INFORMATIQUE THÉORIQUE ET APPLICATIONS

Juha Kortelainen

Every commutative quasirational language is regular

Informatique théorique et applications, tome 20, no 3 (1986), p. 319-337
http://www.numdam.org/item?id=ITA_1986__20_3_319_0

© AFCET, 1986, tous droits réservés.
L'accès aux archives de la revue «Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

EVERY COMMUTATIVE QUASIRATIONAL LANGUAGE IS REGULAR (*)

by Juha Kortelainen (${ }^{1}$)

Communicated by J. Berstel

Abstract

A nonregular language L is minimal with respect to a language family \mathscr{L} if, for each nonregular language L_{1} in \mathscr{L}, L is in the trio generated by L_{1}. We show that the language $\bar{D}_{1}^{*}=\left\{\left.x \in\left\{a_{1}, a_{2}\right\}^{*}| | x\right|_{a_{1}} \neq|x|_{a_{2}}\right\}$ is minimal with respect to $c(\mathscr{R})$, the family of languages consisting of the commutative closures of all regular languages. This then implies that each commutative quasirational language is regular.

Résumé. - Un langage L non rationnel est minimal dans une famille \mathscr{L} de langages si, pour tout langage L_{1} non rationnel dans \mathscr{L}, L appartient au plus petit cône rationnel fidèle contenant L_{1}. Nous montrons que le langage $\bar{D}_{1}^{*}=\left\{\left.x \in\left\{a_{1}, a_{2}\right\}^{*}| | x\right|_{a_{1}} \neq|x|_{a_{2}}\right\}$ est minimal dans $c(\mathscr{R})$ qui est l'ensemble des fermetures commutatives des langages rationnels. Ceci implique que tout langage commutatif quasirationnel est rationnel.

1. INTRODUCTION

The minimality of languages is studied in several articles, for instance in [1], [3], [9] and [10]. Let $\mathscr{T}(\mathscr{L})(\hat{\mathscr{T}}(\mathscr{L}))$ denote the (full) trio generated by the language family \mathscr{L}. In [1], [9] and [10] we can find the following conjecture:

Conjecture 1: If L is a nonregular language in $c(\mathscr{R})$, then \bar{D}_{1}^{*} is in $\hat{\mathscr{T}}(L)$. We show that \bar{D}_{1}^{*} is in $\mathscr{T}(L)$ for each nonregular language L in $c(\mathscr{R})$ thus proving the conjecture. A result of Latteux and Leguy [11] then implies:

Conjecture 2: Every commutative quasirational language is regular.
Conjecture 2 was stated in [8] and [10]. It was partially proved in [5] and [11]; in [5] it was shown that every commutative linear language is regular and in [11] that every commutative quasirational language over a two-letter alphabet is regular.

[^0]
2. PRELIMINARIES

A subset S of \mathbb{N}^{n} is linear if:

$$
S=\left\{u_{0}+k_{1} u_{1}+\ldots+k_{r} u_{r} \mid k_{j} \in \mathbb{N}, j=1, \ldots, r\right\}
$$

for some $u_{i} \in \mathbb{N}^{n}, i=0,1, \ldots, r$. We say that s is the rank of S if there are exactly s linearly independent elements (over Q, the rationals) in u_{1}, \ldots, u_{r}. The rank of S is denoted by rank (S). Naturally $\operatorname{rank}(S) \leqq n$. If $\operatorname{rank}(S)=r$, then S is a proper linear set. A subset T of \mathbb{N}^{n} is semilinear if it is a finite union of linear sets. The rank of T, denoted by $\operatorname{rank}(T)$, is s if $T=S_{1} \cup \ldots \cup S_{m}$ where each S_{i} is a linear set and max rank $\left(\mathrm{S}_{i}\right)=s$. It can be verified that the rank of each semilinear set is uniquely determined. The convex closure conv (S) of the linear set S is defined by:

$$
\operatorname{conv}(S)=\left\{u_{0}+\alpha_{1} u_{1}+\ldots+\alpha_{r} u_{r} \mid \alpha_{j} \in Q, \alpha_{j} \geqq 0, j=1, \ldots, r\right\} \cap \mathbb{N}^{n}
$$

Denote

$$
\mathscr{A}(S)=\left\{\alpha_{1} u_{1}+\ldots+\alpha_{r} u_{r} \mid \alpha_{j} \in Q \text { for each } j\right\}
$$

Note that $\mathscr{A}(S)$ is a linear subspace of Q^{n}. All the linear spaces considered are subspaces of Q^{n} over Q, the rationals. Again, both $\operatorname{conv}(S)$ and $\mathscr{A}(S)$ are well-defined. By Lemma 1 , conv (S) is a semilinear set.

A linear set $S \subseteq \mathbb{N}^{n}$ is fundamental if:
$S=\left\{\left(r_{1}, \ldots, r_{n}\right)+k_{1}\left(s_{1}, 0, \ldots, 0\right)+\ldots\right.$

$$
\left.+k_{n}\left(0, \ldots, 0, s_{n}\right) \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\}
$$

for some $r_{j}, s_{j} \in \mathbb{N}, r_{j}<s_{j}, j=1, \ldots, n$. If S is fundamental, then obviously $\operatorname{rank}(S)=n$. A semilinear set is called fundamental if it is a finite union of fundamental linear sets.

Let $U \subseteq \mathbb{N}^{n}$. The complement of U is the set \bar{U} defined by:

$$
\bar{U}=\left\{v \in \mathbb{N}^{n} \mid v \notin U\right\} .
$$

Ginsburg proves in [6] that:
(i) the intersection of two semilinear sets is a semilinear set;
(ii) the complement of a semilinear set is a semilinear set; and
(iii) each semilinear set is a finite union of proper linear sets.

These facts are extensively used in our proofs.

Let $V, W \subseteq \mathbb{N}^{n}$. Then we define:

$$
V+W=\{v+w \mid v \in V, w \in W\} .
$$

Let $e_{i} \in \mathbb{N}^{n}$ be the element in which the i-th coordinate is one and all the others are equal to zero, $i=1, \ldots, n$. Let $\Psi_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}$ be the usual Parikhmapping from $\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ onto \mathbb{N}^{n}. When $\Psi_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}$ is understood, it is denoted by Ψ.

Let Σ_{1} be an alphabet and $x \in \Sigma_{1}^{*}$. Then $|x|_{a}$ denotes the number of occurrences of the symbol a in x for each a in Σ_{1}. The empty word is denoted by ε. Let $L \subseteq \Sigma_{1}^{*}$ be a language. Then:

$$
x^{-1} L=\left\{y \in \Sigma_{1}^{*} \mid x y \in L\right\}
$$

and

$$
L-\{\varepsilon\}=L \cap \Sigma_{1}^{+} .
$$

Define $c(x)=\left\{\left.y \in \Sigma_{1}^{*}| | x\right|_{a}=|y|_{a}\right.$ for each $\left.a \in \Sigma_{1}\right\}$. The commutative closure of the language L is the set

$$
c(L)=\bigcup_{x \in L} c(x) .
$$

The language L is commutative if $L=c(L)$.
For a language $L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$, let the complement of L with respect to $\left\{a_{1}, \ldots, a_{n}\right\}$ be the language $\bar{L}\left(a_{1}, \ldots, a_{n}\right)$ defined by:

$$
\bar{L}\left(a_{1}, \ldots, a_{n}\right)=\left\{x \in\left\{a_{1}, \ldots, a_{n}\right\}^{*} \mid x \notin L\right\} .
$$

We denote $\bar{L}\left(a_{1}, \ldots, a_{n}\right)$ by \bar{L} when $\left\{a_{1}, \ldots, a_{n}\right\}$ is understood.
A language $L \cong\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ is a SLIP-language if $\Psi(L)$ is a semilinear set. If L is commutative and $\Psi(L)$ is a linear set, then the convex closure $\operatorname{conv}(L)$ of L is the following language:

$$
\operatorname{conv}(L)=\Psi^{-1}(\operatorname{conv}(\Psi(L)))
$$

A commutative language $R \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ is fundamental if $\Psi(R)$ is a fundamental semilinear set. Note that if R is fundamental, it is a regular commutative SLIP-language.

It should be clear that $c(\mathscr{R})$ is exactly the family of all commutative SLIP-languages and that $c(\mathscr{R})$ is closed under union, intersection and complementation. Let $D_{1}^{*}=c\left(\left(a_{1} a_{2}\right)^{*}\right)$.

3. MAIN RESULTS

We now prove seven lemmas which imply the main results of this paper.
Lemma 1: For each linear set $S \subseteq \mathbb{N}^{n}, \operatorname{conv}(S)$ is a semilinear set.
Proof: Assume:

$$
S=\left\{u_{0}+k_{1} u_{1}+\ldots+k_{m} u_{m} \mid k_{j} \in \mathbb{N}, j=1, \ldots, m\right\}
$$

where $u_{i} \in \mathbb{N}^{n}, i=0,1, \ldots, m$. Let:

$$
U_{0}=\left\{u_{0}+\alpha_{1} u_{1}+\ldots+\alpha_{m} u_{m} \mid \alpha_{j} \in Q, 0 \leqq \alpha_{j}<1, j=1, \ldots, m\right\} \cap \mathbb{N}^{n}
$$

and

$$
U_{1}=\left\{k_{1} u_{1}+\ldots+k_{m} u_{m} \mid k_{j} \in \mathbb{N}, j=1, \ldots, m\right\}
$$

Obviously U_{0} is finite and thus $U=U_{0}+U_{1}$ is a semilinear set. We show that $\operatorname{conv}(S)=U$.

It should be clear that $U \subseteq \operatorname{conv}(S)$. Assume $u \in \operatorname{conv}(S)$. Then:

$$
u=u_{0}+\beta_{1} u_{1}+\ldots+\beta_{m} u_{m} \in \mathbb{N}^{n}
$$

for some nonnegative $\beta_{j} \in Q, j=1, \ldots, m$. Now:

$$
u=u_{0}+\gamma_{1} u_{1}+\ldots+\gamma_{m} u_{m}+r_{1} u_{1}+\ldots+r_{m} u_{m}
$$

for some $\gamma_{j} \in Q, 0 \leqq \gamma_{j}<1, r_{j} \in \mathbb{N}$, where $\beta_{j}=\gamma_{j}+r_{j}, j=1, \ldots, m$. Thus $u_{0}+\gamma_{1} u_{1}+\ldots+\gamma_{m} u_{m} \in U_{0}$ and $r_{1} u_{1}+\ldots+r_{m} u_{m} \in U_{1}$, so $u \in U$. We can deduce that $\operatorname{conv}(S) \subseteq U$. The proof is now complete.

Lemma 2: For each proper linear set $S \subseteq \mathbb{N}^{n}$, there exists a fundamental semilinear set $U \subseteq \mathbb{N}^{n}$ such that $\operatorname{conv}(S) \cap U=S$.

Proof: Assume:

$$
S=\left\{u_{0}+k_{1} u_{1}+\ldots+k_{m} u_{m} \mid k_{j} \in \mathbb{N}, j=1, \ldots, m\right\}
$$

where $u_{i} \in \mathbb{N}^{n}, i=0,1, \ldots, m$, and the elements u_{1}, \ldots, u_{m} are linearly independent. Now $m \leqq n$. If $m<n$, there are distinct numbers $i_{1}, \ldots, i_{n-m} \in\{1, \ldots, n\}$ such that the elements $u_{1}, \ldots, u_{m}, e_{i_{1}}, \ldots, e_{i_{n-m}}$ are linearly independent. In this case denote $u_{m+j}=e_{i j}, j=1, \ldots, n-m$.

Let $m_{i} \in \mathbb{N}_{+}$be the smallest number such that:

$$
\begin{equation*}
m_{i} e_{i}=r_{i 1} u_{1}+\ldots+r_{i n} u_{n} \tag{1}
\end{equation*}
$$

for some $r_{i j} \in \mathbb{Z}, j=1, \ldots, n, i=1, \ldots, n$. Here \mathbb{Z} is the set of all integers. Denote:

$$
\begin{aligned}
U_{0}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}^{n} \mid t_{i}<m_{i}\right. & , i=1, \ldots, n\} \\
& \cap\left\{u_{0}+\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n} \mid \alpha_{i} \in \mathbb{Z}, i=1, \ldots, n\right\}
\end{aligned}
$$

and $\quad U_{1}=\left\{k_{1} m_{1} e_{1}+\ldots+k_{n} m_{n} e_{n} \mid k_{i} \in \mathbb{N}, i=1, \ldots, n\right\}$. The set $U=U_{0}+U_{1}$ is a fundamental semilinear set. We show that $\operatorname{conv}(S) \cap U=S$.

Assume $u \in S$. Then $u=u_{0}+k_{1} u_{1}+\ldots+k_{m} u_{m}$ for some $k_{j} \in \mathbb{N}, j=1, \ldots, m$. We can write u in the form:

$$
u=\left(t_{1}, \ldots, t_{n}\right)+l_{1} m_{1} e_{1}+\ldots+l_{n} m_{n} e_{n}
$$

for some $t_{j}, l_{j} \in \mathbb{N}, 0 \leqq t_{j}<m_{j}, j=1, \ldots, n$. By (1):

$$
\left(t_{1}, \ldots, t_{n}\right)=u_{0}+s_{1} u_{1}+\ldots+s_{n} u_{n}
$$

for some $s_{j} \in \mathbb{Z}, j=1, \ldots, n$. This means that $\left(t_{1}, \ldots, t_{n}\right) \in U_{0}$ and $u \in U=U_{0}+U_{1}$. Since $u \in \operatorname{conv}(S), u \in \operatorname{conv}(S) \cap U$. So $S \subseteq \operatorname{conv}(S) \cap U$.

Assume now that $u \in \operatorname{conv}(S) \cap U$. Then, since $u \in \operatorname{conv}(S)$;

$$
u=u_{0}+\alpha_{1} u_{1}+\ldots+\alpha_{m} u_{m}
$$

for some nonnegative $\alpha_{j} \in Q, j=1, \ldots, m$. Since $u \in U$, we have:

$$
u=\left(t_{1}, \ldots, t_{n}\right)+k_{1} m_{1} e_{1}+\ldots+k_{n} m_{n} e_{n}
$$

for some $\left(t_{1}, \ldots, t_{n}\right) \in U_{0}, k_{j} \in \mathbb{N}, j=1, \ldots, n$. By (1):

$$
\begin{aligned}
& u_{0}+\alpha_{1} u_{1}+\ldots+\alpha_{m} u_{m}=\left(t_{1}, \ldots, t_{n}\right) \\
& \\
& \quad+k_{1}\left(r_{11} u_{1}+\ldots+r_{1 n} u_{n}\right)+\ldots+k_{n}\left(r_{n 1} u_{1}+\ldots+r_{n n} u_{n}\right) \\
& \quad=u_{0}+l_{1} u_{1}+\ldots+l_{n} u_{n}+k_{1}\left(r_{11} u_{1}+\ldots+r_{1 n} u_{n}\right)+\ldots \\
& \\
& \quad+k_{n}\left(r_{n 1} u_{1}+\ldots+r_{n n} u_{n}\right)
\end{aligned}
$$

for some $l_{j} \in \mathbb{Z}, j=1, \ldots, n$. The equations above imply that:

$$
\alpha_{j}=l_{j}+k_{1} r_{1 j}+\ldots+k_{n} r_{n j} \in \mathbb{Z}, \quad j=1, \ldots, m
$$

Since $\alpha_{j} \geqq 0$, we have $\alpha_{j} \in \mathbb{N}$ for each j. Thus $u \in S$. Since u is arbitrary, $\operatorname{conv}(S) \cap U \cong S$. Thus $S=\operatorname{conv}(S) \cap U$.

Note: A straightforward reasoning shows that (i) the intersection of two fundamental semilinear sets is either empty or a fundamental semilinear set; and (ii) the complement of a fundamental semilinear set is either empty or a fundamental semilinear set.

Let $S \subseteq \mathbb{N}^{n}$ be a semilinear set. Then S is homogenous if there exist proper
linear sets $S_{1}, \ldots, S_{m} \subseteq \mathbb{N}^{n}$ and a fundamental semilinear set $U \subseteq \mathbb{N}^{n}$ such that:
(i) $S=\bigcup_{i=1}^{m} S_{i}$; and
(ii) $\left(\bigcup_{i=1}^{m} \operatorname{conv}\left(S_{i}\right)\right) \cap U=S$.

Call a language $L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ homogenous if L is a commutative SLIP-language such that $\Psi(L)$ is a homogenous semilinear set.

Lemma 3: Let $L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ be a nonregular commutative SLIPlanguage. Then there exists a nonregular homogenous language $L^{\prime} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ in $\mathscr{T}(L)$.

Proof: Let $L_{1}, \ldots, L_{m} \in c(\mathscr{R})$ be languages such that $\Psi\left(L_{i}\right)$ is a proper linear set for each i, and $L=\bigcup L_{i=1}$. By Lemma 2, there exists a fundamental language $R_{i} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ such that $\operatorname{conv}\left(L_{i}\right) \cap R_{i}=L_{i}, i=1, \ldots, m$. Let $s^{\prime} \in \mathbb{N}$ be the greatest number for which there exist $i_{1}, \ldots, i_{s^{\prime}} \in\{1, \ldots, m\}$ such that $L \cap \bar{R}_{i_{1}} \cap \ldots \cap \bar{R}_{i_{s^{\prime}}}$ is nonregular. Since $L \cap \bar{R}_{1} \cap \ldots \cap \bar{R}_{m}=\varnothing$, $s^{\prime}<m$.

Without loss of generality we may assume that $i_{j}=m-s^{\prime}+j, j=1, \ldots, s^{\prime}$. Denote $s=m-s^{\prime}$. If $s<m$, we have $L \cap \bar{R}_{s+1} \cap \ldots \cap \bar{R}_{m}$ nonregular and the language $L \cap \bar{R}_{s+1} \cap \ldots \cap \bar{R}_{m} \cap \bar{R}_{j}$ regular for each $j \in\{1, \ldots, s\}$. If $s=m$, then $L \cap \bar{R}_{j}$ is regular for each $j \in\{1, \ldots, m\}$. If $s<m$, denote $R=\bar{R}_{s+1} \cap \ldots \cap \bar{R}_{m}$, otherwise $R=\left\{a_{1}, \ldots, a_{n}\right\}^{*}$. Now:

$$
L \cap R=\left(\bigcup_{i=1}^{s} L_{i}\right) \cap R
$$

is nonregular and $L \cap R \in c(\mathscr{R})$. For each $i \in\{1, \ldots, s\}$ there are $A_{i 1}, \ldots$, $A_{i r_{i}} \in c(\mathscr{R})$ such that $\Psi\left(A_{i j}\right)$ is a proper linear set, $j=1, \ldots, r_{i}$, and r_{i}
$L_{i} \cap R=\bigcup_{j=1}^{\bigcup} A_{i j}$. We prove that for each $i \in\{1, \ldots, s\}$:

$$
\bigcup_{j=1}^{r_{i}}\left(\operatorname{conv}\left(A_{i j}\right) \cap R \cap R_{i}\right)=\bigcup_{j=1}^{r_{i}} A_{i j}
$$

Obviously $A_{i j} \subseteq L_{i} \subseteq R_{i}$ and $A_{i j} \subseteq R$, so the right side of the above equation is a subset of the left side of it. On the other hand, since $\Psi\left(L_{i}\right)$ is a linear
set and $A_{i j} \cong L_{i}$ for each $j \in\left\{1, \ldots, r_{i}\right\}$, it can be verified that $\operatorname{conv}\left(A_{i j}\right) \cong \operatorname{conv}\left(L_{i}\right)$. Thus $\operatorname{conv}\left(A_{i j}\right) \cap R_{i} \cong \operatorname{conv}\left(L_{i}\right) \cap R_{i}=L_{i}$, so:

$$
\operatorname{conv}\left(A_{i j}\right) \cap R \cap R_{i} \subseteq L_{i} \cap R=\bigcup_{j=1} A_{i j}
$$

and we can deduce that the equation is right for each $i \in\{1, \ldots, s\}$. Since $L \cap R \cap \bar{R}_{i}$ is regular for each $i \in\{1, \ldots, s\}$, the language $L \cap R \cap\left(\bigcup_{i=1}^{s} \bar{R}_{i}\right)$ is regular. Since $L \cap R$ is nonregular, the language:

$$
\begin{aligned}
& L \cap R \cap\left(\begin{array}{|}
\bigcup_{i=1}^{s} \bar{R}_{i}
\end{array}\right)=L \cap R \cap\left(\bigcap_{i=1}^{s} \bar{R}_{i}\right) \\
&=L \cap\left(R_{1} \cap \ldots \cap R_{s} \cap \bar{R}_{s+1} \cap \ldots \cap \bar{R}_{m}\right)
\end{aligned}
$$

in $c(\mathscr{R})$ is nonregular. Denote $R_{0}=R_{1} \cap \ldots \cap R_{s} \cap \bar{R}_{s+1} \cap \ldots \cap \bar{R}_{m}$. By the previous note, R_{0} is fundamental. For each $i \in\{1, \ldots, s\}, j \in\left\{1, \ldots, r_{i}\right\}$, let $A_{i j p} \in c(\mathscr{R}), p=1, \ldots, q_{i j}$, be such that

$$
A_{i j} \cap R_{0}=\bigcup_{p=1}^{q_{i j}} A_{i j p}
$$

and $\Psi\left(A_{i j p}\right)$ is a proper linear set. We prove that for each $i \in\{1, \ldots, s\}$:
(*)

$$
\bigcup_{j=1}^{r_{i}} \bigcup_{p=1}^{q_{i j}}\left(\operatorname{conv}\left(A_{i j p}\right) \cap R_{0}\right)=\bigcup_{j=1}^{r_{i}} \bigcup_{p=1}^{q_{i j}} A_{i j p} .
$$

Obviously the right side of $(*)$ is a subset of the left side of $(*)$. On the other hand:

$$
\begin{aligned}
\operatorname{conv}\left(A_{i j p}\right) \cap R_{0} \subseteq \bigcup_{j=1}^{r_{i}}(\operatorname{conv} & \left.\left(A_{i j p}\right) \cap R_{0}\right) \\
& =\bigcup_{j=1}^{r_{i}}\left(A_{i j} \cap R_{0}\right)=\bigcup_{j=1}^{r_{i}} \bigcup_{p=1}^{q_{i j}} A_{i j p} .
\end{aligned}
$$

Thus (*) is right. Now:

$$
L^{\prime}=L \cap R_{0}=\bigcup_{i=1}^{s} \bigcup_{j=1}^{r_{i}} \bigcup_{p=1}^{q_{i j}} A_{i j p} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}
$$

is a nonregular homogenous language in $\mathscr{T}(L)$.
Lemma 4: Let $S_{1}, \ldots, S_{m} \subseteq \mathbb{N}^{n}$ be proper linear sets such that

$$
\operatorname{rank}\left(\overline{\operatorname{conv}\left(S_{1}\right)} \cap \ldots \cap \overline{\operatorname{conv}\left(S_{m}\right)}\right)=n
$$

Then there exists a proper linear set $T \cong \mathbb{N}^{n}$ such that:

$$
\operatorname{conv}(T) \cong \overline{\operatorname{conv}\left(S_{1}\right)} \cap \ldots \cap \overline{\operatorname{conv}\left(S_{m}\right)} \quad \text { and } \quad \operatorname{rank}(T)=n
$$

Proof: Denote $T=\overline{\operatorname{conv}\left(S_{1}\right)} \cap \ldots \cap \overline{\operatorname{conv}\left(S_{m}\right)}$. Since $\operatorname{rank}\left(T^{v}\right)=n$, there exists a linear set $T_{1} \subseteq T^{v}$ such that:

$$
T_{1}=\left\{v_{0}+k_{1} v_{1}+\ldots+k_{n} v_{n} \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\}
$$

where $v_{i} \in \mathbb{N}^{n}, i=0,1, \ldots, n$, and the elements v_{1}, \ldots, v_{n} are linearly independent. Let:

$$
S_{1}=\left\{u_{0}+k_{1} u_{1}+\ldots+k_{s} u_{s} \mid k_{j} \in \mathbb{N}, j=1, \ldots, s\right\}
$$

where $u_{i} \in \mathbb{N}^{n}, i=0,1, \ldots, s$, and the elements u_{1}, \ldots, u_{s} are linearly independent. Let:

$$
\begin{aligned}
& V=\left\{k_{1} v_{1}+\ldots+k_{n} v_{n} \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\}, \\
& U=\left\{k_{1} u_{1}+\ldots+k_{s} u_{s} \mid k_{j} \in \mathbb{N}, j=1, \ldots, s\right\} .
\end{aligned}
$$

We have two subcases: (i) $s=n$; and (ii) $s<n$.
(i) Assume there is $u \in U$ such that $u=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}$ for some positive $\alpha_{i} \in Q$. Then, for sufficiently large and well chosen $p, q \in \mathbb{N}_{+}$:

$$
p u+q\left(u_{1}+\ldots+u_{n}\right)=\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}
$$

for some $\beta_{i} \in \mathbb{N}_{+}, i=1, \ldots, n$. If now $r \in \mathbb{N}$ is large enough:

$$
v_{0}+r\left(\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}\right)=u_{0}+\gamma_{1} u_{1}+\ldots+\gamma_{n} u_{n}
$$

for some positive $\gamma_{j} \in Q, j=1, \ldots, n$, contradicting the fact that $T_{1} \subseteq T^{v}$. The facts above show that, for sufficiently large $r_{0} \in \mathbb{N}_{+}$:

$$
v_{0}+r_{0}\left(v_{1}+\ldots+v_{n}\right)+\rho_{1} v_{1}+\ldots+\rho_{n} v_{n} \neq u_{0}+\xi_{1} u_{1}+\ldots+\xi_{n} u_{n}
$$

for each nonnegative $\rho_{j}, \xi_{j} \in Q, j=1, \ldots, n$. Let $w_{0}=v_{0}+r_{0}\left(v_{1}+\ldots+v_{n}\right)$. Then $T_{2}=w_{0}+V$ is a proper linear set such that $\operatorname{conv}\left(T_{2}\right) \cap \operatorname{conv}\left(S_{1}\right)=\mathrm{k}$.
(ii) By the construction of Lemma 1, $\operatorname{rank}\left(\operatorname{conv}\left(T_{1}\right) \cap \operatorname{conv}\left(S_{1}\right)\right) \leqq s<n$.

Let $W_{1}, \ldots, W_{p} \subseteq \mathbb{N}^{n}$ be linear sets such that $\operatorname{conv}\left(T_{1}\right) \cap \operatorname{conv}\left(S_{1}\right)=\bigcup_{i=1}^{p} W_{i}$ and

$$
W_{i}=\left\{v_{i 0}+k_{1} v_{i 1}+\ldots+k_{r_{i}} v_{i r_{i}} \mid k_{j} \in \mathbb{N}, j=1, \ldots, r_{i}\right\}
$$

where $v_{i j} \in \mathbb{N}^{n}, j=0,1, \ldots, r_{i}, i=1, i=1, \ldots, p$. Since each $v_{i j}$ is obviously a linear combination of the elements u_{1}, \ldots, u_{s}, there are at most s linearly independent elements in $v_{11}, \ldots, v_{1 r_{1}}, \ldots, v_{p 1}, \ldots, v_{p r_{p}}$. Let w_{1}, \ldots, w_{q} be a maximal number of linearly independent elements in the above sequence, $q \leqq s$. Thus $q<n$. Let w_{q+1}, \ldots, w_{n} be elements in v_{1}, \ldots, v_{n} such that w_{1}, \ldots, w_{n} are linearly independent. Let r_{0} be such that $v_{0}-v_{i 0}+r_{0}\left(w_{1}+\ldots+w_{n}\right)$ is a linear combination of w_{1}, \ldots, w_{n} with positive rational coefficients for each $i=1, \ldots, p$:

$$
w_{0}=v_{0}+r_{0}\left(w_{1}+\ldots+w_{n}\right),
$$

and

$$
T_{2}=\left\{w_{0}+k_{1} w_{1}+\ldots+k_{n} w_{n} \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\} .
$$

We show that $\operatorname{conv}\left(T_{2}\right) \cap \operatorname{conv}\left(S_{1}\right)=\varnothing$. Assume the contrary. Since $\operatorname{conv}\left(T_{2}\right) \subseteq \operatorname{conv}\left(T_{1}\right)$, we have $\operatorname{conv}\left(T_{2}\right) \cap\left(\operatorname{conv}\left(T_{1}\right) \cap \operatorname{conv}\left(S_{1}\right)\right) \neq \varnothing$ which means:

$$
\begin{equation*}
v_{0}+r_{0}\left(w_{1}+\ldots+w_{n}\right)+\alpha_{1} w_{1}+\ldots+\alpha_{n} w_{n}=v_{i 0}+\beta_{1} v_{i 1}+\ldots+\beta_{r_{i}} v_{i r_{i} ;} \tag{1}
\end{equation*}
$$

for some $i \in\{1, \ldots, p\}, \quad \alpha_{j} \in Q, \quad \alpha_{j} \geqq 0, \quad \beta_{l} \in \mathbb{N}, j=1, \ldots, n, l=1, \ldots, r_{i}$. Obviously:

$$
\beta_{1} v_{i 1}+\ldots+\beta_{r_{i}} v_{i r_{i}}=\lambda_{1} w_{1}+\ldots+\lambda_{q} w_{q}
$$

for some $\lambda_{j} \in Q, j=1, \ldots, q$. Then (1) implies that $\xi_{1} w_{1}+\ldots+\xi_{n} w_{n}=\overline{0}$ for some $\xi_{j} \in Q, j=1, \ldots, n$, where $\xi_{q+1} \neq 0, \ldots, \xi_{n} \neq 0$. Since w_{1}, \ldots, w_{n} are linearly independent, we have a contradiction. Thus $T_{2} \cong \mathbb{N}^{n}$ is a proper linear set such that $T_{2} \subseteq T$ and $\operatorname{conv}\left(T_{2}\right) \cap \operatorname{conv}\left(S_{1}\right)=\varnothing$.

Continuing like this for each $S_{j}, j=2, \ldots, m$, we can find a proper linear set T_{m+1} such that $T_{m+1} \subseteq T^{\nu}$ and

$$
\operatorname{conv}\left(T_{m+1}\right) \cap\left(\operatorname{conv}\left(S_{1}\right) \cup \ldots \cup \operatorname{conv}\left(S_{m}\right)\right)=\varnothing
$$

thus:

$$
\operatorname{conv}\left(T_{m+1}\right) \subseteq T^{v}=\overline{\operatorname{conv}\left(S_{1}\right)} \cap \ldots \cap \overline{\operatorname{conv}\left(S_{m}\right)}
$$

Lemma 5: Let $L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ be a homogenous language containing ε. Assume $S_{1}, \ldots, S_{m} \subseteq \mathbb{N}^{n}$ are proper linear sets and $U \subseteq \mathbb{N}^{n}$ is a fundamental semilinear set such that:

$$
\Psi(L)=\bigcup_{i=1}^{m} S_{i} \quad \text { and } \quad\left(\bigcup_{i=1}^{m} \operatorname{conv}\left(S_{i}\right)\right) \cap U=\Psi(L) .
$$

If $\operatorname{rank}(\Psi(L))=\operatorname{rank}\left(\overline{\operatorname{conv}\left(S_{1}\right)} \cap \ldots \cap \overline{\operatorname{conv}\left(S_{m}\right)}\right)=n$, then the language \bar{D}_{1}^{*} is in $\mathscr{T}(L)$.

Proof: There must be S_{i}, say S_{1}, such that:

$$
S_{1}=\left\{u_{0}+k_{1} u_{1}+\ldots+k_{n} u_{n} \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\}
$$

where $u_{j} \in \mathbb{N}^{n}, j=0,1, \ldots, n$, with u_{1}, \ldots, u_{n} linearly independent. Denote $T=\operatorname{conv}\left(S_{1}\right) \cap \ldots \cap \operatorname{conv}\left(S_{m}\right)$. By the previous lemma, there exists:

$$
T_{1}=\left\{v_{0}+k_{1} v_{1}+\ldots+k_{n} v_{n} \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\}
$$

where $v_{i} \in \mathbb{N}^{n}, i=0,1, \ldots, n$, with v_{1}, \ldots, v_{n} linearly independent such that $\operatorname{conv}\left(T_{1}\right) \subseteq T$. Naturally $\operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(T_{1}\right)=\varnothing$. Now there must be $U_{1} \subseteq U$ such that:

$$
U_{1}=\left\{w_{0}+k_{1} s_{1} e_{1}+\ldots+k_{n} s_{n} e_{n} \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\}
$$

for some $w_{0} \in \mathbb{N}^{n}, s_{j} \in \mathbb{N}_{+}, j=1, \ldots, n$. Denote:

$$
\begin{array}{ll}
s=s_{1} \ldots s_{n}, \quad u=u_{1}+\ldots+u_{n}, \quad v=v_{1}+\ldots+v_{n}, \\
& w_{1}=s u, \quad w_{2}=s v .
\end{array}
$$

Obviously the set $U_{2}=\left\{w_{0}+k_{1} w_{1}+k_{2} w_{2} \mid k_{1}, k_{2} \in \mathbb{N}\right\}$ is a subset of $U_{1} \subseteq U$. Now $w_{2}=\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}$ for some $\alpha_{i} \in Q, i=1, \ldots, n$. Since $\operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(T_{1}\right)=\varnothing$, there is at least one $j \in\{1, \ldots, n\}$ such that $\alpha_{j}<0$. Let:

$$
\alpha=\max \left\{\left|\alpha_{j}\right| \mid \alpha_{j}<0, j=1, \ldots, n\right\}
$$

Let $m_{1} \in \mathbb{N}$ be the smallest integer such that $w_{0}+m_{1} w_{1} \in \operatorname{conv}\left(S_{1}\right)$. Such a number m_{1} clearly exists. Consider the statemant:

$$
\begin{equation*}
w_{0}+k_{1} w_{1}+k_{2} w_{2} \in \operatorname{conv}\left(S_{1}\right), \quad k_{1}, k_{2} \in \mathbb{N} \tag{1}
\end{equation*}
$$

Then (1) is equivalent with:

$$
\begin{equation*}
w_{0}+m_{1} w_{1}+\left(k_{1}-m_{1}\right) w_{1}+k_{2} w_{2} \in \operatorname{conv}\left(S_{1}\right), \quad k_{1}, k_{2} \in \mathbb{N} \tag{2}
\end{equation*}
$$

Informatique théorique et Applications/Theoretical Informatics and Applications

If $(s / \alpha)\left(k_{1}-m_{1}\right)>k_{2}$, then (1) is true. Now $(s / \alpha)\left(k_{1}-m_{1}\right)>\mathrm{k}_{2}$ is equivalent with $k_{1}>(\alpha / s) k_{2}+m_{1}$. It is obvious that there are arbitrarily large $k_{1}, k_{2} \in \mathbb{N}$ such that $k_{1}>(\alpha / s) k_{2}+m_{1}$ and k_{1} / k_{2} is arbitrarily near to α / s.

The element w_{1} can be written in the form $w_{1}=\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}$ for some $\beta_{i} \in Q, i=1, \ldots, n$. Since $\operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(T_{1}\right)=\varnothing$, there is at least one $j \in\{1, \ldots, n\}$ such that $\beta_{j}<0$. Define:

$$
\beta=\max \left\{\left|\beta_{j}\right| \mid \beta_{j}<0, j=1, \ldots, n\right\} .
$$

Let $m_{2} \in \mathbb{N}$ be the smallest integer such that $w_{0}+m_{2} w_{2} \in \operatorname{conv}\left(T_{1}\right)$. Consider the statement:

$$
\begin{equation*}
w_{0}+k_{1} w_{1}+k_{2} w_{2} \in \operatorname{conv}\left(T_{1}\right), \quad k_{1}, k_{2} \in \mathbb{N} \tag{3}
\end{equation*}
$$

Now (3) is equivalent with:

$$
\begin{equation*}
w_{0}+m_{2} w_{2}+k_{1} w_{1}+\left(k_{2}-m_{2}\right) w_{2} \in \operatorname{conv}\left(T_{1}\right), \quad k_{1}, k_{2} \in \mathbb{N}, \tag{4}
\end{equation*}
$$

which is true if $k_{1}<(s / \beta) k_{2}-(s / \beta) m_{2}$.
Let $x_{i} \in\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ be words such that $\Psi\left(x_{i}\right)=w_{i}, i=0,1,2$. It should be clear that the language $x_{0}^{-1} L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ is a commutative SLIPlanguage in $\mathscr{T}(L)$. Let $h:\left\{a_{1}, a_{2}\right\}^{*} \rightarrow\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ be a morphism defined by $h\left(a_{i}\right)=x_{i}, i=1,2$. Then $L_{1}=h^{-1}\left(x_{0}^{-1} L\right) \subseteq\left\{a_{1}, a_{2}\right\}^{*}$ is a commutative SLIP-language by the results in [7]. Obviously $L_{1} \in \mathscr{T}(L)$. By the results of [4] and [9] it suffices to show that L_{1} is nonregular.

Assume that $x \in L_{1}$. Then $x \in c\left(a_{1}^{p} a_{2}^{q}\right) \subseteq h^{-1}\left(x_{0}^{-1} L\right)$ for some $p, q \in \mathbb{N}$. Then $h\left(a_{1}^{p} a_{2}^{q}\right) \in x_{0}^{-1} L$ which implies that $x_{0} h\left(a_{1}^{p} a_{2}^{q}\right)=x_{0} x_{1}^{p} x_{2}^{q} \in L$. Now:

$$
\Psi\left(x_{0} x_{1}^{p} x_{2}^{q}\right)=w_{0}+p w_{1}+q w_{2} \in \Psi(L) .
$$

Since $\quad\left(\operatorname{conv}\left(S_{1}\right) \cup \ldots \cup \operatorname{conv}\left(S_{m}\right)\right) \cap T=\varnothing$, we must have $p \geqq(s / \beta) q-(s / \beta) m_{2}$.

On the other hand we can find arbitrarily large $p^{\prime}, q^{\prime} \in \mathbb{N}$ such that p^{\prime} / q^{\prime} is arbitrarily near to α / s and

$$
w_{3}=w_{0}+p^{\prime} w_{1}+q^{\prime} w_{2} \in \operatorname{conv}\left(S_{1}\right) .
$$

Since $w_{3} \in U, w_{3} \in \Psi(L)$. Obviously $c\left(x_{1}^{p^{\prime}} x_{2}^{q^{\prime}}\right) \subseteq x_{0}^{-1} L$ and thus:

$$
c\left(a_{1}^{p^{\prime}} a_{2}^{q^{\prime}}\right) \cong L_{1}=h^{-1}\left(x_{0}^{-1} L\right) .
$$

Now, if L_{1} were regular, then we could find (by the pumping properties of regular languages), $\quad r_{j} \in \mathbb{N}, \quad j=1,2,3,4, \quad r_{2}, \quad r_{3} \neq 0, \quad$ such that $a_{1}^{r_{1}}\left(a_{1}^{r_{2}}\right)^{*}\left(a_{2}^{r_{3}}\right)^{*} a_{2}^{r_{4}} \subseteq L_{1}$. This contradicts the fact that $p \geqq(s / \beta) q-(s / \beta) m_{2}$ for each $a_{1}^{p} a_{2}^{q} \in L_{1}$.

A semilinear set $S \subseteq \mathbb{N}^{n}$ is unlimited if for each $m \in \mathbb{N}$ there exists $\left(m_{1}, \ldots, m_{n}\right) \in S$ such that $m_{j}>m, j=1, \ldots, n$.

Lemma 6: Assume $L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ is a commutative SLIP-language containing ε such that the rank of $S=\Psi(L)$ is $s, s<n$, and S is unlimited. Then $D_{1}^{*} \in \mathscr{T}(L)$.

Proof: Assume $S_{1}, \ldots, S_{m} \subseteq \mathbb{N}^{n}$ are proper linear sets such that $S=\bigcup_{i=1} S_{i}$ and:

$$
S_{i}=\left\{u_{i 0}+k_{1} u_{i 1}+\ldots+k_{r_{i}} u_{i r_{i}} \mid k_{j} \in \mathbb{N}, j=1, \ldots, r_{i}\right\}
$$

$u_{i_{j}} \in \mathbb{N}^{n}, j=0,1, \ldots, r_{i}$, with the vectors $u_{i 1}, \ldots, u_{i r_{i}}$ linearly independent, $r_{i} \leqq s, i=1, \ldots, m$. Since S is unlimited, there exists $q \in\{1, \ldots, m\}$ such that $u_{q 1}+\ldots+u_{q r_{q}} \in \mathbb{N}_{+}^{n}$. Choose q in such a way that $\mathscr{A}\left(S_{q}\right)$ is not a proper subset of $\mathscr{A}\left(S_{j}\right)$ for any $j \in\{1, \ldots, m\}$. Let K be the set of all $k \in\{1, \ldots, m\}$ such that either:
(i) $\mathscr{A}\left(S_{k}\right)$ is not a subset of $\mathscr{A}\left(S_{q}\right)$; or
(ii) $\mathscr{A}\left(S_{k}\right) \cong \mathscr{A}\left(S_{q}\right)$ and $u_{k 0} \notin u_{q 0}+\mathscr{A}\left(S_{q}\right)$.

Now there must be $w_{0} \in S_{q}$ such that $w_{0} \notin u_{k 0}+\mathscr{A}\left(S_{k}\right)$ for any $k \in K$. For S_{k} satisfying (ii) this is certainly true since $\left(u_{q 0}+\mathscr{A}\left(S_{q}\right)\right) \cap\left(u_{k 0}+\mathscr{A}\left(S_{k}\right)\right)=\varnothing$. Let $K^{\prime} \subseteq K$ be the set of all k such that S_{k} satisfies (i). Assume for each $w_{0} \in S_{q}, \quad w_{0} \in u_{k 0}+\mathscr{A}\left(S_{k}\right)$ for some $k \in K^{\prime}$. Then $\mathscr{A}\left(S_{q}\right) \subseteq \bigcup_{k \in K^{\prime}} \mathscr{A}\left(S_{k}\right)$ and $\mathscr{A}\left(S_{q}\right)=\bigcup_{k \in K^{\prime}}\left(\mathscr{A}\left(S_{k}\right) \cap \mathscr{A}\left(S_{q}\right)\right)$. The elementary results of linear algebra then imply that there exists $k^{\prime} \in K^{\prime}$ such that:

$$
\mathscr{A}\left(S_{q}\right)=\mathscr{A}\left(S_{k^{\prime}}\right) \cap \mathscr{A}\left(S_{q}\right) \subseteq \mathscr{A}\left(S_{k^{\prime}}\right)
$$

Then $\mathscr{A}\left(S_{q}\right) \nsubseteq \mathscr{A}\left(S_{k^{\prime}}\right)$ contradicting the choice of q.
Let $k \in K$ and $t \in \mathbb{N}_{+}$be fixed. Consider the equation:

$$
\begin{equation*}
w_{0}+\alpha_{1} t e_{1}+\ldots+\alpha_{n} t e_{n}=u_{k 0}+\beta_{1} u_{k 1}+\ldots+\beta_{r_{k}} u_{k r_{k}} \tag{1}
\end{equation*}
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{N}, i=1, \ldots, n, j=1, \ldots, r_{k}$. The equation (1) is equivalent with:

$$
\begin{equation*}
u_{k 0}-w_{0}+\beta_{1} u_{k 1}+\ldots+\beta_{r_{k}} u_{k r_{k}}=\left(\alpha_{1} t, \ldots, \alpha_{n} t\right) \tag{2}
\end{equation*}
$$

Since $w_{0} \notin u_{k 0}+\mathscr{A}\left(S_{k}\right)$, the elements $u_{k 0}-w_{0}, u_{k 1}, \ldots, u_{k r_{k}}$ are linearly independent. Denote $r=r_{k}$ and:

$$
\rho_{0}=\left(\rho_{01}, \ldots, \rho_{0 n}\right)=u_{k 0}-w_{0}, \quad \rho_{j}=\left(\rho_{j 1}, \ldots, \rho_{j n}\right)=u_{k j}, j=1, \ldots, r
$$

Then (2) is equivalent with:

$$
\begin{equation*}
\rho_{0}+\beta_{1} \rho_{1}+\ldots+\beta_{r} \rho_{r}=\left(\alpha_{1} t, \ldots, \alpha_{n} t\right) \tag{3}
\end{equation*}
$$

which is equivalent with:

$$
\left\{\begin{array}{c}
\rho_{01}+\beta_{1} \rho_{11}+\ldots+\beta_{r} \rho_{r 1}=\alpha_{1} t \tag{4}\\
\ldots, \\
\rho_{0 n}+\beta_{1} \rho_{1 n}+\ldots+\beta_{r} \rho_{r n}=\alpha_{n} t
\end{array}\right.
$$

$\alpha_{i}, \beta_{j} \in \mathbb{N}, i=1, \ldots, n, j=1, \ldots, r$. Since the elements $\rho_{0}, \ldots, \rho_{r}$ are linearly independent, there are exactly $r+1$ linearly independent elements in ($\left.\rho_{01}, \ldots, \rho_{r 1}\right), \ldots,\left(\rho_{0 n}, \ldots, \rho_{r n}\right)$. Without loss of generality we may assume that the elements:

$$
\xi_{1}=\left(\rho_{01}, \ldots, \rho_{r 1}\right), \ldots, \xi_{r+1}=\left(\rho_{0, r+1}, \ldots, \rho_{r, r+1}\right)
$$

are such for which $d_{0}=\left|\operatorname{det}\left(\xi_{1}^{T}, \ldots, \xi_{r+1}^{T}\right)\right|>0$ is the greatest (x^{T} meaning the vector transpose of x). Then (4) implies a new system of equations:

$$
\left\{\begin{array}{c}
\rho_{01}+\beta_{1} \rho_{11}+\ldots+\beta_{r} \rho_{r 1}=\alpha_{1} t \tag{5}\\
\ldots \\
\rho_{0, r+1}+\beta_{1} \rho_{1, r+1}+\ldots+\beta_{r} \rho_{r, r+1}=\alpha_{r+1} t
\end{array}\right.
$$

Now (5) implies that:
$1=\frac{\left|\begin{array}{cccc}\alpha_{1} t & \rho_{11} & \ldots & \rho_{r 1} \\ \ldots \ldots & \ldots \ldots . & \ldots & \ldots \ldots \\ \alpha_{r+1} t & \rho_{1, r+1} & \ldots & \rho_{r, r+1}\end{array}\right|}{\left|\begin{array}{cccc}\rho_{01} & \rho_{11} & \ldots & \rho_{r 1} \\ \ldots \ldots & \ldots \ldots & \ldots & \ldots \ldots \\ \rho_{0, r+1} & \rho_{1, r+1} & \ldots & \rho_{r, r+1}\end{array}\right|}$
If we choose $t>d_{0}$, we see that (1) is not true for any $\alpha_{i}, \beta_{j} \in \mathbb{N}, i=1, \ldots, n$, $j=1, \ldots, r_{k}$. Thus there exists $t_{0} \in \mathbb{N}$ such that if $t \geqq t_{0}$, then for any $k \in K$, the inequality:

$$
w_{0}+\alpha_{1} t e_{1}+\ldots+\alpha_{n} t e_{n} \neq u_{k 0}+\beta_{1} u_{k 1}+\ldots+\beta_{r_{k}} u_{k r_{k}}
$$

Remember that $r_{q} \leqq s<n$ and $u_{q 1}+\ldots+u_{q r_{q}} \in \mathbb{N}_{+}^{n}$. Since $r_{q}<n$, there must be $d \in\{1, \ldots, n\}$ such that $e_{d} \notin \mathscr{A}\left(S_{q}\right)$. Let $x_{i} \in\left\{a_{1}, \ldots, a_{n}\right\}^{*}, i=0,1,2$, be such that $\Psi\left(x_{0}\right)=w_{0}, \Psi\left(x_{1}\right)=t_{0}\left(u_{q 1}+\ldots+u_{q r_{q}}-e_{d}\right)$ and $\Psi\left(x_{2}\right)=t_{0} e_{d}$. Of course $x_{2}=a_{d}^{t_{0}}$. Let $h:\left\{a_{1}, a_{2}\right\}^{*} \rightarrow\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ be the morphism defined by $h\left(a_{1}\right)=x_{1}$ and $h\left(a_{2}\right)=x_{2}$. Obviously $x_{0}^{-1} L$ is a commutative language in $\mathscr{T}(L)$. We finish the proof by showing that $D_{1}^{*}=h^{-1}\left(x_{0}^{-1} L\right)$.

Assume $x \in D_{1}^{*}$. Then $x \in c\left(a_{1}^{i} a_{2}^{i}\right)$ for some $i \in \mathbb{N}$. Since $h^{-1}\left(x_{0}^{-1} L\right)$ is commutative, it suffices to show that $a_{1}^{i} a_{2}^{i} \in h^{-1}\left(x_{0}^{-1} L\right)$. Now $x_{1}^{i} x_{2}^{i} \in x_{0}^{-1} L$ since:

$$
\Psi\left(x_{1}^{i} x_{2}^{i}\right)=i t_{0}\left(u_{q 1}+\ldots+u_{q r_{q}}-e_{d}\right)+i t_{0} e_{d}=i t_{0} u_{q 1}+\ldots+i t_{0} u_{q r_{q}} \in \Psi\left(x_{0}^{-1} L\right)
$$

On the other hand, the word $a_{1}^{i} a_{2}^{i} \in h^{-1}\left(x_{1}^{i} x_{2}^{i}\right)$.
Let $x \in h^{-1}\left(x_{0}^{-1} L\right)$. Then $x \in c\left(a_{1}^{i} a_{2}^{j}\right) \subseteq h^{-1}\left(x_{0}^{-1} L\right)$ for some $i, j \in \mathbb{N}$. Since D_{1}^{*} is commutative, it suffices to show that $i=j$. Now $a_{1}^{i} a_{2}^{j} \in h^{-1}\left(x_{0}^{-1} L\right)$ which implies that $h\left(a_{1}^{i} a_{2}^{j}\right) \in x_{0}^{-1} L$ and $x_{0} h\left(a^{i} a_{2}^{j}\right)=x_{0} x_{1}^{i} x_{2}^{j} \in L$. Thus:
$\Psi\left(x_{0} x_{1}^{i} x_{2}^{j}\right)=w_{0}+i t_{0}\left(u_{q 1}+\ldots+u_{q r_{q}}-e_{d}\right)+j t_{0} e_{d}=w_{0}+t_{0} \alpha_{1} e_{1}+\ldots+t_{0} \alpha_{n} e_{n}$, for some $\alpha_{j} \in \mathbb{N}, j=1, \ldots, n$. By the choice of $t_{0}, \Psi\left(x_{0} x^{i} x_{2}^{j}\right)$ cannot be in S_{k} for any $k \in K$. For each $l \in\{1, \ldots, m\}$ such that $l \notin K$, $u_{l 0}+\mathscr{A}\left(S_{l}\right) \cong u_{q 0}+\mathscr{A}\left(S_{q}\right)$. This implies that:

$$
w_{0}+i t_{0}\left(u_{q 1}+\ldots+u_{q r_{q}}\right)+j t_{0} e_{d}=u_{q 0}+\beta_{1} u_{q 1}+\ldots+\beta_{r_{q}} u_{q r_{q}}
$$

for some $\beta_{j^{\prime}} \in Q, j^{\prime}=1, \ldots, r_{q}$. Since $w_{0} \in u_{q 0}+\mathscr{A}\left(S_{q}\right)$, we have:

$$
i t_{0}\left(u_{q 1}+\ldots+u_{q r_{q}}\right)-j t_{0} e_{d} \in \mathscr{A}\left(S_{q}\right) .
$$

Then $i=j$ since otherwise $e_{d} \in \mathscr{A}\left(S_{q}\right)$, which is a contradiction. The proof is now complete.

Lemma 7: Let $L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ be a homogenous language containing ε. Assume $T_{1}, \ldots, T_{p} \subseteq \mathbb{N}^{n}$ are proper linear sets and $U \subseteq \mathbb{N}^{n}$ is a fundamental semilinear set such that $\Psi(L)=\bigcup_{i=1}^{p} T_{i}$ and $\left(\bigcup_{i=1}^{p} \operatorname{conv}\left(T_{i}\right)\right) \cap U=\Psi(L)$. If the rank of the set $\left.S=\left(\bigcap_{i=1}^{p} \overline{\operatorname{conv}\left(T_{i}\right)}\right)\right) \cap U$ is smaller than n, and S is unlimited, then \bar{D}_{1}^{*} is in $\mathscr{T}(L)$.

Proof: Assume $\operatorname{rank}(S)=s, s<n$. The beginning of the proof is an exact copy of the proof for Lemma 6 . Assume $S_{1}, \ldots, S_{m} \subseteq \mathbb{N}^{n}$ are proper linear

[^1]$\begin{aligned} \text { sets such that } S & =\bigcup_{i=1}^{m} S_{i} \text { and for each } i \in\{1, \ldots, m\}: \\$$$
S_{i}
$$$& =\left\{u_{i 0}+k_{1} u_{i 1}+\ldots+k_{r_{i}} u_{i r_{i}} \mid k_{j} \in \mathbb{N}, j=1, \ldots, r_{i}\right\},\end{aligned}$

where $u_{i j} \in \mathbb{N}^{n}, j=0,1, \ldots, r_{i}$, and the elements $u_{i 1}, \ldots, u_{i r_{i}}$ are linearly independent. Let $q \in\{1, \ldots, m\}, K \subseteq\{1, \ldots, m\}$ and $w_{0} \in S_{q}$ be as in the proof of Lemma 6. By an analogous reasoning as in the proof of Lemma 6 we can find t_{0} with the following property. If $t \geqq t_{0}$, then for each $k \in K$, the inequality:

$$
\begin{equation*}
w_{0}+\alpha_{1} t e_{1}+\ldots+\alpha_{n} t e_{n} \neq u_{k 0}+\beta_{1} u_{k 1}+\ldots+\beta_{r_{k}} u_{k r_{k}} \tag{1}
\end{equation*}
$$

holds for all $\alpha_{i}, \beta_{j} \in \mathbb{N}, i=1, \ldots, n, j=1, \ldots, r_{k}$. Since U is fundamental, there exists $U_{1} \subseteq U$ such that w_{0} is in U_{1} and:

$$
U_{1}=\left\{v_{0}+k_{1}\left(m_{1}, 0, \ldots, 0\right)+\ldots+k_{n}\left(\dot{0}, \ldots, 0, m_{n}\right) \mid k_{j} \in \mathbb{N}, j=1, \ldots, n\right\}
$$

for some $v_{0} \in \mathbb{N}^{n}, m_{j} \in \mathbb{N}_{+}, j=1, \ldots, n$. Let $t^{\prime}=t_{0} m_{1} \ldots m_{n}$.
Now $r_{q} \leqq s<n$ and $u_{q 1}+\ldots+u_{q r_{q}} \in \mathbb{N}_{+}^{n}$. Since $r_{q}<n$, there must be $d \in\{1, \ldots, n\}$ such that $e_{d} \notin \mathscr{A}\left(S_{q}\right)$. Let $x_{i} \in\left\{a_{1}, \ldots, a_{n}\right\}^{*}, i=0,1,2$, be such that $\Psi\left(x_{0}\right)=w_{0}, \Psi\left(x_{1}\right)=t^{\prime}\left(u_{q 1}+\ldots+u_{q r_{q}}-e_{d}\right)$ and $\Psi\left(x_{2}\right)=t^{\prime} e_{d}$. Obviously $x_{2}=a_{d}^{t^{\prime}}$. Let $h:\left\{a_{1}, a_{2}\right\}^{*} \rightarrow\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ be the morphism defined by $h\left(a_{1}\right)=x_{1}$ and $h\left(a_{2}\right)=x_{2}$. Clearly $x_{0}^{-1} L \subseteq\left\{a_{1}, \ldots, a_{n}\right\}^{*}$ is a commutative language in $\mathscr{T}(L)$. We show that $\bar{D}_{1}^{*}=h^{-1}\left(x_{0}^{-1} L\right)$.

Assume $a_{1}^{i} a_{2}^{i} \in h^{-1}\left(x_{0}^{-1} L\right)$ for some $i \in \mathbb{N}$. Then $h\left(a_{1}^{i} a_{2}^{i}\right) \in x_{0}^{-1} L$ which implies that $x_{0} h\left(a_{1}^{i} a_{2}^{i}\right)=x_{0} x_{1}^{i} x_{2}^{i} \in L$. This means that:

$$
\Psi\left(x_{0} x_{1}^{i} x_{2}^{i}\right)=w_{0}+i t^{\prime}\left(u_{q 1}+\ldots+u_{q r_{q}}-e_{d}\right)+i t^{\prime} e_{d}=w_{0}+i t^{\prime}\left(u_{q 1}+\ldots+u_{q r_{q}}\right)
$$

is in $\Psi(L)$, a contradiction, since the above element is clearly in $S_{q} \subseteq \overline{\Psi(L)}$. Since $h^{-1}\left(x_{0}^{-1} L\right)$ is commutative, we may deduce that $h^{-1}\left(x_{0}^{-1} L\right) \subseteq \bar{D}_{1}^{*}$.

Let $x \in \bar{D}_{1}^{*}$. Then $x \in c\left(a_{1}^{i} a_{2}^{j}\right)$ for some $i, j \in \mathbb{N}, i \neq j$. To prove that $x \in h^{-1}\left(x_{0}^{-1} L\right)$, it suffices to show that $a_{1}^{i} a_{2}^{j} \in h^{-1}\left(x_{0}^{-1} L\right)$. Consider the element:

$$
w_{1}=w_{0}+i t^{\prime}\left(u_{q 1}+\ldots+u_{q r_{q}}-e_{d}\right)+j t^{\prime} e_{d} .
$$

Let $w_{2}=w_{0}+i t^{\prime \prime}\left(u_{q 1}+\ldots+u_{q r_{q}}\right)$. Now $w_{1} \notin w_{0}+\mathscr{A}\left(S_{q}\right)$, since otherwise $w_{1}-w_{2}=(i-j) e_{d} \in \mathscr{A}\left(S_{q}\right)$ and (since $\left.i \neq j\right) e_{d} \in \mathscr{A}\left(S_{q}\right)$, a contradiction. By the
choice of $t^{\prime}, w_{1} \notin S_{k}$ for any $k \in K$. This means that:

$$
w_{1} \notin S=\left(\bigcap_{i=1}^{p} \overline{\operatorname{conv}\left(T_{i}\right)}\right) \cap U .
$$

Since $w_{1} \in U_{1} \subseteq U, \quad w_{1}$ must be in $\left(\bigcup_{i=1}^{p} \operatorname{conv}\left(T_{i}\right)\right) \cap U=\Psi(L)$. Now $\Psi\left(x_{0} x_{1}^{i} x_{2}^{j}\right)=w_{1}$. Since L is commutative, the word $x_{0} x_{1}^{i} x_{2}^{j} \in L$, so $x_{1}^{i} x_{2}^{j} \in x_{0}^{-1} L$. Obviously $a_{1}^{i} a_{2}^{j} \in h^{-1}\left(x_{0}^{-1} L\right)$. We deduce that \bar{D}_{1}^{*} is a subset of $h^{-1}\left(x_{0}^{-1} L\right)$.

We are now able to give a proof to Conjecture 1.
Theorem 1: Let $L \in c(\mathscr{R})$ be nonregular. Then \bar{D}_{1}^{*} is in $\hat{\mathscr{T}}(L)$.
Proof: Without loss of generality we may assume that $L \subseteq\left\{a_{1}, \ldots, a_{k}\right\}^{*}$, $k \in \mathbb{N}$. We first note that $k \geqq 2$ since each SLIP-language over one symbol is regular. The proof is by induction on k.

Using the results of Berstel and Boasson ([2], [4]) Latteux proves in [9] that the theorem is true when $k=2$.

Assume that the theorem is true for each $k=2,3, \ldots, n-1, n>2$.
Consider the case $k=n$. By Lemma 3 we may assume that L is homogenous. Since $\hat{\mathscr{T}}(L)=\hat{\mathscr{T}}(L \cup\{\varepsilon\})$, we may also assume that L contains ε. Let S_{1}, \ldots, S_{m} be linear sets and U a fundamental semilinear set such that:

$$
\Psi(L)=\bigcup_{i=1}^{m} S_{i} \quad \text { and } \quad\left(\bigcup_{i=1}^{m} \operatorname{conv}\left(S_{i}\right)\right) \cap U=\Psi(L) .
$$

Let $T=\bigcap_{i=1}^{m} \overline{\operatorname{conv}\left(S_{i}\right)}$. If If $\operatorname{rank}(\Psi(L))=\operatorname{rank}(T)=n$, then $\bar{D}_{1}^{*} \in \hat{\mathscr{T}}(L)$ by

Lemma 5.

Assume first that $\operatorname{rank}(\Psi(L))=s, s<n$. If $\Psi(L)$ is unlimited, then, by Lemma $6, D_{1}^{*} \in \mathscr{\mathscr { T }}(L)$ which implies that $\bar{D}_{1}^{*} \in \mathscr{\mathscr { T }}(L)$. So assume that $\Psi(L)$ is not unlimited. Then for each $i \in\{1, \ldots, m\}$ there exists $j_{i} \in\{1, \ldots, n\}$ such that:

$$
S_{i} \subseteq w_{i}+\mathbb{N}^{j_{i}-1} \times\{0\} \times \mathbb{N}^{n-j_{i}}
$$

for some $w_{i} \in \mathbb{N}^{n}$. Let $x_{1} \in \Psi^{-1}\left(w_{i}\right)$ and $L_{i}=\Psi^{-1}\left(S_{i}\right)$. Then:

$$
L=\bigcup_{i=1}^{m} L_{i} \quad \text { and } \quad L_{i} \subseteq c\left(x_{i} a_{1}^{*} \ldots a_{j_{i}-1}^{*} a_{j_{i}+1}^{*} \ldots a_{n}^{*}\right)
$$

Denote $R_{i}=c\left(x_{i} a_{1}^{*} \ldots a_{j_{i}-1}^{*} a_{j_{i}+1}^{*} \ldots a_{n}^{*}\right), i=1, \ldots, m$. Obviously, for each i, R_{i} is regular. Since $L \subseteq \bigcup_{i=1} R_{i}$ and L is nonregular, there must be $q \in\{1, \ldots, m\}$ such that $L \cap R_{q}$ is nonregular. Now:

$$
L \cap R_{q} \subseteq c\left(x_{q} a_{1}^{*} \ldots a_{j_{q}-1}^{*} a_{j_{q}+1}^{*} \ldots a_{n}^{*}\right)
$$

The language $L \cap R_{q}$ above is obviously commutative. Then $L^{\prime}=$ $x_{q}^{-1}\left(L \cap R_{q}\right)$ is a nonregular commutative SLIP-language in $\hat{\mathscr{T}}(L)$. On the other hand $L^{\prime} \subseteq\left\{a_{1}, \ldots, a_{j_{q}-1}, a_{j_{q}+1}, \ldots, a_{n}\right\}^{*}$. By induction, \bar{D}_{1}^{*} is in $\hat{\mathscr{T}}\left(L^{\prime}\right) \subseteq \hat{\mathscr{T}}(L)$.

Let now $\operatorname{rank}(T)=s^{\prime}, s^{\prime}<n$. Let L_{i} be as above and $R=\Psi^{-1}(U)$. Obviously $R \in c(\mathscr{R})$ is regular. Since:

$$
\Psi(L)=\left(\bigcup_{i=1}^{m} \operatorname{conv}\left(S_{i}\right)\right) \cap U
$$

and L is commutative, we have $L=\left(\bigcup_{i=1}^{m} \operatorname{conv}\left(L_{i}\right)\right) \cap R$. Since L is nonregular, the language $\left(\bigcap_{i=1}^{m} \overline{\operatorname{conv}\left(L_{i}\right)}\right) \cap R$ is nonregular. Now:

$$
\Psi\left(\left(\bigcap_{i=1}^{m} \overline{\operatorname{conv}\left(L_{i}\right)}\right) \cap R\right)=\left(\bigcap_{i=1}^{m} \overline{\operatorname{conv}\left(S_{i}\right)}\right) \cap U=T \cap U
$$

Since $T \cap U \subseteq T$, $\operatorname{rank}(T \cap U) \leqq s^{\prime}$. If $T \cap U$ is unlimited, the theorem is true by Lemma 7. Assume $T \cap U$ is not unlimited. Let $T_{1}, \ldots, T_{r} \subseteq \mathbb{N}^{n}$ be proper linear sets such that $T \cap U=\bigcup_{i=1}^{r} T_{i}$. Then for each $i \in\{1, \ldots, r\}$ there exists $j_{i} \in\{1, \ldots, n\}$ such that:

$$
T_{i} \subseteq v_{i}+\mathbb{N}^{j_{i}-1} \times\{0\} \times \mathbb{N}^{n-j_{i}}
$$

for some $v_{i} \in \mathbb{N}^{n}$. Let $y_{i} \in \Psi^{-1}\left(v_{i}\right)$. Then:

$$
\Psi^{-1}\left(T_{i}\right) \subseteq c\left(y_{i} a_{1}^{*} \ldots a_{j_{i}-1}^{*} a_{j_{i}+1}^{*} \ldots a_{n}^{*}\right)
$$

Denote $R_{i}^{\prime}=c\left(y_{i} a_{1}^{*} \ldots a_{j_{i}-1}^{*} a_{j_{i}+1}^{*} \ldots a_{n}^{*}\right)$. Now:

$$
\left(\bigcap_{i=1}^{m} \overline{\operatorname{conv}\left(L_{i}\right)}\right) \cap R \subseteq \bigcup_{i=1}^{m} R_{i}^{\prime}
$$

Since $\left(\bigcap_{i=1}^{m} \overline{\operatorname{conv}\left(L_{i}\right)}\right) \cap R$ is nonregular, there must be $t \in\{1, \ldots, r\}$ such that $\left(\bigcap_{i=1}^{m} \overline{\operatorname{conv}\left(L_{i}\right)}\right) \cap R \cap R_{t}$ is nonregular. This implies that the language $L \cap R_{t}=\left(\bigcup_{i=1}^{m} \operatorname{conv}\left(L_{i}\right)\right) \cap R \cap R_{t}$ is nonregular (and commutative). Then:

$$
L \cap R_{t} \subseteq c\left(y_{t} a_{1}^{*} \ldots a_{j_{t}-1}^{*} a_{j_{t}+1}^{*} \ldots a_{n}^{*}\right)
$$

It is easy to see that the language $L^{\prime \prime}=y^{-1}\left(L \cap R_{t}\right)$ is a nonregular commutative SLIP-language in $\mathscr{\mathscr { T }}(L)$ and $L^{\prime \prime} \subseteq\left\{a_{1}, \ldots, a_{j_{t}-1}, a_{j_{t}+1}, \ldots, a_{n}\right\}^{*}$. By induction, $\bar{D}_{1}^{*} \in \hat{\mathscr{T}}\left(L^{\prime \prime}\right) \subseteq \hat{\mathscr{T}}(L) . \square$

Corollary: Let $L \in c(\mathscr{R})$ be nonregular. Then \bar{D}_{1}^{*} is in $\mathscr{T}(L)$.
Proof: By the results of Latteux [9], $\hat{\mathscr{T}}(L)=\mathscr{T}(L \cup\{\varepsilon\})$. If $\varepsilon \in L$, then the corollary is clearly true. Assume L does not contain ε. The fact that $\mathscr{T}\left(L^{\prime} \cup\{\varepsilon\}\right)=\left\{L^{\prime \prime}, L^{\prime \prime} \cup\{\varepsilon\} \mid L^{\prime \prime} \in \mathscr{T}\left(L^{\prime}\right)\right\}$ for each ε-free language L^{\prime} then implies that $\bar{D}_{1}^{*} \in \mathscr{T}(L)$.

Note: Using the techniques of the previous corollary it is easy to see that the assumption that L contains ε in Lemma 5 and Lemma 7 can be removed.

The family $Q R$ of quasirational languages is the substitution closure of linear languages. The family $Q R$ is also called "derivation bounded languages" and "standard matching choice languages". Let $L \in Q R$ be commutative. Since L is a context-free language, $L \in c(\mathscr{R})$. Latteux and Leguy prove in [11] that \bar{D}_{1}^{*} is not in $Q R$. By the previous theorem, L must be regular. We can thus state:

Theorem 2: Every commutative quasirational language is regular.

ACKNOWLEDGMENTS

The author is very grateful to Professor Michel Latteux and Professor Paavo Turakainen for reading the manuscript and making valuable suggestions about the next.

REFERENCES

1. J.-M. Autebert, J. Beauquier, L. Boasson and M. Latteux, Very Small Families of Algebraic Nonrational Languages, in Formal Language Theory, Perspectives and Open Problems, R.V. Book, Ed., Academic Press, New York, 1980, pp. 89-107.
2. J. Berstel, Une hiérarchie des parties rationnelles de \mathbb{N}^{2}, Math. Systems Theory, Vol. 7, 1973, pp. 114-137.
3. J. Berstel, Transductions and Context-Free Languages, B.G. Teubner, Stuttgart, 1979.
4. J. Berstel and L. Boasson, Une suite décroissante de cônes rationnels, Lecture Notes Comput. Sc., Vol. 14, 1974, pp. 383-397.
5. A. Ehrenfeucht, D. Haussler and G. Rosenberg, Conditions enforcing regularity of context-free languages, Lecture Notes Comput. Sc., Vol. 140, 1982, pp. 187-191.
6. S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw Hill, New York, 1966.
7. M. Latteux, Cônes rationnels commutativement clos, R.A.I.R.O., Inform. Théor., Vol. 11, 1977, pp. 29-51.
8. M. Latteux, Langages commutatifs, Thèse Sc. Math., Lille-I, 1978.
9. M. Latteux, Cônes rationnels commutatifs, J. Comput. System Sc., Vol. 18, 1979, pp. 307-333.
10. M. Latteux, Langages commutatifs, transductions rationnelles et intersection, Publication de l'Équipe Lilloise d'Informatique Théorique, IT 34.81, 1981.
11. M. Latteux and J. Leguy, On the usefulness of bifaithful rational cônes, Publication de l'Equipe Lilloise d'Informatique Théorique, IT 40.82, 1982.

[^0]: (*) Received in November 1984, revised in October 1985.
 (${ }^{1}$) Department of Mathematics, University of Oulu, SF-90570 Oulu 57, Finland.

[^1]: Informatique théorique et Applications/Theoretical Informatics and Applications

