{1} \ldots a_{k}=x \delta_{g(n)}=y \delta_{g(n)}$.
Then $x \beta_{n} x^{\prime}$ and $y \beta_{n} y^{\prime}$ where

$$
x^{\prime} \approx_{n} y^{\prime}
$$

and

$$
x^{\prime}=x_{0}^{\prime} a_{1} x_{1}^{\prime} \ldots a_{k} x_{k}^{\prime}
$$

$$
y^{\prime}=y_{0}^{\prime} a_{1} y_{1}^{\prime} \ldots a_{k} y_{k}^{\prime}
$$

and for all $0 \leqq i \leqq k, x_{i}^{\prime} \delta_{n}$ is empty, and similarly for y_{i}^{\prime}.
Proof: Note that $a_{1} \ldots a_{k}=x \delta_{g(n)}$ implies that for all $0 \leqq i \leqq k, x_{i}$ is either empty or $x_{i} \gamma \subseteq x \gamma_{g(n)}$, and similarly for y_{i}.

Let $B=\left(a_{1} \ldots a_{k}\right) \gamma$. As in lemma (5.4), the result is immediate unless we assume $0<|B|<|E|$.

We proceed with a construction similar to the one used in lemma (5.4) to construct $x^{(l+1)}$ from $x^{(l)}$.

Define a succession of fuller and fuller paths $z_{i, j}$, where $0 \leqq i \leqq k$ and $0 \leqq j \leqq\left|x_{i} \gamma\right|$ with the j index varying faster.

We define $z_{i, 0}$ for notational convenience only. We have $z_{0,0}=x$ and $z_{i, 0}=z_{i-1,\left|x_{i-1}\right|} \mid$ if $i>0$.

The $z_{i, j}$ are constructed to conform to the following properties.
(i) $z_{i, j}=z_{0}^{(i, j)} a_{1} z_{1}^{(i, j)} \ldots a_{k} z_{k}^{(i, j)}$, that is, $a_{1} \ldots a_{k}$ is a subword of $z_{i, j}$
(ii) $x \leqq z_{i, j}$ and $x_{i} \leqq z_{i}^{(i, j)}$.
(iii) $x \beta_{n} z_{i, j}$.
(iv) If $x_{i} \gamma \neq \emptyset$, let $\left\{e_{j}\left|1 \leqq j \leqq\left|x_{i} \gamma\right|\right\}\right.$ be the edges in $x_{i} \gamma$ in their order of appearance in x_{i} as x_{i} is scanned from left to right. Then

$$
\left\{e_{1}, \ldots, e_{j}\right\} \subseteq z_{i}^{(i, j)} \gamma_{n} .
$$

We proceed by induction on $z_{i, j}$.
As $z_{0,0}=x$, it has the above properties. Suppose by induction that $z_{i, j}$ has the above properties. If $j=\left|x_{i} \gamma\right|$ then $z_{i+1,0}$ is the next path in the sequence and $z_{i+1,0}=z_{i, j}$, so the induction follows in this case.

Next suppose that $0 \leqq j<\left|x_{i} \gamma\right|$. If $\left|z_{i}^{(i, j)}\right|_{e_{j+1}} \geqq n$, let $z_{i, j+1}=z_{i, j}$. Else $\left|z_{i}^{(i, j)}\right|_{e_{j+1}}<n$. But as $\left|z_{i, j}\right|_{e_{j+1}} \geqq g(n)$, we may use lemma (4.5) to create in $z_{i}^{(i, j)} n$ occurrences of e_{j+1} using R_{n}-transformations, with the only segment of $z_{i, j}$ to be affected is $z_{i}^{(i, j)}$ itself. We call the result of these transformations $z_{i, j+1}$, which differs from $z_{i, j}$ only in that $z_{i}^{(i, j)} \neq z_{i}^{(i, j+1)}$. Thus $z_{i, j+1}$ has properties (i) to (iv).

This completes the induction on the $z_{i, j}$.
Let $x^{\prime}=z_{k,\left|x_{k} y\right|}$. In an identical fashion one obtains y^{\prime}.
Note that x^{\prime} and y^{\prime} may contain edges of B, but those B-edges must appear in x and y at least n times. The edges which appear in x and y less than n
times can not be affected by an R_{n}-transformation. We thus conclude that

$$
x^{\prime} \approx_{n} y^{\prime}
$$

5.6. Final lemma: Let

$$
f(n)=g\left(g^{|E|}(h(n))\right) .
$$

Then

$$
\beta_{n} \supseteqq \bar{\approx}_{f(n)}
$$

Proof: Suppose that $x \approx_{f_{(n)}} y$. Write

$$
\begin{aligned}
& x=x_{0} a_{1} x_{1} \ldots a_{k} x_{k} \\
& y=y_{0} a_{1} y_{1} \ldots a_{k} y_{k}
\end{aligned}
$$

where

$$
a_{1} \ldots a_{k}=x \delta_{f(n)}=y \delta_{f(n)}
$$

By lemma (5.5) $x \beta_{g^{|E|}(h(n))} x^{\prime}$ and $y \beta_{g^{|E|}}{ }_{(h(n))} y^{\prime}$ such that $x^{\prime} \approx_{g}^{|g|_{(h(n))}} y^{\prime}$ and $x^{\prime}=x_{0}^{\prime} a_{1} x_{1}^{\prime} \ldots a_{k} x_{k}^{\prime}$ and $y^{\prime}=y_{0}^{\prime} a_{1} y_{1}^{\prime} \ldots a_{k} y_{k}^{\prime}$ where for all $0 \leqq i \leqq k$ $x_{i}^{\prime} \delta_{g|E|_{(h(n))}}$ is empty, and similarly for $y_{i}^{\prime} \delta_{g|E|_{(h(n))}}$.

Now, by lemma (5.4) we conclude that $x^{\prime} \beta_{h(n)} x^{\prime \prime}$ and $y^{\prime} \beta_{h(n)} y^{\prime \prime}$ where $x^{\prime \prime}=x_{0}^{\prime \prime} a_{1} x_{1}^{\prime \prime} \ldots a_{k} x_{k}^{\prime \prime} \quad$ and $y^{\prime \prime}=y_{0}^{\prime \prime} a_{1} y_{1}^{\prime \prime} \ldots a_{k} y_{k}^{\prime \prime} \quad$ and for all $0 \leqq i \leqq k, x_{i}^{\prime \prime} \approx_{h(n)} y^{\prime \prime}$ and $x_{i}^{\prime \prime} \delta_{h(n)}$ is empty and similarly for $y_{i}^{\prime \prime} \delta_{h(n)}$. Thus, by lemma (5.2), for all $0 \leqq i \leqq k, x_{i}^{\prime \prime} \beta_{n} y_{i}^{\prime \prime}$. So $x^{\prime \prime} \beta_{n} y^{\prime \prime}$.

So we have the chain

$$
x \beta_{g|E|_{(h(n))}} x^{\prime} \beta_{h(n)} x^{\prime \prime} \beta_{n} y^{\prime \prime} \beta_{h(n)} y^{\prime} \beta_{g}|E|_{(h(n))} y
$$

REFERENCES

[S] H. Straubing, The Variety Generated by Finite Nilpotent Monoids, Semigroup Forum, Vol. 24, 1982, pp. 25-38.
[T \& W] D. Thérien and A. Weiss, Graph Congruences and Wreath Products, J.P. Ap. Alg., Vol. 36, 1985, pp. 205-215.
[W \& T] A. Weiss and D. Thérien, Varieties of Finite Categories, R.A.I.R.O. Informatique Théorique, Vol. 20, $\mathrm{n}^{\circ} 3,1986$, pp. 357-366.

[^0]: (*) Received in Aprid 1985, revised in January 1986
 Financial assistance from the National Science and Engineering Research Council of Canada and FONDS F.C.A.C. is gratefully acknowledged.
 (${ }^{1}$) Department of Mathematics, Concordia University, 7141 Sherbrooke St. W., Hingston Hall, Montréal, Québec, Canada H4B1R6.

 Informatique theorique et Applications/Theoretical Informatics and Applications 0296-1598 86/03 339 17/\$3.70/© Gauthier-Villars

