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Abstract. — Considering only deletions performed in an AVL-tree with n leaves, we show that
the total rebalancing time for n arbitrary deletions is linear. More precisely, the number of balance
and structural changes is bounded by 1.618 n.

Résumé. — En regardant seulement des suppressions exécutées dans un arbre du genre AVL
avec n feuilles on va montrer que le temps nécessaire pour rebalancer Varbre après n suppressions
choisies par hasard est linéaire. Plus précisément le nombre de changements de balance et structurels
est limité par 1.618 n.

1. INTRODUCTION

Balancée trees (e. g. 2-3 trees, B-trees, AVL-trees) are very popular data
structures for the set manipulation problem. The AVL-tree is the oldest basic
data structure introduced 1962 by AdeFson-VePskii and Landis [1]. Many
attempts were undertaken to analyse these trees (Foster [3], Knuth [5], p.
455). Brown [2] and Mehlhorn [6] studied the expected number of balanced
nodes in random AVL-trees. Mehlhorn and Tsakalidis [8] give a rigorous
analysis for insertions into an initially empty AVL-tree. Besides other results
it is shown in [8] that the number of rebalancing opérations ( = balance
changes) for insertions is linear.

In this paper we consider only deletions in an arbitrary AVL-tree with n
leaves and we show that the number of rebalancing opérations ( = balance
and structural changes) is linear for deletions too. Note that a deletion can
cause O (log n) rebalancing opérations. In the case of an insertion the number
of structural changes is at most 0(1); this is not true for a deletion and thus
these are considered as rebalancing opérations.

(*) Received July 1984, revised February 1985.
C) FB 10, Informatik, Universitât des Saarlandes, 6600 Saarbrücken, R.F.A.
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Our main insight is to concentrate on amortized behavior rather than
expected behavior. This measure is well established in the literature (Mehlhorn
[7]) and led us to stronger results (our results hold for arbitrary not just
random séquence of deletions) and suggested to use combinatorial (not
probabilistic) methods of analysis. More precisely we show, that the total
number of rebalancing opérations in processing a séquence of n arbitrary
deletions from an AVL-tree with n leaves is bounded by 1,618 n. Expérimental
data (Karlton et al. [4]) suggests that the expected number of rebalancing
opérations for n random deletions is 1,126 n and hence only slightly less than
the amortized number.

2. DEFINITIONS AND ELEMENTARY OPERATIONS

AVL-trees are binary trees in which nodes either have two sons or no
sons. The latter nodes are called leaves. A binary search tree is AVL if the
heights of the subtrees at each node differ by at most one, where the height
Height (v) of node v is equal to the length of the longest path from v to a
leaf.

Let L (v) [R (v)] be the left [right] subtree of the tree with root v. For every
node v we define its height balance hb (v) by:

hb (v) = Height {R (v)) - Height (L (v)).

Hence the height balance can be +1, 0, or — 1. We call a node balanced
(unbalanced) if its height balance is O (± 1).

For every deletion we define the critical node (CN) as the node on the
search path where the balance changes after the deletion either cause no
more height decreases of the subtrees or produce a height balance H-2 or
— 2 (causing structural changes). We give the last définition more formally:

Let v0, vu . . ., vk be the path from the root v0 of an AVL-tree to vk, the
leaf searched for. Let vs be a node on the search path with Height (vs) = 2.
Then the critical node is vs if either hb(vs) = 0 (case 1), otherwise (case 2) the
node Vj_u where) is minimal such that:

f -4-1, if right-son (vt) lies on the search path,
hb (vt) = <

[ — 1, if left-son (vt) lies on the search path,

for ail t with j^t^s, if such a séquence exists or the father of vs (case 3)
otherwise.

(Figure 1 illustrâtes the three cases up to left-right symmetry.)
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CN

case 1

case 3
case 2

Figure 1

In the above figure x is the leaf which must be deleted. In the following
figures a node contains its height balance and a subtree is represented by its
height h.

Next we give the elementary opérations executed on the critical node (CAT)
after a deletion.

Let v be the CN with hb (v) = + 1 as in figure 2. We explore the case where
a deletion causes a height decrease of the left subtree of v :

h+1

Figure 2

a.l. Terminating rotation: hb(w) =

rot

h+1 h+1 h h+1

REMARK a. 1: This opération increases the number of the unbalanced nodes
by one. The height of the rebalanced subtree remains unchanged.

a.2. Propagating single rotation: hb(w)= + 1:

rot

h+1

vol. 19, n° 4, 1985



3 2 6 A. K. TSAKALIDIS

a. 3. Propagating double rotation: hb (w)= - 1

a. 3.1:

drot

h h-1 h h

a. 3.2: hb (k) = 0, then we get hb (k) = 0, hb (v) = 0, hb (w) = 0.

a. 3. 3: hb(k)=-l9 then we get hb(k) = 0, hb(v) = 0, M>(w)=+1.

REMARK a. 2-3: The opérations a. 2 and a. 3 each decrease the number of
the unbalanced nodes by 2.

The rebalanced subtree decreases its height by 1.

b. Absorption
If W?O) = 0 and the subtree of v has decreased its height by one, then we

take hb (v) # 0 without changing any other height:

h h h-1 h

REMARK b: This opération increases the number of the unbalanced nodes
by one.

3. THE COMPLEXITY OF A SEQUENCE OF DELETIONS

We want to estimate the complexity of n arbitrary deletions in an arbitrary
AVL-tree Tn with n leaves. First we give the deletion algorithm:

proc delete (x);
1) search for x;
2) delete x;
3) exécute the balance changes ± 1 -+ 0 on the search path up to the CN;
4) exécute either one of the opérations a. 1 or è or one or more of the propagating opérations

a. 2 or a. 3;
end

Let T be an AVL-tree. The fringe of T is obtained by deleting ail nodes
which have more than four leaves below them. The fringe of an AVL-tree is
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partitioned into subtrees of the following three types:

Typ I: Q - , Typ I I : Q or Q , Typ I I I :

A deletion can increase or decrease the number of the unbalanced nodes.
We observe the following:

REMARK C: A deletion on type III subtree provides a type II subtree and
increases the number of unbalanced nodes by one, and a deletion on type II
decreases this number by one.

During the exécution of n arbitrary deletions on Tn the following values
will become important:

X1 : the total number of balance changes ± 1 -> 0 on step 3);

X2 : the total number of terminating rotations;

X3 : the total number of propagating single rotations;

X4 : the total number of propagating double rotations;

X5 : the total number of absorptions.

In the worst case for a single deletion the balance changes ± 1 -> 0 and
the propagating rotations together could cause cost proportional to the height
of the tree, and we should expect that the total cost of the rebalancing
opérations is O (n log n). We will show, however, that this cost is only O (n).

THEOREM: Let Tn be an arbitrary AVL-tree with n leaves, and let REB be
the total number of balance changes + 1 —• 0 on the search path up to the
critical node plus the total number of the propagating single or double rotations
during the exécution of n arbitrary deletions on Ttt, then the following holds:

REBS 1,618 n.

Proof: For this process we define:

D : = the number of the destroyed unbalanced nodes;

E : = the number of the existing unbalanced nodes in Tn;

P : = the number of the newly produced unbalanced nodes.

Since we finally have no nodes any more the following holds:

(1) D=E + P.

Let du d2, d3 be the number of the n deletions which are executed in a
subtree of type I, II, III respectively.
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Next we estimate the contribution of the variables dt for 1 ̂  i ̂  3 and Xj
for 1 ̂ 7 ^ 5 to the number of the unbalanced nodes during this process.

Since a deletion in a subtree of type I destroys a balanced node and always
leads either to an opération a . l , a. 2 or a. 3 the respective contribution of
dx to the number of the unbalanced nodes will be chargea to the variables X2,
X3 or X4. Analogously a deletion in a subtree of type III destroys a balanced
node and leads to an opération b (Absorption) and thus the contribution of
d3 to the mentioned number will be charged to the variable X5.

Hence we have only to consider the contribution of d2 and Xj for 1 ̂ / ^ 5 to
the number of the unbalanced nodes occured during the n deletions on Tn,

According to the remarks a. 1, a. 2-3, b and c we get for (1):

(2)

where UN(Tn) is the number of the unbalanced nodes in Tn.

According to Knuth ([5], exercise 6.2.3.3) we have:

(3)

Since the opérations a. 1 and b are terminating we get:

X2 + X5g>n. (4)

Setting (3) and (4) in (2) we get:

X) XSh6l% n.

Since d2 + X3 + XA ^ 0 we have:

1S 1,618 n. •

Experiments in [4] show that the average size of Xx is 0,912 and of X3 +X4

is 0,214 for a random deletion.

4. CONCLUSIONS

We have shown that the total number of rebalancing opérations after n
arbitrary deletions in an AVL-tree with n leaves is at most 1,618 n.

For arbitrary mixed insertions and deletions this number cannot be linear
since there are interchanged deletions and insertions which always cause
rebalancing up to the root.

But for random mixed insertions and deletions such a resuit seems to be
likely.
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