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GRAPH CONGRUENCES AND PAIR TESTING (*)

by J. A. BRZOZOWSKI (X) and Robert KNAST (2)

Communicated by J.-E. PIN

Abstract. - This paper considers the congruence 2~ on a free monoid where u 2 ~ v iffu and
v have the same letters and the same ordered pairs of letters. The motivation for this cornes from
the study ofbi-locally testable languages defined by testing pairs ofwords. As in the case oflocally
testable languages, a theorem on graph congruences is used in order to obtain a characterization
of the family of bi-locally testables tanguages. Such a theorem on graph congruences is developed
in this paper.

Résumé. - Dans cet article on considère la congruence sur un monoïde libre telle que deux mots
soient équivalents si ils contiennent les mêmes lettres et les mêmes couples ordonnés de lettres.
L'étude de cette congruence est motivée par î'étude des langages bi-localement testables. Comme
dans le cas des langages localement testables, on démontre un théorème sur les congruences de
graphe pour caractériser la classe des langages bi-localement testables.

1. INTRODUCTION

The family of locally testable languages plays a key rôle in the study of
star-free languages. It is defined as follows: The membership of a word w in
a language L is uniquely determined by the prefix of length k — l of w, the
suffix of length fc — 1 of w, and the set of all segments of length k appearing
in w, where k ̂  1 is an integer depending on L. The syntactic semigroup S
that corresponds to a locally testable language L satisfies the condition that
for each idempotent e e S, the monoid eSe is idempotent and commutative.
Conversely if S is the syntatic semigroup of L and S is finite and satisfies
the above-mentioned conditions on e S e, then L is locally testable. The proof
of this last statement is quite difficult. One of the key steps in this proof is a
theorem on graphs. This theorem, due to Simon, appeared originally in [2],
though it was not formulated as a separate result on graphs. The treatment
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130 J. A. BRZOZOWSKI, R. KNAST

of the theorem as a theorem on directed graphs is due to Eilenberg [3]. The
theorem involves a congruence 1 ~ that corresponds to k = 1 in the test
described above. More precisely, the prefix and suffix are not tested (since
fc — 1 =0), and only segments of length one (i. e. letters) are considered.

The next family in the hierarchy of languages of depth one [1], after the
locally testable family, is that of bi-locally testable languages. Membership
of a word w in a bi-locally testable language is determined by the prefix and
suffix of length fc — 1 of w, and by the set of ordered pairs of segments of
length k that appear in w. The characterization of syntactic semigroups of
bi-locally testable languages is due to Knast [4], and uses the theorem on
graphs presented in this paper as one of the basic steps. The theorem involves
the congruence 2~ that again corresponds to fc = l. This time, however,
ordered pairs of letters are used.

2. THE MAIN THEOREM

We first briefly recall Eilenberg's notation for graphs [3].
A directed graph G consists of two possibly infinité sets V (vertices) and E

(edges) along with two functions:

ot, ©:E->7.

If e is an edge, e a and e co are the initial and final vertices of e. Two edges
e1 and e2 are consécutive iff e2a = e1<Xi. Let £+(£*) be the free semigroup
(free monoid) generated by £, and let C <=E2 be the set of words ex e2 such
that e1 and e2 are non-consecutive. The set of (non-empty) paths of G is
then:

If p — e1 . . . en is a path, define /?oc = e1a and p(ù = en(ù. The length of the
path is \p\ =n, where n^ 1. A pathp is a loop about vertex v iff v=pa—p(ù.
If p = ex . . ,eni q = e\ . . . e'm, and p(o = qa then p and q are consécutive and
pq — ei . . . ene\ . . . e'm is a path. For any vertex v, lv is a loop of length 0
about v, i. e. IVOL = IV(Ù = V. For technical reasons we assume that the set
{ /„ | v e V } of trivial paths is adjoined to P. Two paths p and p' are coterminal
iff pa=p'a and pco—p'a>. An équivalence relation ^ on F is a congruence
iff:

(i) p ~pf implies p and p' are coterminal.
(ii) If p~p\ q~q' and/? and q are consécutive, Û\$npq~p'q'.
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GRAPH CONGRUENCES AND PAIR TESTING 131

Let x : £* -• 2E be the function that associâtes with each word w in E* the
set of edges (letters) appearing in w:

w x = {eeE\w = w1 ew2 for some wu w2 e E* } .

Similarly let wx2 be the set of ordered pairs of edges in w:

W X2= {(ei> e2)eExE\w = woelw1e2w2, w0) wls w 2 e £ * }.

We define the following congruence on £*. Given x, y e E*:

x2~ y iff x x2 —y T2 a n d x T = ƒ x.

If p is a path of length >0, then px and px2 are defined as above. If p — lv

for some v e V then /? x =/? x2 = 0 .

THÉORÈME Let ~ be the smallest congruence on P satisfying:

zi (P<Ü2Pzr (s?)2 Z2 ~ zi (P<Ù2 z' (sr)2 Z2> ( ï)

for all p, q, r, 5, zl9 z2, z, z'eP such that:

zx^zx%C\z2x and z'' x £ zx x O z2.

then for any two coterminal paths x and y the conditions x~y and x 2 ~ y are
equivalent.

The proof of this result is the subject of the rest of this paper. Before
proceeding with the proof we make the following comments. The congruence

2 ~ involves testing the set wx2 of pairs of letters appearing in a word w (or
the set wx in case wx2 = 0 , i. e. \w\ ^1) , and is defined on £*. The theorem
states that the équivalence of any two coterminal paths with respect to 2 ~
can always be demonstrated by coterminal path transformations of the
form (1). It is easily verified that:

x ~y implies x 2 ~ y. (2)

The converse of (2) constitutes the problem.

Rule (1) is quite complex as compared to the rules in Simon's theorem,
where the rules corresponding to (1) are:

x ~ x 2 and xy~yx,

for any two coterminal loops x and y. We were unable to simplify Rule (1)
or to replace it by a set of equivalent or weaker rules. The graph of Figure 1
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1 3 2 J. A. BRZOZOWSKI, R. KNAST

provides an example of the difficulty involved. Consider the coterminal paths:

x = c' dy cd2 (ax a2)
2 a1 cb1 (b2 bx)

2 ex ce2 c'

and

y = c' di cd2 (ui a2f c' (b2 bxf ex ce2 c'.

One easily vérifies that x2~y. If we let z1=c/dlcd2 and z2 = elce2c\ we
have an instance where Rule (1) applies. We were unable to find a simpler
set of rules for this example.

Figure 1

In a number of cases Rule (1) dégénérâtes to considerably simpler rules. It
will be convenient to identify them distinctly, even though they are covered
by (1). If zx, z'% c zxxC\z2i then:

zlzz2^z1z
fz2, (la)

Zi (P<l)2Pzz2~Zi (P4)2Z'Z29 (1 b)

z± zr (sr)2 z2 ~zt z' (sr)2 z2. ( 1 c)

3. SINGULARITIES

Let A be a finite alphabet and xe^4*. If x = xlax2, aeA and a^(x1x2)x
then a is a singular letter of x. If x = x0 ax1 bx2 where a and b are not singular
letters of x and (b, a)^xx2, then (a, b) is a singular pair of x. Singular
letters and singular pairs are called singularities of x. If x = x0ax1bx2, this
factorization is an occurrence of (a, b). An occurrence is inner if a$xx%,

. Clearly every singular pair (a, b) has a unique inner occurrence
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GRAPH CONGRUENCES AND PAIR TESTING 133

consisting of the rightmost a of x and the leftmost b. An occurrence x0 axx bx2

is proper if axx and xxb have no singularises of x; note that every proper
occurrence is necessarily inner. A singular pair need not necessarily have a
proper occurrence. For example, let x = aebbacdfdfc, Then e is the only
singular letter of x and (a, c), (a, d\ (a, ƒ), (b, c\ (b, d)9 (b,f) are the
singular pairs of x. The factorization (aeb) b (ac) d ifdfc) shows the inner
occurrence of (b, d). Only (a, c) has a proper occurrence, namely
(aebb)a(\)c(dfdfc).

PROPOSITION 1: Let (a, b) be a singular pair of x.
(a) Let x = xoax1 bx2 be the inner occurrence, Then:

a e x0 x — (Xj bx2) x, b e x2 x — (x0 axx) x.

(b) Let x = xoaxx bx2 be a proper occurrence. Then:

(c) Let x 2 ~ y and let x = x0 axx bx2 and y=y0 ay\ by2 be inner occurrences.
Then:

(d) Let x2~ y eind let x = xoaxl bx2 be proper and y=yoayi by2 be inner.
Then yx has no singular letters of x.

Proof: ia) If aex2x then (b, a)exi2 contradicting that (a, b) is singular.
If aextx then the occurrence shown is not inner. If a £ x o i then a is a
singular letter of x, contradicting that (a, b) is a singular pair. The same
arguments apply to the claim about b.

(b) Let cexj i ; then (a, c)exx2. The pair (a, c) cannot be singular because
the occurrence of (a, b) as shown is proper. Hence (c, a)exx2. Since
a^(x1bx2)x, we must have cexox. Thus x tx c xox, and xxx c= x2x follows
similarly.

(c) CGXOX implies (c, a)exx2=jx2 . Hence ceyox, and xox <^yox. Simi-
larly yox <= xox and the claim follows. By symmetry x2 x=y2x.

(d) If ceyxx is singular then (c, a), (b, c)$yx2. Since xx2=^x2 , c must
occur exactly once in xl5 to satisfy these conditions and the condition that c
is a singular letter of x. But this contradicts the assumption that x0axxbx2

is proper.

PROPOSITION 2: Proper occurrences of singular pairs do not overlap, i. e.
suppose x — xoaxlbx2 and x~yocyxdy2 where the occurrences are proper;
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134 J. A. BRZOZOWSKI, R. KNAST

then either \xo\^\yöcy1d\ or \yo\^\x0ax1b\i and a, b, c, d are all distinct

Proof: Without loss of generality, assume that |x o | ^ |j>o|. Then cyxd is
to the right of x0. Suppose first the overlap has the form b = c and
x — xoax1byl dy2, Then b$(xoax1)x because (a, b) is inner as shown and
b$(y1dy2) because (b, d) = (c,d) is inner as shown. Hence b is a singular
letter, contradicting that (a, b) is a singular pair. Thus this type of overlap
cannot occur. Next suppose x = x0ax11cxl2byi2dy2- We know a^b and
c^d. Also c^b since b£(x o ax u cx12)x because (a, b) is inner. Also
c$(x12byl2dy2)T because (c, d) is inner. Hence (c, b) is a singular pair of x,
contradicting that the occurrence of (a, b) is proper. Again, this type of
overlap cannot occur. Thirdly, if a = c, then x = xoax1 byl2dy2 and the occur-
rence of (a, d) cannot de proper. This is a contradiction. Similarly we can't
have b = d. Finally, we can't have (c, d) occur in xx because the occurrence
of (a, b) is proper. Hence, no overlap can occur.

We already know that a^b, a^c, b^cy b^d, and c^d. One vérifies also
that aj-d.

4. ALIGNMENT OF SINGULARITIES

We introducé the following notation to reduce the number of cases that
have to be considered. Let:

uawbv

represent the usual word uawbv, with a, beA, or the word uav. The latter
case occurs when w—1 and a — b. Frequently it is possible to handle both
cases by the same arguments, and this notation permits this.

PROPOSITION 3: Let x = xoax1bx2 be a proper occurrence of (a, b). Suppose
y2~x and y=yoaylby2 where the occurrence of (a, b) is inner, Then either
the occurrence of (a, b) in y is proper or ay±b contains exactly one proper
occurrence o f a singular pair of x.

Proof: Suppose (a, b) in y is not proper. By Proposition \{d) yt has no
singular letters; hence it must have at least one singular pair. Suppose it has
two proper occurrences of singular pairs. By Proposition 2 they do not
overlap, so y has the form:

where (c, d) and (e, f) are the two proper occurrences. Now (d, e)eyx2 = xx2;
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GRAPH CONGRUENCES AND PAIR TESTING 135

(b, e)£yx2 because b is leftmost and e is rightmost; (d, a)£yx2 because a is
rightmost and d is leftmost.

Thus (e, b) and (a, d) are singular pairs of x. Therefore d$xox, and d$xlx
because x0ax1bx2 shows a proper pair (a, b). Similarly e$x2x and e$x1x.
Hence (d, e) cannot occur in x, This is a contradiction, showing that exactly
one singular pair can be proper in yv

PROPOSITION 4: Let x = x0axlbx2 be a proper occurrence of (a, b) in x.
Suppose that x 2 ~ y but y has no proper occurrence of (a, b), By Proposition 3
y has the form y—yoüyAQcy11dy12by2 where the occurrence of (a, b) is inner,

either a^c or b^d, and the occurrence of (c, d) is proper. Then:

x = x01 cx02ax1 bx2idx22

where the occurrence of(c, d) is inner.

Proof: Observe that (a, d)eyx2 but (d, a)$yx2 because a is rightmost and
d is leftmost Hence (a, d)exx2 and (d, a)£xx2. Thus d$xox. Also d^x1x
because the singular pair (a, d) would appear in axxb and the latter is
assumed to be proper. Thus de(bx2)x and x=xoaxx bx21 dx22, where

d$x2lx. Similarly, (c, b)exx2, (b, c)$xx2 and x0q = x01 cx02a, giving the

desired form for x.

LEMMA 1: Let x 2 ~ y, where x and y are coterminal paths in a graph. Then
there exists y' ~y such that a proper occurrence o f a singularity exists in x iff
it exists in y'. Further, if x = x0ax1bx2 where (a, b) is proper, then

Proof: (i) If x = x1 ex2 where e is a singular letter, we must have y=yt ey2,
since the occurrence of a singular letter is always proper.

(ii) Suppose x = x00x^X2 and y=y0ay1by2 where both occurrences are
proper. By Proposition l(b), x 1x<=x oxn^2T anc* *oT=>;oT> Xix=:y2x by
Proposition l(c). Thus x1 x a y0xf\y2T. Also yxx <= yox C\y2x. Since x1

and yx are coterminal paths, we can apply Rule (1 a):

J>= Oo a) J>i Q>y2)~(y0 a) x1 (by2)=/.

(iii) Suppose y is as above, but the occurrence of (a, b) is not proper, Then,
by Proposition 3:

(3)

where (c, d) is proper and (a, b) is inner and either a^c or d#b or both.
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136 J. A. BRZOZOWSKI, R. KNAST

Then, by Proposition 4:

x = x01 cx02axï bx21dx22, (4)

where (a, b) is proper, (c, d) is inner and either a^c or b^d ox both.

1: a^c9 b = d

We have the following factorizations:

x = x0l cx02 axx bx2,

Let u=yl0cyllby2, so that y=yoau where a is rightmost. Then a$ux
and (x02a)x 4: ux. However, (x02a)x<=jyx because x 2 ~ j implies xx=jx.
Therefore there must exist precisely one suffix w = ey02au of y such that

(x02a)x <= wx but (x02a)x <£ (yn2au)x, where yO2a dénotes y02a when e / a
and yn?,q= 1, when e = a. Note that g^(y02at<)x and also that e must be a
letter of x02a; let x02a = x'02exQ2a, where e$XQ2x. Then:

Consider the loop h = eyO2aylocx'O2. We claim that this loop can be inserted

after y0l in y by using Rule (la). For we have (eyn7ay^c)x c w x b y the
définition of w above. Also X'02T C (x02a)x CWT. Thus h c w T .

Next we must verify that hx a y0l x. By construction e is rightmost in y.
Thus ƒ e (cxó2) x implies (ƒ, e)exx2=yx2 and/ey0 1x. Hence cxó2t cj;01x,
In fact we have (xoi)x c= yolx by the same argument. Now fe(eynjayin)x
implies (ƒ c)G3;x2 = xx2 and/ex 0 1 x because c is rightmost in x as shown.
Thus fey01x. Altogether, hx cz y01x. Inserting two copies of the loop h we
have:

=yoi Wol a (y io cxp2 eyo2 à)

Let z1 —ynieyn^a9 p = yinc, q = x'02ey02a, z=ylu and z2 = by2. Then:

y~*i (pq)2 pzz2.
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We now show that zx ^ z1xC\z2x. In fact, feyxlx implies (c, f)eyz2 and
so (ƒ c) in yx2 = xx2 because (c, è) = (c, d) is proper in y. Thus
/ e x 0 1 x <= >>01 x, and we have fez1x. Therefore zx a zxx. Similarly feylt x
implies (ƒ, fo)e.yx2 and (b,f)eyx2. Hence ƒ e j 2x and zx c= z2t.

Let z ' ^ x ^ Then x1x cz zxxC)z2x by similar arguments. We are now in a
position to apply Rule (1 b):

y~z1(pqfpzz2

~zi(pq)2z'z2

_a O i o CXÓ2 eyp2fl)2 x i ^ 2

which has the desired form. We can also write:

2
 2

=yo ë2 a*i by2,

where g = ayt0cx'02ey02. Recal that proper singularities do not overlap. In
^—^0^10^11 by2 we have the proper singularities in y0ayl0 and in y2 and
the pair (c, b). By Proposition 3 the segment ay10cyliLb has only one proper
singularity; hence there are none in ayl0, Now in y' we have the proper
singularities of ^0^10 a n d y2 a nd the pair (a, b) which replaced (c, b). The
segment g2 is free of singularities, since each pair (ƒ, f')egx xgx appears at
least twice in g2 if ƒ#ƒ', and g2 can't have any singular letters. This leaves
the possibility that there is a proper singularity in yog of the type feyox,
f'egx. But gx <=yoxx CJ;OT. Hence either {f\f)ey0x2 and (ƒ, ƒ') is not
singular, or (ƒ, f/)ey0x2 and the singularity in yog was not proper. Thus y'
has only the proper singularities of y with (c, d) replaced by (a, b).

Case 2: a = c,

This follows by left-right symmetry from Case 1. This time a loop is
inserted on the right side and Rule (1 c) is applied.

Case 3; a#c, b^d

Proceed as in Case 1 inserting first the left loop, then the right loop, and
apply Rule (1).

In all cases of (iii) we can transform y into y' in such a way that the proper
singularities of y' are the same as those of y except that (c, d) has been
replaced by (a, b). Now consider two words x, yeA* such that x2~y.
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138 J. A. BRZOZOWSKI, R. KNAST

each singular letter of x must also be a singular letter of y and vice versa.
Also, if (a, b) has a proper occurrence in x then either (a, b) is also proper
in y, or (a, b) occurs in y with another proper pair (c, d\ as in Propositions 3
and 4. As shown above, we can find y' such that y'~y and the singularities
of y' are those of j , with the exception that (c, d) has been replaced by (a, b).
By repeating this process we find y'~y such that y' has exactly the same
singularities as x. It is easily verified that these singularities must appear in
y in the same order as in x. Thus we may assume at this point that x and y
have the same singularities and that they have the form:

x = xos1x1s2 . . . smxmi

. . . smym,

where m^O, xi5 i = 0, . . . ,m, do not have any singularities of x and either
s~e, eeA, or st = aw{ b is a proper singular pair of x.

5. SEGMENTS BETWEEN SINGULARITIES

Refer to the factorizations of x and y above that show all the proper
singularities. In this section we will show that the segments yt between proper
singularities can be replaced by the segments xt by using only Rule (1). The
main resuit here is Lemma 2, but we need several preliminary results first.

PROPOSITION 5: Let:

and let:

X — X i X 2 X 2 — \-

0, where x1=x0^

KOSX . . . XiSi)xi + 1

fx . . . X^Sj, X2 = X ^

( S ï + l X t + 2

l 5 and x3

• • • smxm),

i = ( S i+ l xi + 2 xml

be similarly defined, where x2~ y, x and y are coterminal, and x and y have
the same proper singularities. Then x2 and y2 are coterminal and

(xx x2) x = (yi y2) T, (x2 x3) x = (y2 y3) i.

Proof: If x has no proper singularities then x2 = x and y 2 = y and the claims
easily follow. If x has exactly one singularity then either iq — l, x2=x0i

x3 = s1x1 or x 1 =x o s 1 , x2 = xl5 and x3 = l. In the first case Ji = l, y2— y'0
and y3 = slyv Again the claim is easily verified here, and the second case is
symmetrie. The gênerai case follows easily with the aid of Proposition 1 (c).
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PROPOSITION 6: Let xeA* have the factorization:

x = x1 x2 x3 = xx x2 1

where x2 = x21ax22, aeA, and a$(x1x2l)x. If x2 has no singularities of x,
then:

(x21a)xc:(x22x3)x.

Proof: Since a appears in x2 and x2 has no singularities of x, we have
(a, a)exx2. Because a$(xix21)x, we must have ae(x22x3)x. Also eex2 1x
implies (e, a)ex2x2. Since x2 has no singularities of x, we have (a, e)exx2

and ee(x22x3)x. Thus (x21a)x c (x22x3)x.

PROPOSITION 7: Let x, yeA* have the factorizations:

X — Xj X2 X3 = Xj X 2 1

where x2 and y2 have no singularities of x, and x2=x2 1ax2 2 , y2~y
aeA, a$(x1x21)T\J(y1y2i)t- Then (x2x3)x^(y2y3)x implies

Proof: (x22x3)x~(x2l ax22x3)x = (x2 x3)x by Proposition 6. Similarly
(j;22>;3)T = Ö;2>'3)x a n ( i ^ e claim follows.

Lèt x, yeA* be such that xx=jx and let B be a given subset of xx. Let x
and y be préfixes of x and y respectively. The pair (x, y) is called a B-pair
iff:

x x—y x 3 B.

Let PB(x, y) be the set of all B-pairs of x and y. This set is nonempty since
(x, y)ePB(x, y). Define the binary relation ^ on PB(x, y) by:

y^ iff | x x | ^ | x 2 | and | ^ | ^ \y2\.

One vérifies that ^ is a partial order on PB (x, y).

PROPOSITION 8: PB(x, y) has a unique minimal element with respect to ^ .

Proof: Because P is finite it suffices to show that for all Pi = (xl9 j j
p2 = (x2, y2) in PB(x, y) there exists p = {x, y)ePB(x, y) such that p^px and
p^p2. If PxSPi' letp =/>i- If Pi^Pu tetp=p2-

 N o w suppose neitherp l^p2

nor p2 ^pv Suppose also that | xx | > | x21. Then, since px ^p2, we must have

Ml
x2x
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140 J. A. BRZOZOWSKI, R. KNAST

Letp = (x2, yx). Thenp is a B-pair andp^p u p^p^ Similarly, if |x x \ < \x2|,
y\ | > |y2 • Let p~{xx, y2); then ^ is the required B-pair. Finally the

cannot occur, for then eitherpxSP2 orP2=Pi-case l x ! I = | x 2

LEMMA 2: Let x and y be coterminal paths such that x2~y and suppose
that x and y have the factorizations:

x = x 1 x 2 x 3 , y

where x2 and y2 are coterminal and do not contain any singularities ofx and:

(xx x2) x = (y i y2) x, (x2 x3) x = (y2 y3) x.

Theny~y1x2y3.

Proof: The proof proceeds by induction on | x2 | + \y2 \.

Basis: \x2 \ -f \y2 \ =0

Herex2=;;2 = l and y=yx ly^^yxx2y%.

Induction Step: | x 2 | 4- \y2\ > 0

We assume that the lemma holds for all cases where |x2 j + \y2\ ^k.
Suppose now that | x 2 -f | j 2 | =fc + l. The proof will be decomposed into
several cases.

Case 1; x2 x c: xx x and x2 x a x3 x

Here y2 x c (yx y2) x = (xA x2) x = xx x = ƒx x. Similarly j 2 x c= ̂ 3 x. Also
x2 x c j / j T f l y3 x. By Rule ( 1 a):

Case 2: X 2 T ^ X 1 T

Note that y2 x <t j^i x; otherwise:

x2 x <= (xx x2) x = (yx y2) x=yx x = xx x,

which is a contradiction. Let a be the first letter of x2 from the left that does
not appear in xv Similarly let b be the first letter of y2 from the left that is
not in j^ . Then x2 = x21ax22, y2

=zy2iby22 a nd

x = xxx2X ax22 x3, where a $ (xx x21) x = xx x, (5)

where b$(y1y21)T=yxx. (6)

We consider next two subcases.
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Case 2.1: a = b

Here we have:

w h e r e ^ O i J ^ i h ^ i ^ (7)

and x is as in (5). Now x21 and y2l are coterminal and x21x, y2ix
By Proposition 6, y2lx a 0>22.y3)x. By Propositions 6 and 7,

x. By Rule(la):

Now let xi = xxx21 a, x2 = x22, andx'3 = x3. Then:

x = x'1x'2x3 = (x1x21a)(x22)(x3). (9)

Similarly, let y\ =y1 x21 ay y2 =y22, and ^3 = ƒ3. Then:

(yi^21«)(>22)03)- (10)

We verify the 4 conditions of the lemma:
(i) x/

1x = (x1x21a)x = 0 1 x 2 1 a ) x ^ x .

(ii) (x; x2) t = (Xi x2) x = (yly2)ï = (y[ y'2) x.
(iii) x3x = x 3 x=^ 3 x=/ 3 x.
(iv) (x2X3)x = (x22x3)x = O22j3)x = (y2/3)x by Proposition 7.
Note that x2 is a proper factor of x2 and y2 is a proper factor of y2.

Hence x2 and ^2 do not contain any singularities of x. Evidently
IX21 + | y'i I < IX21 + 1̂ 21 a nd we can apply the induction hypothesis:

y =^1^273 ^ ^ 1 ^ 2 ^ =Jl ^21 ̂ 22^3 =^1^2 73'

Altogether y~y'~yx x2y$ and the induction step goes through in this case.

Case 2.2:

Refer to (5) and (6). Since be(y1y2)x—ylx = (x1x2)x-~xlx we must have
bex22x, Similarly aey22x and:

X = x1x2x3 = x1(x21ax22)x3=x1x21a(s1bs2)x3 , (11)

where x22 = 51fes2 and h^(x1x2iös1)x, and

=^1 021^22)^3 =7i^2i^(^ ^2)^3, (12)

where 3>22 = £i at2 and a$(y1y21 btx)x. In other words the leftmost appearan-
ces of ft in x and a in y are shown.
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Let (as1)TU(&ti)t = #. The préfixes x1x2 of xtx2 and yxy2 of yxy2

satisfy:
(Xl x ^ t - O ^ y2)x z> B.

Thus (xx x2, y^y2) is a B-pair. By Proposition 8, there exists a minimal B-pair
(x, 7). Since beB and b^(x1x21as1)x we have:

I x x x 2 « 5 X b\ S I*I ^ Ixx x2 I. (13)
Similarly

\ \ \ \yiy2\. (14)

Let c be the last letter of x and d the last letter of y, and let x —pc and
y = qd. We claim first that c^d. Note that c^pt, for otherwise the pair (p, y)
would be a shorter B-pair. Similarly d$q%. Assume now that c = d. If c$B,
then (/>, 4) is a B-pair, contradicting the assumption that {pc, qc) is minimal.
Thus ceB = (as1btl)x. Since |x1x2 1 as1b\ S \pc\ and c$px, the condition
c ^ a s ^ T implies c = b. But then C G ^ ^ I ^ I ) ^

 a n ( l ^1^21^1 is a proper
prefix of y. This implies cegx which is a contradiction. Hence we cannot
have ce(asxb)x and we must have cet1x. This is again a contradiction of
the f act that c$qx. Theref ore c # d.

From (13) and (11) it is clear that either c = b or c¥=b and ces2. Both
cases can be handled by the notation:

pc = xlx21as1bs21. (15)

For if c = b, let s21 = l. Otherwise let s21 be the shortest prefix of s2 that
ends in c. In either case let s2=s2ls22- Similarly:

<ld^yiy21btxat2l (16)

where t2 = t21122 and t2l = 1 if d = a, and £21 is the shortest prefix of t2 that
ends in d, otherwise. Now let:

g = bt1at2l.

We now arrive at the décompositions of x and y :

x = x 1 x 2 x 3 = x1x2 1 ax 2 2 x 3 =x 1 x 2 1 as 1 6s2x3

= Xi x21 ast bs21 s22 x3 = xx x21/s22 x3 =pcs22 x3, (17)

3. (18)
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Consider next where c can appear in y. Since ce(pc)x = (qd)x, we must
have ce(y1y21bt1at2l)x. If ce(yxy21)x then cexxx and cepx which is a
contradiction. Hence ce(bt1 at21)x—gx. Similarly de{asl bs2l)x~f x. Let:

f—as
g = b

libs21—i

hat2l =

ux du2 c,

vlcv2d,

where

where

d$u2x,
c$v2x.

(19)

(20)

In other words we take the rightmost appearances of d in ƒ and c in g. We
now have the factorizations illustrated in Figure 2. Of necessity, the figure
shows a particular case and should only be used as a visual aid.

We will deal with the factorization:

x = x/
1x2x

/3 = (x1x2 1 /)(s2 2)(x3) , (21)

where x/
1=x1x21 ƒ x2 = s22, x'3 = x3. We begin with:

and we will show that y ~ y' where:

/ = / i y 2 y *=(yi*2i f) 0>2 dt22) o3) , (22)

where y'1-y1x2l ƒ ^ = ^2*22» anc* y*=y$- T ^ e Proof is given in Lemma 3
below. Assuming this result we next show that all the conditions of Lemma 2
apply to (21) and (22).

First, x2 =s2 2 is a proper factor of x2 and y2 = v2 dt22 is a proper factor of
y2. Hence x2 and y2 contain no singularities of x. Second, x2 and y2 are
coterminal. Third, y~y' (Lemma 3) implies y 2~ y' a n d so x2~ y'. Finally,
we verify the four conditions on the alphabets of the factors:

(i) x/
1x = (x1x21 / ) T = O I ^ 2 I / ) T = / I T .

(ii) (x; x2) x = (xx x2) x = (y1y2)x = (qd)xU t22 x

t22x = (xix21f)x{Jt22x

because (v2d)x <= (y1y2)x. Therefore:

(iii)

(iv) Since y\ ends in ƒ which ends in c, ee{y2y^)x implies
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y3

y21 ' 22

L_L
k21

•PH
Figure 2. - Illustrating Factorizations of x and v.

(c, e) ey' %2 = x x2. Hence e e (s22 ^3) x, because c$px,

Conversely:

Therefore

By Proposition 6 applied to the letter d in g, (y2ig)t <= (tizy^t- Hence
(x2x3)x c O22.y3)T c O2 /3)x. Thus (X2X3)T = O 2 / 3 ) T .
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Now all the conditions of Lemma 2 are satisfied.
x'21 + \y'i I < IX21 + 1̂ 2 I > * e induction hypothesis applies and

145

Since

Therefore y~y'~yi *iyz as claimed, and the induction step goes through.

Case 3; x2 x <t *3 T

This follows from Case 2 by left-right duality.
Since the induction step goes through in all cases, the lemma holds.

LEMME 3: Let x, y9 and y' be defined as in the proof of Lemma 2. Then

y~y'-
Proof: (à) We first show that the graph consisting of the edges in

C = ƒ x U g x. is strongly connected. Since the node b © is connected to a a = ƒ a
by the path tu all the nodes in the path asxb are connected to /ot. Let
s21 = s'2lS2l where 5^ is the longest prefix of s21 that is connected to ƒ a.
Similarly, atü is connected to b a = g a by sv Let t 2 i = t 2 i *2i where t21 is the
longest prefix of t21 connected to ^a (see Fig. 3).

Figure 3.

Now s21 cannot have any edges in common with as1bs21 or bt1at2V

Otherwise the ca end of the common edge could be connected to ƒ a. Hence:

Also, (pc)x x, i. e.
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Consequently we have:
(x1 x21 asl bs21)x ZD (y1y21 bty at'2l)x.

Similarly the reverse inclusion holds and:

Therefore {xlx21as1bs2u y\y2\bt1at21) is a 5-pair. However {pc, qd) is a
minimal B-pair. Hence we must have s21=s21, £21 = t21) ƒ Ö> is connected to
ƒ oc and g œ is connected to g a. Hence the graph is strongly connected since
ƒ and g have a common edge.

(b) In view of (a) there exists paths h and k such that:

h a = ƒ <D, h (Ù = ƒ a, h c C ,

fe a = g co> k œ=g a, feicC.

Let f = u2ch and g'^v2dk. Then f /g'g is a loop about the vertex
d(ù=g(ù and ƒ ' ^g'g <= C. Now:

by (la), because (y1y21g)T-=(qd)T = (tc)x =3 C, and C c (r22j;3)T by
Proposition 6. Thus:

Now Rule (1 c) can be applied, yielding:

y~yi x2X (fg' gf')2 fgf gt22 y3

where we have replaced y21gf by x21. The alphabet conditions on x2i and
y21 are easily verified. Thus:x21fv2 dt22y3,

=yix21fg
/(gf/fg')2gt22y3

fg'gt22y39 byRule(la)

fv2d(kv1cv2d)t22y3

3, byRule(la)

=/•
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Hence the lemma holds.
This concludes the proof of Lemmas 2 and 3. By combining Lemmas 1

and 2 we have the theorem.
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