
INFORMATIQUE THÉORIQUE ET APPLICATIONS

P. GORALČÍK
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HOW MUCH SEMIGROUP STRUCTURE
IS NEEDED TO ENCODE GRAPHS? (*)

P. GORALCÏK (l ), A. GORALCÎKOVÂ (X),V. KOUBEK (X)

Communicated by J.-E. PIN

Abstract. - A class of finite semigroups is called a variety if it is closed under taking finite
cartesian products, subsemigroups, and homomorphic images. Ordered by inclusion, the varieties of
finite semigroups form a complete lattice. The problem of testing graph isomorphism can be
polynomially reduced to the problem of testing for isomorphism of two semigroups belonging to a
rather small variety\ e.g., the variety of ail finite semilattices. A variety "V is called critical if it is
isomorphism complete and every variety iV properly contained in y has a polynomial time
isomorphism algorithm. Under the conjecture that the finite groups do not form an isomorphism
complete variety, we enumerate ail critical varieties of finite semigroups and show that if a variety
y includes no critical one then it has a subexponential, Le., O (nci l09rt+c2) time isomorphism
algorithm.

Résumé. - On appelle ici variété une classe de semigroupes finis, fermée par produits finis,
sous-semigroupes et images homomorphes. Ordonnées par l'inclusion, les variétés de semigroupes
finis forment un treillis complet. Le test d'isomorphisme pour les graphes admet une réduction
polynômiale au test dHsomorphisme pour les semigroupes appartenant à des variétés relativement
petites, par exemple les demitreillis. Appelons critique une variété "K dont le problème d'isomor-
phisme est polynômialement équivalent au problème tfisomorphisme pour les graphes, tandis que
chaque sous-variété IV propre de Y admet un algorithme décidant Fisomorphisme dans un temps
polynomial. Sous l'hypothèse que le problème dyisomorphisme pour les groupes finis n'est pas
polynômialement equivalent à celui pour les graphes, nous donnons la liste de toutes les variétés
critiques de semigroupes finis. Quant aux variétés ne contenant aucune variété critique, nous
démontrons qu'elles admettent un algorithme d'isomorphisme sous-expenentiel, c'est-à-dire en temps

l + )

0. INTRODUCTION

Among various classes listed in [3] as isomorphism complete we find the
class of all finite semigroups. This means that every graph (V, E) can be
encoded, in time polynomial in | V |, as a semigroup S (V, E) uniquely determi-
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192 P. GORALCÎK, A. GORALCÏKOVÂ, V. KOUBEK

ning (F, E) up to isomorphism. The first such encoding due to Booth [2]
defines S(V, E) as a semigroup on VU EU {0} with the multplication

x if x=j>,
y if xeyeE,

xy=yx =
{x,y}if {x, y}eE,
0 otherwise

We see that S (F, E) is commutative and idempotent, that is to say, a
semilattice. Booth's encoding actually shows that the class of all finite semilat-
tices is isomorphism complete.

Let Sf dénote throughout the class of all finite semigroups. In a very
definite sensé, the semilattices in Sf represent a rather limited amount of
semigroup structure. Let us agrée that we represent the "structural richness"
of a class X^Sf by the class Str(^) g ^ of all semigroups constructible from
those in X in a finite séquence of steps, each step consisting in taking a finite
cartesian product, a subsemigroup, or a homomorphic image of either some
semigroups in X or those constructed on previous steps. Then we are in a
position to compare the "amounts of structure' carried by any two classes
X, ty of finite semigroups: X carries less or at most as much structure as <&
iff

For every X^S?, Str(^) is what S. Eilenberg [5] calls a variety: a class
i^^Sf closed under taking finite products, subsemigroups, and homomorphic
images.

Typical examples of varieties are the so called equational classes of finite
semigroups. To describe them, recall that a semigroup identity (or équation)
is any pair (u, v) of words in a free semigroup X+ over a fixed countably
inifnite set X of variables. A semigroup S is said to satisfy an identity (u, v),
written S¥u = v, if for every homomorphism ƒ: X+ -> S we have ƒ (u) = ƒ (v).
Likewise, given a set 2 of semigroup identities, a semigroup S satisfies S,

if Stu^v for every (u, i?)el. We dénote Mod(I) = {Se^|Sl=£}. Now,
a class X.^Sf is an equational class if there exists a set E of semigroup
identities such that ^ = Mod(S). The class of all finite semilattices is
equational, determined by the identities xj^joc, x2 = x. Not ail varieties are,
however, equational. For example, the variety ^ of all finite groups or the
variety Jf of ail finite nil semigroups (a semigroup is nil if it has a zero O
and for every xeS there exists an integer fc>0 such that xfc = 0) does not
satisfy any équation which is not satisfied by ail semigroups.
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HOW MUCH STRUCTURE IS NEEDED? 193

It is routine to see that varieties of finite semigroups form a closure System,
thus a complete lattice under inclusion: the intersection of an arbitrary
collection of varieties is again a variety, the infimum of the collection. Every
class yC^ïf is represented by the least variety Str(#*) including it, as an
element in the lattice of varieties, the latter playing a rôle of a structural
hierarchy.

Let us ask how far down along this structural hiearchy one can go without
loosing the isomorphism completeness. We may ask, in particular, if it is
possible to détermine the minimal isomorphism complete varieties, that is to
say, the minimum "amounts of semigroup structure" needed for a polynomial
time encoding of graphs into semigroups.

The complexity of graph isomorphism being unresolved, we are in a
position only to mark out, among semigroup varieties, the potential candida-
tes for minimal isomorphism complete varieties. Let us call a variety y
critical if iT itself is isomorphism complete but any variety HT properly
included in *f~ has a polynomial time isomorphism algorithm. This notion is
implicit in and has been taken by us from Kucera and Trnkovâ [6, 7] who
have described the critical members in the lattice of equational classes of
finite unary algebras.

We conjecture that the finite groups do not form an isomorphism complete
class, on the basis of a simple observation that the testing of isomorphism
for groups requires a subexponential time (since a group of order n has a set
of log n generators) while there is nothing yet to promise subexponential time
for graph isomorphism. Under this conjecture, we enumerate all critical
semigroup varieties and show that if a variety if includes no critical one
then the isomorphism testing in -V can be done by a subexponential, i. e.
O(nCllOfln + C2) time algorithm. The gap between the subexponential time and
the best known estimâtes for graph isomorphism due to Babai [1] leaves a
margin for the conjecture that our critical varieties coincide with the minimal
isomorphism complete varieties of finite semigroups.

The results of this paper were presented at the ICALF82.
We want to thank the référées for valùable remarks.

1. VARIETIES OF FINITE SEMIGROUPS

In this paper we deal only with finite semigroups. For the reader's conve-
nience, we start with a brief survey of some basic facts about finite semigroups
needed in the sequel. For proofs and additional information see [4],
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194 p. GORALCÏK, A. GORALCÏKOVÂ, V. KOUBEK

Let S be a finite semigroup. Given two subsets A9 £<=£, we dénote
AB = {seS\s = ab for some as A and beB}. In particular, S2 will always
dénote the subset S S of S and is not to be confused with the cartesian
product S x S. The index of an element se S is the smallest positive integer i
such that sl + k = sl, for some /c>0. The cyclic subsemigroup generated by se S
will be denoted by <s>. By E(S) = {eeS\e2 = e} we dénote the set of
idempotents of S. The cartesian product Xx Y of two sets is called a rectangu-
lar band whenever we think of it as a semigroup with the multiplication
(x, y)(u, v) = (x, v). An idempotent eeE(S) is an identity of S if es = se = s
for ail s e 5, a zero of S if es — se = e for ail se S, S is a group if it has a
unique idempotent leS and the idempotent is an identity of S. S is a nil
semigroup if it has a unique idempotent OeS and the idempotent is a zero
of S. A subset A^S is an idéal of S if both SA^A and AS^A. For a
non-void idéal A of S, the Rees quotient S/A is the quotient of S by the
congruence on S generated by A x A. The corresponding canonical homomor-
phism S -• S/,4 :s\-^s/A is injective on S —A and takes 4 to the zero of S/A,
The intersection of ail non-void ideals of S, called the kernel of S, will be
denoted by K(S). K(S) is a union of mutually isomorphic groups of the form
e Se, eeK(S)nE(S). We dénote by G (S) and call the Suskevic group of S
any group isomorphic with them. If G (S) is not trivial then the Su§kevic
groups contained in K(S) are the non-trivial blocks of a congruence on S,
which we call the Suskevic congruence and dénote by as. S is a simple
semigroup, or a kernel, if S = K(S), or equivalently, if SsS=S for every
se S.

Let be given a group G, two finite sets X and 7, and a mapping
P:YxX^> G:(y, x)\—>pyx. Defining a multiplication on GxXxY by (a, x,
y)(b, uy v) = (apyub, x, v) we get a simple semigroup, the so called Rees matrix
semigroup Jt{G^ X, 7, P) with the structure group G and the sandwich
matrix P. The quotient of M {G, X, 7, P) by the Suskevic congruence is
isomorphic to the rectangular band 1 x 7 . Every simple semigroup K is
isomorphic to some Rees matrix semigroup and the latter can be computed
from K in time polynomial in \K\. TWO Rees matrix semigrqups
^ ( G , X, 7, P) and Ji{G, X, Y, F), differing at most by their sandwich
matrices, are isomorphic iff there exist bijections f:X~+X, g:Y~+Y, map-
pings c:X-^G, r:Y^G, and an automorphism h:G-+G such that
Pg (y) ƒ (x) = r(y)h (Pyx)c (x)- We then say that the sandwich matrices P and P'
are equivalent. In case X~ { 1, . . ., m } and 7={1, . . ., n} we write
Ji{G, m, n, P) instead of M (G, X, Y, P) and present P as an array of n
rows and m columns.

We now focus our attention on semigroup varieties.

Informatique théorique et Applications/Theoretical Informaties and Applications



HOW MUCH STRUCTURE IS NEEDED? 195

The class 9* of all finite semigroups is our largest variety. Given â T £ ^
we can form every semigroup S in Str(^) in three steps:

STATEMENT 1 : We have SeStr(^), for f g ^ , iff 5 is a homomorphic
image of a subsemigroup Tof a product Sx x . . . xSm of a finite family
Sl9 . . ., Sm in S£9 written

S*^TCÏ S l X . . . xSm .

Proof. Straightforward.

We say that a semigroup S is separated by homomorphisms to SC^Sf if
for any two distinct x, y e S there exists a homomorphism h:S -> T with
Te ar and fc(x)*fc (y).

STATEMENT 2: Let &c:£f. If a semigroup S is separated by homomorphisms
to#* thenSeStr(#*).

Proof: The séparation can be done by a finite family of homomorphisms
h(: S -• Tfe#", f= 1, . . ., m. The family defines an embedding

For ^ g ^ , let y i r dénote the class of all semigroups S with S2

STATEMENT 3: For any variety T̂ *, / ^ is again a variety and 'V^

Proof Let S «- T ĉ  Sx x . . . x Sm for Sl9 . . ., S^^JV. Then

Given two varieties T̂ *, W^^f, we dénote by ^ ^ their intersection and
b y f v # their join, TT v iT = Str(ir (J ar).

STATEMENT 4: For any two varieties TT, ^ g ^ , we have Sei^ w W iii S
is a quotient of a subsemigroup Tof a product Fx W of a semigroup Fef"
and a semigroup We'W, S «-Tc; VxW.

Proof: By Statement 1.

A variety if is covered by a variety ^ if if^iV* and there is no variety
properly included between if and W, that is to say, for every variety °U, if
if<^m^iV then either ^ = ̂  or<% = iT. We then also say that nr is a cover
of TT. We call a i^-variety every subvariety of a variety if.

Let us now briefly describe some varieties closely related to our subject.
^" = Mod(x=j)} the trivial variety; it contains only one-point and empty

semigroups, it is the least variety, its covers are called atomic varieties;
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196 P. GORALCÎK, A. GORALCÏKOVÂ, V. KOUBEK

Jf, the variety of kernels or simple semigroups;
^, the variety of groups;
Jf, the variety of nil semigroups;
^ = Mod(x2 = x), the variety of bands or idempotent semigroups;
<$ = Mod(xy = yx), the variety of commutative semigroups;
<^? = Mod(x2 = x, xy^yx), the variety of commutative bands or semilatti-

ces;
eSf = Mod(x,y = x), the variety of left zero semigroups; it is atomic;
^ = Mod(xy=jO, the variety of right zero semigroups; it is atomic;
££ v ^ , the variety of rectangular bands;
^ v $£, the variety of left groups;
^ v M, the variety of right groups;
^ v if v 01, the variety of rectangular groups;
J= Mod(xjy = z£)> the inflationary variety; it is atomic;
J v <£ v ^, the variety of inflations of left groups;
J v M v <&9 the variety of inflations of right groups.
For every prime p9 let Cp dénote a cyclic group of order p. Let 1 dénote

the identity of Cp, let aeCp be an arbitrary element distinct from 1, and let

,2,2,

Let M dénote the semigroup given by the multiplication table
a b c 0

0 c 0 0
c 0 0 0
0 0 0 0
0 0 0 0

, the variety of abelian groups of exponent p;

. (Note that J? = Mod(xy=yx, xyz = x2 = x2u).)

STATEMENT 5: < ^ = Str(£>), where Z> = {0, 1} is a two-point semilattice
with identity 1 and zero 0. <€$ is atomic.

Proof: We have D e < ^ , thus Str(D)g<^. Conversely, \SSe<e8-f then
define for every aeS a mapping ha:S ^D by

if as#a.

Informatique théorique et Applications/Theoretical Informaties and Applications



HOW MUCH STRUCTURE IS NEEDED? 197

This mapping is a homomorphism since we have ha (st) = 1 iff ast — a, which
is equivalent to as — a = at and this to ha(s)ha(t) = l. Homomorphisms ha,
aeS, separate^. Indeed, let x, yeS and assume that ha(x) = ha(y) for ail
a e S. Then hx (y) = hx (x) = 1 and hy(x) = hy(y)=l, thus x = xy=yx=y. By
Statement 2, SeStr(D), thus we have <^gStr(D). Any non-trivial variety
included in <%âi contains D thus <$$ is atomic.

STATEMENT 6: M is the unique nil cover of J.

Proof: We assume that 5 e / - / and show that MeStr(S). If there is
some seS with s2#0 then T=<s>/{sk |/c^3} is in Str(S), T={s,s2 , 0}.
The power TxTx T contains the subsemigroup

{(S) s
2, s), (s, s, s2),(s2, 0, 0), (s2, 0, s2),(s2, s2, 0),(0, 03 0)}

whose quotient obtained by the identification of (s2, 0, s2) and (s2, s2, 0) with
(0, 0, 0) is isomorphic to M, thus MeStr(S).

Assume that s2 = 0 for ail s e S. Since S$J, there exist distinct s, teS with
st 7e 0. If st = ts then S contains the subsemigroup {s, t, st, 0 } isomorphic to
M. If st^ts then we have in S the subsemigroup {s, t, st, ts, sts, tst, 0}.
Identifying ts, sts, and tst with 0 we obtain P whose square PxP contains
the subsemigroup {(s, t), (t, s), (st, 0), (0, st\ (0, 0)} and this can be made
into a copy of M by identifying (0, st) with (st, 0). We have again MeStr(S).

STATEMENT 7: Let 'V^ïf be an arbitrary variety. If J is not included in
'V then J v i^ covers only V and J v °U for the varieties % covered by "T.

Proof: Note first that if J J f then the cyclic subsemigroups of any Ve'V
must be cyclic groups. Consequently, for every such Veir

9 we can find an
integer r ̂  2 such that vr = v for ail v G V. If now SeJv'f", say
S «- T c£ îxVjIeJ, then S has an inflation endomorphism ƒ onto S2 defined
by f(s) = sr. This shows that every SeJ v if is an inflation of S2, and
clearly, S2eir. Put otherwise, for every subvariety ^ of / v f, the class
OU2 = {S2\Se<%} is a subvariety of TT and we have either <̂  = ^ 2 or
* = . / v ^ 2 . It follows that if ^ is covered by / v f then t = f or
m = J v fy2 where ^ 2 is covered by f.

STATEMENT 8: LctSe^JWV^-Jf v if v #. Then the Suskevic quotient

Proof: It is easily verified that IxL\=xy = x2 for any / e . / and LeJ?,
therefore J v <£Vxy = x2. Assume that S/vseJ v &. Then st/as = s2/os for
every s, reS. Let ÏW = | G ( S ) | . Then smeE(S) and sm + 1=s for every
seK(S) = S2. Therefore, (s, t)evs iff s, teK(S) and sm = tm. The equality
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198 P. GORALCÎK, A. GORALCÏKOVÂ, V. KOUBEK

st/as = s2/as for any s, teS then means that St(xy)m = x2m. Since E{S)eSe,
we have s2 m t2 m = (s2 m)2 for any s, te S. It follows that
(st)2m+l = s2ms2mst = ss2mt2mt = s2m+1t2m+1. The assignment si-+(s/S2,
s2 m +1) defines an injective homomorphism of 5 into

S/S2xK(S)eJr v Jîf v ^, a contradiction. Clearly, if SeJ!?~V~§ then

STATEMENT 9: / ^ covers only / v i f and

Proo/- If Se / ^ , that is to say, S2 e if, then for any s, t, weS we have
steE(S), stueE(S\ therefore stu = ststu = $t, which means that 5Nx,yz = x^.
On the other hand, if SNXJZ = XJ then clearly S2 e if.

We show that Jl£ covers only ƒ v jgf. Let Se^J]?-J v if. Then by
Statement 8, Ŝ x>> = x2, thus we can find a, ueS such that au^a2. Dénote
b = a2, c = au, d = u2. We show that a, fc, c, d are pairwise distinct, by showing
that any assumption of equality contradicts to aw#a2:

a = b

a = c

a = d
L _
0 — C

b = d

c = d

=> a =

=> a =

=> a =

=> a

=> a 2

^ au

= a2

-au

= u2

= au,

= u2

= u2

=> au-

=> au =

=> a2 =

=> a2

=> a2

= a2u = a2,

= aua = a2,

= au2 = au,

— a3 = au2 = au,

= a2 u = au2 = au.

The four éléments form a subsemigroup Ö of S, given by the table
| a b c d

b b b c
b b b b
c c c c
d d d d

It remains to show that ^ y ^ = Str(6). Let Se Jlë, | S |=n^2 . Take an
alphabet X with |X| = n and define a semigroup Fx on the set X\JXxX of
words over X of length one and two, in such a way that éléments in X x X
are left zéros of Fx. An arbitrary bijection f:X-*S can be extended to a
homomorphism ƒ : F^ -> S by setting f(xy)=f (x)/ (y) for any xyeX2, thus
SeStT(Fx). We prove that F^eStr(Ö) by showing that Fx is separated by
homomorphisms to Q x Q.
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HOW MUCH STRUCTURE IS NEEDED? 199

For (x, y)eXxX, x¥=y, let Kxy : Fx -> Q x Q be a homomorphism such that
for every zeX

(a, d) if z = x,
hxy(z)= (d, a) if z = j ,

(b, b) if x / z ^ j .

This homomorphism takes injectively the subsemigroup Fxy of Fx generated
by x, ƒ, Fxy = {x, ƒ, xjy, >>x, x2, y2} to the subsemigroup {(a, d), (d, a), (c, d\
{d, c), (b, d\ (d, b)} of Q x g . Each word of the form z, z2, zx, zy with
zeX— {x, ;>} is separated by hxy from ail other words in Fxy. Only xz is
collapsed with x2 and yz with y2. However, these can be separated by
ixy • Fx -+ Q x 6 defined by

(a, d) if z = x,
gxy(z)= (d, a) if z=>>,

(d, d) if
for z G X

STATEMENT 10. - S e / - ^ v JS? v 31 iff K:p€Str(S) for a prime /?.

Proof: Let S — Jf(G, X, 7, F). ït is easy to obtain, by a suitable choice of
r (y) and c (x), an equivalent sandwich matrix P' with all entries in the last
row and the last column equal to 1, the identity of G. Now, S ^ v i f v ^
is equivalent to the existence of an entry b # l in P'. Therefore, we have

&>, 2,2, f* l\\*J?(G,X,Y,P) for any

prime p dividing the period of b.

STATEMENT l l : S e ( / v J ? v S f ) U ( / V « V <S) \J(S£ V 91 v ^) iff Str(5)
does not include any of the varieties # ^ , u?, / ^ , JM,J v & v ^sandjfp

for p prime.

Proof: ït is clear that none of the varieties listed is included in ƒ v if v ^
o r ^ v ^ v ^ o r j è f v ^ v ^ , thus neither in Str(S) for any

S e ( / v J5? v ^ ) U ( ^ v ^ v <
Let S £(.ƒ v S£ v ») U {f v « v ») SJ (& v « v 9).
If S2¥"K(S) then either S/K(S) contains an idempotent distinct from 0

and by Statements, ^^Str(S), or SjK(S)ejr-J and by Statement 6,

If S^S2 = K(S) then either f v JS? v ^gStr (5) or
K(S)6(JS? v ^) \J(9t v »). Let, say, K(S)e^ v ». Then we have
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v <g-f v i f v ^ , therefore by Statement 8, the Suskevic quotient
-J v Se, hence by Statement 9, yj^gStr(S).

If s = S2 = K(S), then S G J T - ( J S P V 0t v »), therefore by Statement 10,
for some prime/?.

2. CRITICAL VARIETIES AND THE SUBEXPONENTIAL CLASS

When we want to prove that a variety y is critical, we must:
— find a polynomial-time encoding of some isomorphism complete class

of graphs or directed graphs into i^\
— prove that any variety iV properly included in 'V has a polynomial-time

isomorphism algorithm.
Recall that an assignment (F, E)\-+S(V9 E)eir is an encoding of some

class G of graphs into rT if for every (F, £), (F', F ) e G we have
(F, E)c*(V\ E') iff S(V, E)~S(V\ E'\ or equivalently, iff we are able to
recover an isomorphic copy of ( F, JE) from a semigroup S isomorphic to
S (F, £). The encoding is a polynomial-time encoding if we can compute the
multiplication table of S(V, E) from (F, E) in time polynomial in \V\. For
each encoding in this section it will be clear from its description that it can
be done in polynomial time.

DÉFINITION Let D (5, 2) dénote the class of ail directed graphs (X, R) with
the following properties:

(i) X can be partitioned into two parts Xt and X2 in such a way that

(ii) for some integer d such that 5<d<(l/3)|X|, the outdegrees of all
points in Xx and the indegrees of all points in X2 are equal to d;

(iii) for every xeXi9 i= 1, 2, there exists yeX{ such that

| {Z|(JC, z), 0 , z)eR or (z, x), (z, j ) eR} | ^2 ,

i. e. there are at most two points adjacent with both x and y.

STATEMENT 12: D (5,2) is isomorphism complete.

Proof: Let (F, E) be a connected d-regular graph with | F | = n, n— l>d>5 ,
V={vu . . ., v„}. Construct a directed graph (X, R) with points xip x[} for
1,7=1, . . ., n, and arcs (xij9 x^k) for ail i, j , t = l n and (xik, xy ,
(xjk, xjk) for ail fc = l, . . ., n and {u£, Vj}eE. The graph is bipartite, the
outdegree of xu is equal to the indegree of x'kl for ail i, j , k, /=1 , . . ., n,
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HOW MUCH STRUCTURE IS NEEDED? 201

their common value being n + d. Since 5<d<n— 1, we have
5<n + d<(2/3)n2 = (l/3)\X\. Moreover, points xu and xkl with k^i and i^j
can both be adjacent only to xkj and x^ and this only if { vh vk}eE. Likewise,
there are at most two points adjacent to both x'u and xkV We have proved
that (X, R) is in D(5,2). The construction (V9 E)t-+(X9 R) is obviously
polynomial-time, and it is an encoding since we can recover a copy of ( V, E)
by factorizing (X, R) by its unique décomposition into complete bipartite
n, n-graphs. It has been established in [2] that the class of all regular graphs,
and thereby also the class of ail regular graphs of degree > 5, is isomorphism
complete.

STATEMENT 13: Vâi is critical.

Proof: The isomorphism completeness of <g<8 was established by Booth [2].
By Statement 5, 2T is the only variety properly included in <€ât9 and ̂ "-isomor-
phism is trivial.

STATEMENT 14: M is critical.

Proof: To every graph (F, E) without loops and isolated vertices assign a
semigroup S (F, E)=V\JE\J{0} with a multiplication given by

f{ 3} {x,y}eE,
\0 otherwise.

The multiplication is associative since x(yz) = 0 = {xy)z is satisfied. The semi-
group S (F, E) is easily seen to belong to M by virtue of satisfying the
équations for Jl, namely, xy=yx and xyz = x2 = x2 u.

Given a semigroup S isomorphic to S (V, E), we can recover an isomorphic
copy (V, E') of (7, E) by taking

V' = S-S2 and £ ' = {{s, t}\s9 teV', st^O}.

The assignment (F, E)\^S (F, E) is a polynomial-time encoding of an isomor-
phism complete class of graphs into Ji. Jt covers only J and ./-isomorphism
is polynomial-time.

STATEMENT 15: fS and fM are critical.

Proof: Let (X9 R) be an arbitrary directed graph. Take pairwise distinct
éléments a, b, c, w, v not belonging to X{JR and define a multiplication on
{a, b, c, M, v}[JXURby

a.(xiy) = b. (x9 y) = x9 c. (x, y)=y for (x, j ; )eR,

az = bz = u, cz = v: for z e {a, b, c, u, u } U X,

st = s for SE {M, V}{JX[JR.

vol. 20, n° 2, 1986



2 0 2 P. GORALCÎK, A. GORALCÎKOVÂ, V. KOUBEK

We show that the multiplication is associative:

a. (st) = as = (as) t, b (st) = bs = (bs) t,

for se{u, v}\JX\JR,

a (st) = u = (as) t, b (st) = u — (bs) t,

)t for s e {a, b, c,}.

Dénote by S(X, R) the semigroup obtained. S(X, R)£xyz = xy, therefore
by Statement 9, S (X, R)e Jl£- Given S^S(X, R\ we recover an isomorphic
copy (X\ R') of (X, R) as follows: There is a three-element set
{a\ b\ c'} = S — S2. Two of the éléments, say a' and fcVhave the same square
u\ distinct from the square v' of c'. Take

R' = {(a's, c's)\seS,a's^u'}.

The semigroup opposite to S (X, R) encodes (X, R) into /M. ̂ Jl£ covers
only J v jSf. To décide about isomorphism of 5, T in ƒ v Jèf, of size
n = | S | = | T|, we form in O (n2) time a relation R^S2xT2 such that (s, t) e K
iff s and t have the same number of square roots, L e.

Then S ~ T iff a bijection can be extracted from R; this can be decided in
O (n2'5) time (cf. [8]).

STATEMENT 16: ƒ v if v M is critical.

Proq/: Let /={a, fc, 0 } G , / . We encode every directed graph without loops
(X, R) as a subsemigroup S (X, R) of ƒ x (XxX) (hère I x X is considered as
a rectangular band) generated by the set of triples

{(U x, y)\(ie{a, b} and x=y) or (i = a and (x, y)eR)}.

An isomorphic copy (X\ R') is recovered from S m S (X, R) by taking

X' = {seS\ there are two distinct u, veS~S2with u2 = v2 = s},

R' = {(s, t)sX xX\ there is exactly one weS — S2 with w2 = st}.

J v S£ v ^ covers only Jèf v ^ , ƒ v JSf, ƒ v ^ , and the latter clearly have
a polynomial-time isomorphism test.

STATEMENT 17: For every prime integer/?, Jfp is critical.
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Proof: Let (X, R) be a directed graph. Let 1 dénote the identity of Cp, let
aeCp be a fixed element distinct from 1. For every (x, y)eXxX define a

2x2-matrix P (x, y) = (p\y>) by F(x, j ) = r j J if x=y or (x,y)eR,

P (x, y) = l J otherwise, and form the cartesian product

"" 0 J P (y vYl — J/ (Cx x x Ox x x Ox xX P\
~'p) 9 ^"9 *• V-̂ J j ) ) * / * * V^-'p 9 ^ j Z. j i ^

(x, y) e X x X

where the sandwich matrix P has for entries families

for ƒ g : X x X -• 2. Factorize this product by the homomorphism

onto Jt(Cp, 2XxX, 2XxX, h(P)) and select in the latter a subsemigroup
M (Cp, X, X, P (X, R)l where P (X9 R) is a submatrix of h (P) = (fc (pft g)) with
entries p(^v

R)~h(pfu gv\ where

1 for w = x fl for v=y
2 for w^x 2 for

Clearly, the semigroup thus obtained is in Jfp and we have

fa if M = D or (M, v)eR,
Fu'v [1 otherwise V.

We show that the assignment (X9 R)^Jf{Cp, X, X, P(X, R)) is an enco-
ding of D(5,2) into $Tp. Let (X, R\ (X\ R') e D(5,2). We have to show that
(X, R)~(X', R') iff the corresponding sandwich matrices

P = P(X, R) = (pX9 y) and P' = P(X\ R') = (p'xr, ,.)

are equivalent.
Iff:X^>X' is an isomorphism of (X, R) onto (X\ R') then/>}(x) f{y)=px ^

hence the sandwich matrices are equivalent.
Assume now that they are equivalent. We have then

Pf (x),g (y) = r W h (Px,y) C (y)

for some bijections ƒ g:X-+X, functions r, c:X^Cp, and heAut(Cp). We
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easily recognize from P the partition of X into Xx and X2 such that
R g ^ xX2. Indeed, xeXx if there is more than one occurrence of a in the
x-th row of P, and xeX2 if there is only one. We show that f(X2)<=X2.
Assume to the contrary that f{x)eX\ for some xeX2. Then the ƒ (x)~ th
row in P' has d+ 1 entries a and n — d—l entries 1. Dénote

A = {yeX-{x}\p'f(xh§i,) = a}t

B={yeX-{x}\p'fix)tgiy)=l}.

The function c:X^Cp must be constant on both A and B. Further, | A
IBI ̂  n — d — 2. For an arbitrary z e X2, z ̂  x, there must be distinct ftl9 fc2

 e CP

such that

for j e ^ - { z } ,
for

It follows that b1 = a9 b2=l9 and ƒ (z)eX'u thus ƒ (Z2) = Z;. But then for any
two rows in P' indexed by two distinct éléments of X\ there are at least four
a' s in the same places, a contradiction with the properties of (X', R'). We
have proved so far that ƒ (Xi) = X'i for i= 1, 2, and that c(x) is constant, say,
c(x)~c for ail x e l l n a similar way, we prove that g(Xi) = X/

h i=l, 2, and
r(y) — r for ail yeX. It remains to show that f—g. For xeX2i yeX;

_(rc for
Pfix)>°(y)-\rh(a)c for , = *,

whence ƒ (x)=g(x)t Similarly for xeXv Moreover, rc=l , rh(a)c = a, thus
h(a) = a, /?}(x), /(y)=Px, y> hence/is an isomorphism of the graphs.

J T P covers only S£ v ^ v Sp and the latter has a polynomial time isomor-
phism test.

Dénote Sub = ( ƒ v Se v <g) U (ƒ v 3t v ^) U (if v M v »).

STATEMENT 18: There is a subexponential, i.e. O (nCllogn+C2) time isomor-
phism algorithm for Sub.

Proof: Clearly, S, Te Sub can be isomorphic only if they belong to the
same one of the three varieties whose union is Sub.

If S, Te & v M v ^ then S ~ T iff G (S) - G (T) and E(S)~E (7), subexpo-
nential and polynomial, respectively.

Let 5, Te ƒ v Jöf v ^. Define the multiplicity function \is on K(S) by

.S 2 | s m + 1 =u} | where m = \G(S)\
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Every isornorphism h:S ->T restricts to a multiplicity preserving isomor-
phism, or a n-isomorphism, g:K(S)-+K(T), [iT(g(u)) = lis(uX and> everY
H-isomorphism g: K(S) -> K(T) can be extended to an isomorphism h: S -•T.

Choose fixed idempotents aeE(S) and beE{T). Every isomorphism
f:K(S)^K(T) détermines a ^-isomorphism <p:aS-+bT and J5?-isomor-
phism \|/: £(£)-• £(7), by (p(as) = £>/(s) and ^{è)=f{e\ and is determined
by them by

ƒ (s) = \|/ (e) cp (as) for e G £ (5) such that es = s.

Moreover, this formula defines an isomorphism ƒ for any pair of isomor-
phisms cp : a S -» & T and i|/ : E (S) -• £ (7). The isomorphism will be denoted
by/=<px\)/.

Given a fixed isomorphism <p : a S -• b T, define a relation R(?^E(S)xE (T)
by

(e, 0 e ^ 9 iff ^is(es) = |ar(ï9(as)) for ail s e S.

Then for an arbitrary bijection \|/ : E (S) -> £ (7), cp x \|/ is a fi-isomorphism iff
^E^ 9 - Consequently, K(5) and K(T) are ^i-isomorphic iff a bijection can be
extracted from R9 for some isomorphism <p:aS^>bTt Ail isomorphisms
(p:aS-*kTcan be computed in time subexponential in \S\, the formation
of R9 and extraction of a maximal bijection from R^ is for each particular q>
a polynomial-time matter [8].

In the light of the above statement, we may call Sub the subexponential
class. Statements 11-18 can now be summarized into the final resuit of this
paper.

THEOREM Under the conjecture that % is not isomorphism complete, the
varieties <%&, M, Jl£, ^JM, J v <£ v 01, and j f p for prime p are ail critical
semigroup varieties. Every variety "V either includes one of the critical varieties
and then is isomorphism complete, or is included in the subexponential class

Sub = ( ƒ v Jîf v 9) U («/ v 0t v ^) U (if v 0t v 9)

and then it has a subexponential time isomorphism algorithm.

Let us remark in closing that in case of varieties of finite monoids the
situation is much simpler: every monoid variety which is not a group variety
contains the variety of commutative idempotent monoids —the only critical
monoid variety.
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