## RAIRO. InFORMATIQUE THÉORIQUE

## Karel Ii Culik Juhani KarhumäKi

# On the Ehrenfeucht conjecture for DOL languages 

RAIRO. Informatique théorique, tome $17, \mathrm{n}^{\circ} 3$ (1983), p. 205-230
[http://www.numdam.org/item?id=ITA_1983__17_3_205_0](http://www.numdam.org/item?id=ITA_1983__17_3_205_0)
© AFCET, 1983, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

# ON THE EHRENFEUCHT CONJECTURE FOR DOL LANGUAGES (*) (**) 

by Karel Culik II ( ${ }^{1}$ )<br>and Juhani Karhumäki ( ${ }^{2}$ )<br>Communicated by J. Berstel


#### Abstract

Ehrenfeucht conjectured that each language $L$ over a finite alphabet $\Sigma$ possesses a test set, that is a finite subset $F$ of $L$ such that every two morphisms on $\Sigma^{*}$ agreeing on each string in $F$ also agree on each string in L. We introduce the notion of deviation of a string with respect to a language and use it to give a sufficient condition for the existence of such a test set. Moreover, we prove that a test set effectively exists for each positive DOL language. The well known open problem whether this holds for every DOL language remains open.


#### Abstract

Résumé. - Ehrenfeucht a énoncé la conjecture suivante: chaque langage $L$ sur un alphabet fini $\Sigma$ possède un ensemble de test, c'est-à-dire une partie finie $F$ de $L$ telle que deux morphismes quelconques sur $\Sigma^{*}$, qui coïncident sur les mots de $F$, coïncident aussi sur les mots de L. Nous introduisons la notion de déviation d'un mot par rapport à un langage et nous l'utilisons pour donner une condition suffisante à l'existence d'un ensemble de test. De plus, nous démontrons qu'un ensemble de test existe effectivement pour tout langage DOL positif. Le problème ouvert bien connu, de savoir si ceci est vrai pour tout langage DOL, reste ouvert.


## 1. INTRODUCTION

Ehrenfeucht conjectured (Problem 108 in [11]) that for every language $L \subseteq \Sigma^{*}$ there exists a finite subset $F$ of $L$ such that for any pair of morphisms on $\Sigma^{*}, g(x)=h(x)$ for each $x$ in $L$ if and only if $g(x)=h(x)$ for each $x$ in $F$. Such a finite subset $F$ has been called a test set for $L$ in [7] where it has been shown that Ehrenfeucht's conjecture holds for every language over a binary alphabet. It is clear from arguments in [6] that a test set can be effectively constructed for each regular language and this has been extended to context

[^0]free languages in [1]. The effective existence of a test set for a language $L$ clearly implies that we can test whether any given morphisms $g, h$ on $\Sigma^{*}$ agree on $L$, i. e., whether or not $g(x)=h(x)$ for each $x \in L$. Therefore a test set cannot effectively exist for each context sensitive language since the testing of morphism equivalence for them has been shown to be undecidable in [6].

Both the existence of a test set and the decidability of morphism equivalence are open for all families of languages between DOL and indexed languages, $c f$. [3] where positive answers are conjectured. The proof of these conjectures is not expected to be easy since already the weakest one of them, the decidability of morphism equivalence on DOL languages, implies the decidability of the HDOL sequence equivalence problem, $c f$. [3], a longstanding open problem.

Our main purpose is to provide a partial result in the direction of these open problems, namely we show that a test set effectively exists for each positive DOL language. A DOL system is positive if each letter can be derived from every other letter in one step.

In section 3 we introduce the deviation of a string with respect to a language. It is a generalization of weighted difference from [7], which for any pair of morphisms is linearly proportional to the balance of the considered string. However, the situation in the case of an arbitrary finite alphabet is essentially more complicated than in the binary case. We show that every language $L$ with bounded prefix deviation and fair distribution of letters possesses a test set.

In the next section we show that it is decidable whether a given DOL language $L$ has the above properties, and if so, that a test set for $L$ can be effectively constructed. For positive DOL languages the case covered in section 4 is also covered in section 5 , but we have included it since the arguments in the case of bounded prefix deviation are more intuitive (generalization of bounded weighted difference in [7]) and the effective existence of a test set is, unlike in section 5 , shown independently of [5].

In section 5 we construct for a positive DOL language a "partial" test set covering all pairs of morphisms agreeing on the language with bounded balance. The part of a test set covering the pairs of morphisms agreeing with unbounded balance is constructed in section 6.

In the last section we obtain our main result, the effective existence of a test set for each positive DOL language, by combining the partial test sets from the previous two sections. This immediately implies the decidability of morphism equivalence for positive DOL languages.

## 2. PRELIMINARIES

This paper deals with basic properties of free monoids from the point of view of formal language theory. As a general reference we mention [9]. The basic properties and more background material on DOL systems as well as DTOL systems can be found in [13].

A free monoid generated by a finite alphabet $\Sigma$ is denoted by $\Sigma^{*}$. For the notational convenience we fix $\Sigma=\left\{a_{1}, \ldots, a_{t}\right\}$ if not explicitly mentioned otherwise. The elements of $\Sigma^{*}$ are words or strings and its subsets languages. The identity element of $\Sigma^{*}$, called empty word, is denoted by $\lambda$, and $\Sigma^{+}=\Sigma^{*}-\{\lambda\}$.

The length of a word $x$ and the cardinality of a finite set $A$ is denoted by $|x|$ and $|A|$, respectively. For $w \in \Sigma^{*}$, the number of $a$ 's in $w$ is denoted by $|w|_{a}$. When $\Sigma=\left\{a_{1}, \ldots, a_{t}\right\}$ we usually write $|x|_{i}$ instead of $|x|_{a_{i}}$. The Parikh mapping $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{t}$ is defined by $\psi(x)=\left(|x|_{1}, \ldots,|x|_{t}\right)$. Consequently, the Parikh vector of a word $x$ is denoted by $\psi(x)$. We call words $x$ and y Parikh equivalent if $\psi(x)=\psi(y)$. For a word $x$, alph $(x)$ denotes the set of letters occurring in $x$.

For $x, y$ in $\Sigma^{*}$, the left (right) quotient of $x$ by $y$ is denoted by $y^{-1} x\left(x y^{-1}\right)$. It is undefined if $y$ is not a prefix (suffix) of $x$. If $x$ is a prefix of $y$ we write $x$ pref $y$, while $x$ Pref $y$ means that either $x$ pref $y$ or $y$ pref $x$ holds. By $\operatorname{pref}_{n}(x)$ we mean the prefix of $x$ of length $n$. By definition, if $|x|<n$ then $\operatorname{pref}_{n}(x)=x$. For a word $x$ (resp. language $L$ ) pref $(x)$ [resp. pref $(L)$ denotes the set of all prefixes of $x$ (resp. all prefixes of words in $L$ ). Similarly for suffixes if "pref" is replaced by "suf". We say that $y$ is a subword of $x$ if $x=x_{1} y x_{2}$ for some words $x_{1}$ and $x_{2}$. The set of all subwords of a language $L$ is denoted by $\operatorname{sub}(L)$. The set of all such words of length $n$ is denoted by $\operatorname{sub}_{n}(L)$. We say that $y$ is a sparse subword of $x$ if $y$ is obtained from $x$ by erasing some of its occurrences of letters.

Throughout this paper our central notion is a morphism of a free monoid. We say that a morphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ is $\lambda$-free if $h(a) \neq \lambda$ for all $a \in \Sigma$. The size of a morphism $h$, denoted by $\|h\|$, is $\|h\|=\max \{|h(a)| \mid a \in \Sigma\}$. Let $h, g: \Sigma^{*} \rightarrow \Delta^{*}$ be two morphisms and $L$ a language over $\Sigma$. We say that $h$ and $g$ agree (resp. length-wise agree) on $L$, in symbols $h \stackrel{L}{\equiv} g$ (resp. $h \stackrel{L}{\equiv} g$ ), if $h(x)=g(x)$ for all $x$ in $L$ [resp. $|h(x)|=|g(x)|$ for all $x$ in $L$. The set of all pairs of morphisms agreeing on $L$ (resp. agreeing on $L$ length-wise) is denoted by $\mathscr{H}(L) \quad\left[\right.$ resp. $\left.\mathscr{H}_{l}(L)\right]$. We call a language $L$ rich if $\mathscr{H}(L)=\left\{(h, h) \mid h: \Sigma^{*} \rightarrow \Delta^{*}\right.$ is a morphism $\}$, i. e., only pairs with identical components agree on $L$. By a test set for a language $L$ we mean any finite
subset $F$ of $L$ satisfying: for any pair $(h, g)$ of morphisms $h \stackrel{F}{\equiv} g$ implies L $h \equiv g$. Ehrenfeucht conjecture states: Every language has a test set.

Let $h$ and $g$ be two morphisms $\Sigma^{*} \rightarrow \Delta^{*}$ and $w$ a word. The balance of a word $w$ with respect to $(h, g)$, in symbols $\beta_{h, g}(w)$, or shortly $\beta(w)$ if $h$ and $g$ are known, is defined by:

$$
\beta_{h, g}(w)=|h(w)|-|g(w)| ;
$$

$c f$. [3]. We say that a pair $(h, g)$ has bounded balance on a language $L$ if there exists a constant $c$ such that $|\beta(w)| \leqq c$ for all $w \in \operatorname{pref}(L)$. Moreover, we say that $(h, g)$ agree on $L$ with bounded balance if $h \stackrel{L}{\equiv} g$ and $(h, g)$ has bounded balance on $L$.

Next we introduce briefly DOL systems. A DOL system $G$ is a triple $(\Sigma, f, x)$, where $\Sigma$ is a finite alphabet, $f$ is a morphism $\Sigma^{*} \rightarrow \Sigma^{*}$ and $x$, called axiom of $G$, is a nonempty word of $\Sigma^{*}$. A DOL system $G$ defines a sequence of words: $x, f(x), f^{2}(x), \ldots$ A language $L(G)=\left\{f^{n}(x) \mid n \geqq 0\right\}$ is the language generated by $G$. We call a DOL system positive if $a \in \operatorname{sub}(f(G))$ for each pair $(a, b) \in \Sigma \times \Sigma$, i. e., any letter of $\Sigma$ is derived from any other letter in one step.

Finally, we need some terminology concerning vectors over rational numbers $\mathbb{Q}$ and nonnegative integers $\mathbb{N}$. For two vectors $z$ and $z^{\prime}$ in $\mathbb{Q}^{t}, z \leqq z^{\prime}$ means that $z$ is componentwise smaller or equal than $z^{\prime}$. If $z \leqq z^{\prime}$ and $z \neq z^{\prime}$, we write $z<z^{\prime}$. By the absolute value of a vector $z=\left(z_{1}, \ldots, z_{t}\right)$ we mean the number $|z|=\sum_{i=1}^{t}\left|z_{i}\right|$.

Let $M \subseteq \mathbb{Q}^{t}$. The vector space over $\mathbb{Q}$ generated by $M$ is denoted by $\langle M\rangle$. When $M \subseteq \mathbb{N}^{t}$ we call an element $z$ of $M$ minimal if there does not exist in $M$ any element $z^{\prime}$ such that $z^{\prime}<z$. The set of minimal elements of $M$ is denoted by $\operatorname{Min}(M)$. By the well-known König Infinity Lemma, cf. [9], $\operatorname{Min}(M)$ is always finite. If $M$ is a finite set of numbers we denote the smallest and the largest number of $M$ by $\min (M)$ and $\max (M)$, respectively.

## 3. DEVIATION

In this section we define and study our central notion: deviation of a word with respect to a language. This notion is closely related to the notion of balance of a word with respect to two morphisms, however, our new notion depends on the considered language only.

Let $L$ be a language over $\left\{a_{1}, \ldots, a_{t}\right\}$. We define a subset of $\mathbb{N}^{t}$ induced by $L$, in symbols $\mathrm{sp}(L)$, by setting:

$$
\operatorname{sp}(L)=\psi^{-1}\left\{\langle\psi(L)\rangle \cap \mathbb{N}^{t}\right\}
$$

Since $\psi(\operatorname{sp}(L))$ is a subtractive submonoid of the additive monoid $\mathbb{N}^{t}$ we have, see [8].

Lemma 3.1: For each language $L$ over $\left\{a_{1}, \ldots, a_{t}\right\}, \psi(\operatorname{sp}(L))$ is finitely generated submonoid of $\left(\mathbb{N}^{t},+\right)$.

By Lemma 3.1, there exists a finite set $\beta$ of vectors in $\mathbb{N}^{t}$, say $\beta=\left\{e_{1}, \ldots, e_{p}\right\}$, such that:

$$
\psi(\operatorname{sp}(L))=\left\{\sum_{i=1}^{p} n_{i} e_{i} \mid n_{i} \in \mathbb{N}, \quad \text { for } \quad i=1, \ldots, p\right\}
$$

Now, we state our basic definition.
Definition 3.1: Let $L$ be a language over $\Sigma=\left\{a_{1}, \ldots, a_{t}\right\}$ and $w \in \Sigma^{*}$. The deviation of $w$ with respect to $L$, in symbols $d_{L}(w)$ or briefly $d(w)$ when $L$ is known, is the set:

$$
d_{L}(w)=\operatorname{Min}\left\{z \in \mathbb{N}^{t} \mid \psi(w) \in \psi(\operatorname{sp}(L))+z\right\}
$$

Example 3.1: Let $L=a b^{*} c$. Then:

$$
\operatorname{sp}(L)=\left\{\left.x \in\{a, b, c\}^{*}|\quad| x\right|_{a}=|x|_{c}\right\}
$$

and, in terms of Lemma 3.1:

$$
\psi(\operatorname{sp}(L))=\{n(1,0,1)+m(0,1,0) \mid n, m \in \mathbb{N}\}
$$

Further for each proper prefix $a b^{i}$ of a word in $L, d\left(a b^{i}\right)=\{(1,0,0)\}$.
Roughly speaking $d(w)$ tells how far $w$ is from the language $\operatorname{sp}(L)$. By the König Infinite Lemma, see [9], $d_{L}(w)$ is always finite. The relation between the deviation and the balance is as follows. For every pair $(h, g) \in \mathscr{H}_{l}(L)$ and every word $w$ :

$$
\begin{equation*}
\left|\beta_{h, g}(w)\right| \leqq \min \{|z| \quad \mid z \in d(w)\} \max \{\|h\|,\|g\|\} . \tag{1}
\end{equation*}
$$

We also have the following important lemma.
Lemma 3.2: Let $L$ be a language and $(h, g)$ a pair of morphisms in $\mathscr{H}_{l}(L)$. If $u$ and $w$ are words such that $\psi(u) \in d_{L}(w)$, then $\beta_{h, g}(u)=\beta_{h, g}(w)$.

Proof: Immediate, since $\psi(w)-\psi(u) \in \psi(\operatorname{sp}(L))$ and $h$ and $g$ agree lengthwise on $\operatorname{sp}(L)$.

We continue with the following observation.
Theorem 3.1: Every language $L$ over $\left\{a_{1}, \ldots, a_{t}\right\}$ containing $t$ linearly independent Parikh-vectors is rich.

Proof: In this case $\psi(\operatorname{sp}(L))=\mathbb{N}^{t}$, and hence for any pair $(h, g) \in \mathscr{H}_{l}(L)$, $\left|h\left(a_{i}\right)\right|=\left|g\left(a_{i}\right)\right|$ for $i=1, \ldots, t$. Consequently, for any pair $(h, g) \in \mathscr{H}(L)$, $h\left(a_{i}\right)=g\left(a_{i}\right)$ holds true for $i=1, \ldots, t$, too.

The problem of whether we can effectively find $\operatorname{sp}(L)$ for a given language, or as a special case effectively decide whether $L$ is rich, depends, of course, on the way how $L$ is given. For DOL languages, which we are particularly interested in, this can be done by:

Lemma 3.3: Let $G=(\Sigma, f, x)$ be a DOL system. There exists an integer $k<|\Sigma|$ such that $\psi(L(G))$ is included in the vector space generated by $\left\{\psi\left(f^{i}(x)\right) \mid i \leqq k\right\}$.

Lemma 3.3, as well as Lemma 3.4, follows easily from the properties of vector spaces.

Lemma 3.4: Let L be a DOL language generated by a $\operatorname{DOL}$ system $(\Sigma, f, x)$. If $u \in \operatorname{sp}(L)$, then also $f(u) \in \operatorname{sp}(L)$.

Definition 3.2: Let $L$ and $L^{\prime}$ be languages over the same alphabet. We say that $L$ has bounded prefix deviation with respect to $L^{\prime}$ if there exists a constant $C$ such that for every prefix $w$ of a word in $L$ :

$$
\min \left\{|z| \quad \mid z \in d_{L^{\prime}}(w)\right\} \leqq C
$$

If the above is satisfied for $L=L^{\prime}$ we say that $L$ has bounded prefix deviation.
It follows from (1) that if $L$ has bounded prefix deviation, then each pair $(h, g)$ of morphisms in $\mathscr{H}_{l}(L)$ has bounded balance on $L$. However, the bound depends on the pair. On the other hand, a pair $(h, g)$ may have bounded balance on such a language which does not have bounded prefix deviation, see Example 5.1.

Our notions of the deviation and the bounded prefix deviation are generalizations of those of the weighted difference and the bounded prefix difference defined in [7]. We can also generalize some arguments of [7] to yield the following theorem. To be able to state it we still need one notion. We say that a language $L$ has a fair distribution of letters if there exists a constant $q$ such that every subword in $L$ with the length of least $q$ contains all letters of the alphabet of $L$.

Theorem 3.2: Every language $L$ over $\left\{a_{1}, \ldots, a_{t}\right\}$ with bounded prefix deviation and fair distribution of letters has a test set.

Proof: Let the prefix deviation of $L$ be bounded by $C$ and let $q$ be a constant giving a fair distribution of letters for $L$. We first prove:

Claim: There exists a constant $N$ such that for any $u v \in \operatorname{pref}(L)$, with $|v| \geqq N$, the following holds true: for any pair $(h, g)$ in $\mathscr{H}_{l}(L)$ :

$$
\min \{|h(u v)|,|g(u v)|\} \geqq \max \{|h(u)|,|g(u)|\} .
$$

The claim is proved as follows. Let $z$ be a vector in $d(u)$ such that $|z| \leqq C$. We start by showing that there exist a constant $D$ and a vector $z_{1}$ in $\psi(\operatorname{sp}(L))$ such that:

$$
\begin{equation*}
z+D \eta \geqq z_{1} \geqq z, \tag{2}
\end{equation*}
$$

where $\eta=(1, \ldots, 1)$, i.e. all components of $\eta$ equal 1. According to Lemma 3.1 let $\psi(\operatorname{sp}(L))$ be generated by $\left\{e_{1}, \ldots, e_{p}\right\}$. We set:

$$
D=C+C \sum_{i=1}^{p}\left|e_{i}\right| \quad \text { and } \quad z_{1}=C \sum_{i=1}^{p} e_{i}
$$

Then:

$$
z+D \eta>C\left(\sum_{i=1}^{p}\left|e_{i}\right|\right) \eta=\left|z_{1}\right| \eta>z_{1}
$$

and:

$$
z<|z| \eta \leqq C \eta<z_{1}
$$

where the last inequality follows since each letter $a_{i}$ occurs in a word of $L$. Hence (2) has been proved.

Now, let $N=D q$. Since $|v| \geqq N, v$ contains as a sparse subword a word $v^{\prime}$ such that $\psi\left(v^{\prime}\right) \geqq D \eta$. Assuming, without loss of generality, that $|h(u)|>|g(u)|$ we should show that $|g(u v)| \geqq|h(u)|$. For a vector $y$ in $\mathbb{N}^{t}$ let $\bar{y}$ denote a word such that $\psi(\vec{y})=y$. Then, by Lemma 3.2 and the above, we obtain:

$$
\begin{aligned}
|g(u v)|-|h(u)|=|g(\bar{z} v)| & -|h(\bar{z})| \geqq\left|g\left(\bar{z} v^{\prime}\right)\right|-|h(\bar{z})| \\
& \geqq\left|g\left(\bar{z} \bar{\eta}^{D}\right)\right|-|h(\bar{z})| \geqq\left|g\left(\bar{z}^{1}\right)\right|-\left|h\left(\overline{z_{1}}\right)\right|=0 .
\end{aligned}
$$

Thus, the proof of the claim is completed and we return to the proof of the theorem.

We divide $L$ into two parts $F$ and $L-F$ by setting $F=\{w \in L|\quad| w \mid \leqq 3 N\}$. Moreover, for every $w$ in $L-F$ we choose a fixed decomposition:

$$
\begin{equation*}
w=u_{1} \ldots u_{m} \quad \text { with } \quad N \leqq\left|u_{j}\right| \leqq 2 N . \tag{3}
\end{equation*}
$$

For each such decomposition and for each $j=1, \ldots, m$ we define pairs $\left(z_{j}, u_{j}\right)$, where $z_{j}$ is a fixed vector in $d\left(u_{1} \ldots u_{j-1}\right)$ satisfying $\left|z_{j}\right| \leqq C$. Such pairs are called pieces. Clearly, the number of different pieces is finite. We say that two pieces $(z, x)$ and $\left(z^{\prime}, x^{\prime}\right)$ occur consecutively in $L$ if there exists in $L$ a word $w$ such that $x$ and $x^{\prime}$ occur consecutively in its decomposition (3), say $x=u_{k}$ and $x^{\prime}=u_{k+1}$, and moreover $z \in d\left(u_{1} \ldots u_{k-1}\right)$ and $z^{\prime} \in d\left(u_{1} \ldots u_{k}\right)$. Now, we choose a finite subset $L^{\prime}$ of $L$ such that for any pair of pieces if they occur consecutively in $L$ they occur consecutively already in $L^{\prime}$.

Finally, obviously there exists a finite subset $F^{\prime}$ of $L$ such that $\operatorname{sp}\left(F \cup L^{\prime} \cup F^{\prime}\right)=\operatorname{sp}(\mathrm{L})$. We infer that $F \cup L^{\prime} \cup F^{\prime}$ is a test set for $L$. We should show that for any pair $(h, g)$ of morphisms $h \equiv g$ implies $h \equiv g$. Let $(h, g) \in \mathscr{H}\left(F \cup L^{\prime} \cup F^{\prime}\right)$ and $w$ be an arbitrary word in $L-\left(F \cup L^{\prime} \cup F^{\prime}\right)$. Let the decomposition of $w$ according to (3) be $w=u_{1} \ldots u_{m}$. Since $(h, g) \in \mathscr{H}\left(F \cup L^{\prime} \cup F^{\prime}\right)$ and $\operatorname{sp}(L)=\operatorname{sp}\left(F \cup L^{\prime} \cup F^{\prime}\right), h$ and $g$ agree lengthwise on $L$ and therefore by the claim and the choice of (3):

$$
\min \left\{\left|h\left(u_{1} \ldots u_{i}\right)\right|,\left|g\left(u_{1} \ldots u_{i}\right)\right|\right\} \geqq \max \left\{\left|h\left(u_{1} \ldots u_{i-1}\right)\right|,\left|g\left(u_{1} \ldots u_{i-1}\right)\right|\right\}
$$

for $i=1, \ldots, m$. Consequently, the choice of $L^{\prime}$ and the fact $h \stackrel{L^{\prime}}{\equiv} g$ imply that if $h\left(u_{1} \ldots u_{i-1}\right)$ Pref $g\left(u_{1} \ldots u_{i-1}\right)$ then also $h\left(u_{1} \ldots u_{i}\right)$ Pref $g\left(u_{1} \ldots u_{i}\right)$. So we derive inductively that $h(w)=g(w)$ which completes the proof of the theorem.

We note that not only the assumption that $L$ has bounded prefix deviation but also the assumption that $L$ has fair distribution of letters is essential for our above proof, i. e. for the piece construction. This is seen as follows.

Example 3.1 (Continued): As already mentioned the language $L=a b^{*} c$ has bounded prefix deviation. However, the pairs ( $h_{k}, g_{k}$ ) of morphisms, for $k \geqq 1$, defined by:

$$
h_{k}:\left\{\begin{array}{l}
a \rightarrow a(b a)^{k}, \\
b \rightarrow b a, \\
c \rightarrow b a,
\end{array} \quad g_{k}:\left\{\begin{array}{l}
a \rightarrow a b \\
b \rightarrow a b \\
c \rightarrow(a b)^{k} a
\end{array}\right.\right.
$$

show that the claim in the proof of Theorem 3.2 does not hold true for $L$. Despite of that we, of course, believe that the theorem is true without the assumption of fair distribution of letters. Indeed, $\{a c, a b c\}$ is a test set for $L$.

## 4. DOL LANGUAGES WITH BOUNDED PREFIX DEVIATION

Whether the assumptions of Theorem 3.2 imply the effective existence of a test set depends, of course, on how $L$ is given. In this section we show that it is decidable whether a given DOL language satisfies the assumptions of Theorem 3.2 and, moreover, if this is the case, that a test set for it can be effectively found.

Lemma 4.1: Given a DOL language L, it is decidable whether it has fair distribution of letters. Moreover, if this is the case a constant $q$ such that any subword $u$ of $L$, with $|u| \geqq q$, contains all letters of $L$ can be effectively found.

Proof: Let $L=L(G)$ for a DOL system $G=(\Sigma, f, x)$ satisfying $\Sigma \subseteq \operatorname{sub}(L(G))$. For each $a$ in $\Sigma$ let $G_{a}=(\Sigma, f, a)$. We divide $\Sigma$ into two disjoint parts $\Sigma_{f}$ and $\Sigma_{i}$ by setting $\Sigma_{f}=\left\{a \in \Sigma \mid L\left(G_{a}\right)\right.$ is finite $\}$ and $\Sigma_{i}=\Sigma-\Sigma_{f}$. If $\Sigma_{i} \neq \emptyset$, i. e., $L(G)$ is finite, we are done.

So, assume that $\Sigma_{\mathrm{i}} \neq \varnothing$. We claim that $L$ has a fair distribution of letters, if and only if, the following two conditions are satisfied:
(i) there exists an $n_{0}$ such that for every $a$ in $\Sigma_{i} \operatorname{alph}\left(f^{n}(a)\right)=\Sigma$ for $n \geqq n_{0}$, and
(ii) the language $\Sigma_{f}^{*} \cap \operatorname{pref}\left(L\left(G_{a}\right)\right)$ and $\Sigma_{f}^{*} \cap \operatorname{suf}\left(L\left(G_{a}\right)\right)$ are finite for every $a$ in $\Sigma$.

Clearly, the conditions (i) and (ii) are necessary for a fair distribution of letters in $L$. They are also sufficient since (ii) rules out the possibility that $L$ would contain arbitrarily long subwords from $\Sigma_{f}^{*}$ and after that (i) guarantees that any long enough subword contains all letters from $\Sigma$. Now, the first sentence of the lemma follows, since the validity of (i) and (ii) for a DOL language can easily be checked. Furthermore, if $L$ satisfies the conditions (i) and (ii) then a bound giving a fair distribution for $L$ can be effectively found.

Lemma 4.2: Given a DOL language L, it is decidable whether it has bounded prefix deviation. Moreover, if this is the case an upper bound for it can be effectively found.

Proof: Let $L=L(G)$ for a DOL system $G=(\Sigma, f, \omega)$ with $\Sigma=\left\{a_{1}, \ldots, a_{t}\right\}$. By Lemma 3.3, we can effectively find $\operatorname{sp}(L)$. Let $F: \Sigma^{*} \rightarrow \mathbb{N}$ be a mapping defined by:

$$
F(w)=\sum_{i=1}^{t} n_{i}|w|_{i} \quad \text { for some } \quad n_{i} \in \mathbb{Z}
$$

and satisfying:

$$
\begin{equation*}
F(w)=0 \quad \text { if and only if } \quad w \in \operatorname{sp}(L) \tag{1}
\end{equation*}
$$

vol. $17, \mathrm{n}^{\circ} 3,1983$

Such an $F$ can be defined, e.g., via a linear functional $\mathbb{Q}^{t} \rightarrow \mathbb{Q}$ having $\langle\psi(\operatorname{sp}(L))\rangle$ as its kernel. Consequently, $F$ can be computed from L. Let $h$ and $g$ be morphisms of $\Sigma^{*}$ satisfying $\left|h\left(a_{i}\right)\right|-\left|g\left(a_{i}\right)\right|=n_{i}$. Therefore $F(w)=\beta_{h, g}(w)$ for all $w \in \Sigma^{*}$.

We claim that $L$ has bounded prefix deviation if and only if the pair $(h, g)$ has bounded balance on $L$. The implication "bounded prefix deviation implies bounded balance" is clear, see equation (1) in Section 3. So assume that ( $h, g$ ) has bounded balance on $L$, i. e. $F(x)$ is bounded on pref $(L)$. We show that:

$$
\begin{equation*}
F^{-1}(m) \cap(\underset{w \in \operatorname{pref}(L)}{\bigcup} d(w)) \tag{2}
\end{equation*}
$$

is finite for each $m \in\{F(v) \mid v \in \operatorname{pref}(L)\}$. If this is not the case, then, by the König Infinite Lemma, cf. [9], there exist words $w_{1}$ and $w_{2}$ in pref ( $L$ ) such that $F\left(w_{1}\right)=F\left(w_{2}\right), \psi\left(w_{1}\right)<\psi\left(w_{2}\right)$ and $\psi\left(w_{1}\right), \psi\left(w_{2}\right) \in \underset{w \in \operatorname{pref}(L)}{\cup} d(w)$. Let $w^{\prime} \in \psi^{-1}\left(\psi\left(w_{1}\right)-\psi\left(w_{2}\right)\right)$. Then $F\left(w^{\prime}\right)=0$ and, hence, by $(1), w^{\prime} \in \operatorname{sp}(L)$. Consequently, $\psi\left(w_{2}\right)$ cannot be in $d(w)$ for any $w_{1}$, a contradiction. So (2) is always finite, and therefore $L$ has bounded prefix deviation.

Now, the first sentence of Lemma 4.2 follows. Indeed, in [2] it has been shown that it is decidable whether an arbitrary pair of morphisms has bounded balance on a DOL language.

Knowing that the prefix deviation of $L$ is bounded, an upper bound for it can be effectively found as follows. Let $x a \in \operatorname{pref}(L)$, with $a \in \Sigma \cup\{\lambda\}$. We associate to $x a$ a pair $(\bar{d}(x), a)$ where $\bar{d}(x)$ is a fixed element in $d(x)$. Let $L_{0}$ be the set of all such pairs. For each pair $(\bar{d}(x), a)$ we define a finite set $S(\bar{d}(x), a)$ of pairs as follows. Let $y b \in \operatorname{pref}(f(a))$, where $b \in \Sigma$ or if $f(a)=\lambda$ then $b=\lambda$, and let $x^{\prime}$ be a fixed word in $f\left(\psi^{-1}(\bar{d}(x))\right) . S(\bar{d}(x), a)$ contains all pairs $\left(\bar{d}\left(x^{\prime} y\right), b\right)$ where again $\bar{d}\left(x^{\prime} y\right)$ denotes a fixed vector in $d\left(x^{\prime} y\right)$. Let the set of all pairs thus obtained be $L_{1}^{\prime}$ and let $L_{1}=L_{0} \cup L_{1}^{\prime}$. We proceed inductively to define the sets $L_{i}$ for $i \geqq 0$. Now, the important observation is that all the deviations (or more precisely a representative of all the deviations) of prefixes of words in $\left\{h^{i}(w) \mid i \leqq n\right\}$ are obtained as first components of elements of $L_{n}$. This follows easily from Lemma 3.4 by induction on $n$. From the definition of $L_{i}$-sets it follows that $L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq \ldots$ Moreover, since $L$ has bounded prefix deviation we finally find an $i_{0}$ such that $L_{i_{0}+1}=L_{i_{0}}$, and consequently, assuming that the fixation of the value of deviation is always done in the same way, we have $L_{i}=L_{i_{0}}$ for each $i \geqq i_{0}$. Hence, a bound for the prefix deviation has been found.

Now, we are ready for the main result of this section.

Theorem 4.1: Given a DOL language $L$, it is decidable whether $L$ has bounded prefix deviation and fair distribution of letters, and if this is the case, then a test set for $L$ can be effectively found.

Proof: Let $L=L(G)$ for a DOL system $G=(\Sigma, f, \omega)$. The first part of the theorem is proved in Lemmas 4.1 and 4.2. The second part is deduced from the proof of Theorem 3.2 as follows. Now, instead of using pieces where the lengths of the second components are between $N$ and $2 N$ it is preferable to use pieces of the length between $N$ and $2 K N$, where $K$ is a constant satisfying: if $u \in \operatorname{sub}(\mathrm{~L})$, with $|u| \geqq K N$, then $\left|h^{n}(u)\right| \geqq N$ for each $n \geqq 0$. Such a constant $K$ clearly exists. Namely, this makes it possible to generate the "piece decomposition of $L$ ", i.e., $L$ with the information how its words are decomposed according to (3) in Theorem 3.2 into pieces, as a DOL language. Let $G_{p}=\left(\Sigma_{p}, f_{p}, x_{p}\right)$ be such a system. Consequently, $\Sigma_{p}$ consists of all second components of pieces of $L$ as well as short words, i. e., words in $F$, specified in the proof of Theorem 3.2.

We continue by showing that we can incorporate into each occurrence of $\Sigma_{p}$ in $L$ also the information about what is the deviation at the beginning of this occurrence of a letter. More precisely, let $y x y^{\prime}$ be a word in $L$ such that $x$ corresponds to a piece. We want to put into $x$ the information about $d(y)$. This can be done as follows. First, we recall that the constant $N$ was selected in the proof of Theorem 3.2 such that if $u \in \operatorname{sub}(L)$, with $|u| \geqq N$, then for all $w \in \operatorname{pref}(L)$ there exists $z$ in $d(w)$ such that $\psi(u) \geqq z$. Consequently, we can incorporate the information about $d(y)$ into $x$, for example, by using barred letters. (Observe that for short words $d(y)=\overline{0}$.) But can the sequence still be generated by a DOL system? The answer is "yes", since, as we have already pointed out, $\operatorname{sp}(L)$ is closed under $f$ (Lemma 3.4), and consequently the deviation at the beginning of an occurrence of a piece obtained from $x$ by applying $f_{p}$ can be computed from $f(x)$ and $d(y)$, i. e., from $x$ and the barred letters of $x$. So a new morphism, and also a DOL system, say $\bar{G}_{p}=\left(\bar{\Sigma}_{p}, \bar{f}_{p}, \bar{x}_{p}\right)$ can be defined in such a way that it contains the entire information about how words of $L$ are decomposed into pieces.

The construction of a test set for $L$ is now easy. The requirement for $L^{\prime}$ in the proof of Theorem 3.2 is surely fulfilled if we take from $L\left(\bar{G}_{p}\right)$ a finite subset $L_{p}$ such that it contains all the subwords of $L\left(\bar{G}_{p}\right)$ of the length two, and choose $L^{\prime}$ equal to a finite subset of $L$ corresponding to $L_{p}$. By the definition of $L_{p}$, we can effectively find an $n_{0}$ such that $L_{p} \subseteq\left\{\bar{f}_{p}^{n}\left(\bar{x}_{p}\right) \mid n \leqq n_{0}\right\}$. Consequently, a finite set $\left\{f^{n}(x) \mid n \leqq n_{0}\right\}$ is a test set for $L$.

Corollary 4.1: Given a positive DOL language $L$ with bounded prefix deviation a test set for $L$ can be effectively found.

Proof: Clearly, positive DOL languages have fair distribution of letters.

## 5. MORPHISMS AGREEING ON A POSITIVE DOL LANGUAGE WITH BOUNDED BALANCE

In this section we consider the case when two morphisms agree on a given positive DOL language $L$ with bounded balance. We show that there exists a finite subset $F$ of $L$ such that any pair of morphisms with bounded balance on $L$ agrees on $L$ if and only if it agrees on $F$. Thus the considerations of this section yields an alternate proof for the existence of a test set (and hence also for the effective existence of a test set, cf. Section 7) for positive DOL language with bounded prefix deviation ( $c f$. Corollary 4.1). Moreover, this section takes also care of morphisms agreeing on a positive DOL language with bounded balance although the language itself has unbounded deviation. The reason why we included Section 4 is that the considerations therein are, we believe, more intuitive and neater.

Example 5.1: Let $G$ be a positive DOL system defined by the morphism:

$$
f:\left\{\begin{array}{l}
a \rightarrow a a a b c d \\
b \rightarrow a b c b c d \\
c \rightarrow a c b c b d \\
d \rightarrow a c b d d d
\end{array}\right.
$$

and the axiom $a b c d$. Clearly, $\psi(L(G)) \subseteq\{(k, k, k, k) \mid k \geqq 1\}$ and therefore $\psi(\operatorname{sp}(L(G)))=\{(k, k, k, k) \mid k \geqq 1\}$. We claim that, for each $n \geqq 1$, $x_{n}=\operatorname{pref}_{6^{n}} f^{n}(a b c d)$ satisfies $\left|x_{n}\right|_{a}-\left|x_{n}\right|_{d} \geqq 2^{n}$. Since $x_{1}=a a a b c d$ the claim is true for $n=1$. So the claim follows from the relation $x_{n+1}=f\left(x_{n}\right)$ by induction on $n$. The claim immediately implies that $L(G)$ has unbounded prefix deviation. Consequently, a positive DOL language may possess unbounded prefix deviation.

Consider now two morphisms defined by:

$$
h:\left\{\begin{array}{l}
a \rightarrow a b, \\
b \rightarrow a, \\
c \rightarrow b a b, \\
d \rightarrow a b a b,
\end{array} \quad g: \quad\left\{\begin{array}{l}
a \rightarrow a b \\
b \rightarrow a b a \\
c \rightarrow b, \\
d \rightarrow a b a b .
\end{array}\right.\right.
$$

Clearly, $h$ and $g$ agree on the language $L=\{a, b c, c b, d\}^{*}$ with bounded balance (in fact, with balance 2). Since $L(G) \subseteq L,(h, g)$ also agrees on $L(G)$
with bounded balance. It is also easy to give (periodic) pairs of morphisms agreeing on $L$ with unbounded balance.

To cover the cases like in the above example, we have to prove:
Theorem 5.1: Let $L$ be a positive DOL language. There exists a finite subset $F$ of $L$ such that $F$ is a test set for all pairs $(h, g)$ of morphisms having bounded balance on $L$, i.e., for any pair $(h, g), h \equiv g$ implies that either $h \equiv g$ or $(h, g)$ has unbounded balance on $L$.

Proof: Let $L$ be generated by a positive DOL system $G=(\Sigma, f, x)$ with $\Sigma=\left\{a_{1}, \ldots, a_{t}\right\}$. As shown in [2] we can construct a DTOL system $G^{\prime}$ and a morphism $\tau$ such that:

$$
\operatorname{pref}(L)=\tau\left(L\left(G^{\prime}\right)\right)
$$

Consequently, $\psi(\operatorname{pref}(L))$ has a matrix representation, i. e., there exist matrices $M_{1}, \ldots, M_{k}, M$ and a vector $\pi$ over $\mathbb{N}$ such that $\psi(\operatorname{pref}(L))$ coincides with the range of the function $F:\{1, \ldots, k\}^{*} \rightarrow \mathbb{N}^{|\Sigma|}$ defined by:

$$
F\left(i_{1} \ldots i_{q}\right)=\pi M_{i_{1}} \ldots M_{i_{q}} M \quad \text { for } \quad q \geqq 0, \quad i_{j} \in\{1, \ldots, k\} .
$$

Moreover:

$$
\begin{equation*}
\psi\left(\operatorname{pref}\left(f^{n}(x)\right)\right)=\{F(y)|\quad| y \mid=n+1\} \tag{1}
\end{equation*}
$$

Now, let $h$ and $g$ be two morphisms of $\Sigma^{*}$. Clearly:

$$
\begin{equation*}
\left\{\beta_{h, g}(w) \mid w \in \operatorname{pref}(L)\right\}=\left\{F(y) \eta_{h, g} \mid y \in\{1, \ldots, k\}^{*}\right\} \tag{2}
\end{equation*}
$$

where $\eta_{h, g}=\left(\left|h\left(a_{1}\right)\right|-\left|g\left(a_{1}\right)\right|, \ldots,\left|h\left(a_{t}\right)\right|-\left|g\left(a_{t}\right)\right|\right)$. We assume that (2) is finite, i. e., $(h, g)$ has bounded balance on $L$, and apply results of Mandel and Simon, $c f$. [12] Section 5, in the following form. There exists a constant $n_{G}$ such that all the values of (2) are obtained when $y$ ranges over $\left\{y \in\{1, \ldots, k\}^{*}|\quad| y \mid<n_{G}\right\}$. Moreover, $n_{G}$ can be chosen independently of $\eta_{h, g}$, i. e., independently of ( $h, g$ ). Consequently, by (1), for any pair ( $h, g$ ) of morphisms having bounded balance on $L$, all possible values of the balance on $L$ are already obtained on the finite language $L^{\prime}=\left\{f^{n}(x) \mid n \leqq n_{G}\right\}$.

Next we establish an analogy to the claim of the proof of Theorem 3.2.
Claim I: There exists a constant $N$ such that for any $u v \in \operatorname{pref}(L)$, with $|v| \geqq N$, the following holds true: for any pair $(h, g)$ in $\mathscr{H}_{l}(L)$ having bounded balance on $L$ :

$$
\min \{|h(u v)|,|g(u v)|\} \geqq \max \{|h(u)|,|g(u)|\} .
$$

Claim I is proved as follows. Let $(h, g)$ be a pair of morphisms satisfying the above assumptions and let $K=\max \left\{|x| \quad \mid x \in L^{\prime}\right\}$. Then:

$$
\left|\beta_{h, g}(w)\right| \leqq K \max \{\|h\|,\|g\|\} \quad \text { for every } w \text { in } \quad \operatorname{pref}(L) .
$$

Consequently, if we show that there exists a constant $N$ such that for every $v \in \operatorname{sub}(L)$, with $|v| \geqq N$ :

$$
\begin{equation*}
\min \{|h(v)|,|g(v)|\} \geqq K \max \{\|h\|,\|g\|\} \tag{3}
\end{equation*}
$$

then Claim I follows. To prove (3) we apply the length argument to a fixed word of $L$ containing all letters of $\Sigma$, i. e. we obtain that:

$$
\sum_{i=1}^{t} n_{i}\left|h\left(a_{i}\right)\right|=\sum_{i=1}^{t} n_{i}\left|g\left(a_{i}\right)\right|
$$

for some positive values of $n_{1}, \ldots, n_{t}$. Therefore:

$$
\begin{equation*}
|h(z)| \geqq\|g\| \quad \text { and } \quad|g(z)| \geqq\|h\| \tag{4}
\end{equation*}
$$

whenever $\psi(z) \geqq\left(n_{1}, \ldots, n_{t}\right)$. Now, we use the positiveness of $G$. This yields a constant $N$ such that if $v \in \operatorname{sub}(L)$, with $|v| \geqq N$, then $\psi(v) \geqq K\left(n_{1}, \ldots, n_{t}\right)$. Thus, (3) and also Claim I follows from (4).

To complete the proof of Theorem 5.1 we have to show how Claim I implies the existence of a finite subset of $L$ such that it tests whether arbitrary pair of morphisms having bounded balance on $L$ agrees on $L$. First we recall a result mentioned already in the proof of Theorem 4.1: there exists a DOL system $G_{p}=\left(\Sigma_{p}, f_{p}, x_{p}\right)$, where $\Sigma_{p}=\bigcup_{i=1}^{N^{\prime}} \Sigma^{i}$ for some $N^{\prime}>N$, such that the letters $N-1$
in $\bigcup_{i=1} \Sigma^{i}$ occur only in a finite subset of $L\left(G_{p}\right)$ and $\psi\left(L\left(G_{p}\right)\right)=L$, where $\psi$ is the morphism mapping each element of $\Sigma_{p}$ into a corresponding word of $\Sigma^{*}$.

We make another claim.
Claim II: Let $w^{\prime}, w^{\prime \prime} \in \Sigma_{p}$ and $(h, g)$ be a pair of morphisms in $\mathscr{H}_{l}(L)$ having bounded balance on $L$. There exists a finite language $L^{\prime \prime} \subseteq L\left(G_{p}\right)$, independent of $(h, g)$, such that:

$$
\begin{aligned}
& \left\{\beta_{h, g}\left(\psi\left(w_{1} w^{\prime}\right)\right) \mid w_{1} w^{\prime} w^{\prime \prime} w_{2} \in L^{\prime \prime} \text { for some } w_{1}, w_{2} \in \Sigma_{p}^{*}\right\} \\
= & \left\{\beta_{h, g}\left(\psi\left(w_{1} w^{\prime}\right)\right) \mid w_{1} w^{\prime} w^{\prime \prime} w_{2} \in L\left(G_{p}\right) \text { for some } w_{1}, w_{2} \in \Sigma_{p}^{*}\right\} .
\end{aligned}
$$

The proof of the Claim II is as follows. It is a simple modification of the construction presented in [2] to see that there exist a DTOL system $G_{1}$ and a
morphism $\tau_{1}$ such that:

$$
\operatorname{pref}\left(L\left(G_{p}\right)\right) \cap \Sigma_{p}^{*} w^{\prime} w^{\prime \prime}=\tau_{1}\left(L\left(G_{1}\right)\right)
$$

Consequently, the ideas of the beginning of this proof become applicable, and prove Claim II.

Now, we are ready to finish the proof of Theorem 5.1. Indeed, Claims I and II guarantee that the arguments of the proof of Theorem 3.2, e.g. the piece construction, can be modified in a obvious way to complete the proof of Theorem 5.1.

Note that we do not require that $F$ in Theorem 5.1 is found effectively.

## 6. MORPHISMS AGREEING ON A POSITIVE DOL LANGUAGE WITH UNBOUNDED BALANCE

Now, we turn to consider the case when two morphisms agree on a positive DOL language $L$ with unbounded balance. Necessarily, this means that the DOL language must have unbounded prefix deviation. We shall prove an analogy to Theorem 5.1 for pairs of morphisms having unbounded balance on $L$. In doing this we use ideas, especially the "shifting argument", presented in [4].

Lemma 6.1. Let $G=(\Sigma, f, x)$ be a positive DOL system. For each $\varepsilon>0$ there exists an integer $n_{\varepsilon}$ such that:

$$
|d(w)|_{\min } \leqq \varepsilon\left|f^{n}(x)\right|
$$

for every $n \geqq n_{\varepsilon}$ and $w \in \operatorname{pref}\left(f^{n}(x)\right)$, where $|d(w)|_{\min }=\min \{|z| \quad \mid z \in d(w)\}$.
Proof: Let $v$ be a word in $L(G)$ such that $\operatorname{alph}(v)=\Sigma=\left\{a_{1}, \ldots, a_{t}\right\}$. Since $G$ is positive we find a constant $s$ such that for all $a$ in $\Sigma$ :

$$
\begin{equation*}
f^{s}(a)=\alpha_{a} \beta_{a} \gamma_{a} \quad \text { with } \quad \psi\left(\alpha_{a}\right) \geqq \psi(v) \quad \text { and } \quad \psi\left(\gamma_{a}\right) \geqq \psi(v) \tag{1}
\end{equation*}
$$

Now, for each $a$ in $\Sigma$, we fix $v_{a}$ to be a word obtained from $f^{s}(a)$ by erasing from it a word Parikh-equivalent to $v$, and we define $\bar{f}: \Sigma^{*} \rightarrow \Sigma^{*}$ by $\bar{f}(a)=v_{a}$. This means that for each word $y \psi\left(f^{s}(y)\right)-\psi(\bar{f}(y))$ belongs to vol. $17, n^{\circ} 3,1983$
$\psi(\operatorname{sp}(L))$. Let $q$ be a constant satisfying:

$$
\begin{equation*}
\psi\left(v^{\left|f^{q}(x)\right|}\right) \geqq \psi\left(f^{s}(a)\right) \quad \text { for all } a \in \Sigma \tag{2}
\end{equation*}
$$

We set $\bar{x}_{0}=f^{r}(x)$ where $r$ satisfies:

$$
\begin{equation*}
\psi\left(f^{r}(x)\right) \geqq\left(\left|f^{q}(x)\right|+1\right) \psi(v) \tag{3}
\end{equation*}
$$

and define, for $i=0, \ldots, s-1$, DOL systems:

$$
G_{i}=\left(\Sigma, \bar{f}, \bar{x}_{i}\right) \quad \text { where } \quad \bar{x}_{i}=f^{i}\left(\bar{x}_{0}\right)
$$

We first claim that for every prefix $w \in \operatorname{pref}\left(f^{n s+r+i}(x)\right)$ there exists a vector $z$ in $d(w)$ such that:

$$
\begin{equation*}
\psi\left(\bar{f}^{n}\left(\overline{x_{i}}\right)\right) \geqq z \quad \text { for } \quad n \geqq 0 \tag{4}
\end{equation*}
$$

We fix an $i$ and prove (4) by induction on $n$. The case $n=0$ is clear since $f^{0}\left(\bar{x}_{i}\right)=f^{r+i}(x)$. So let $w \in \operatorname{pref}\left(f^{(n+1) s+r+i}(x)\right)$, i. e., $w=w_{1} w_{2}$ where $w_{1}=f^{s}\left(w_{1}^{\prime}\right)$ for some word $w_{1}^{\prime}$ and $w_{2} \in \operatorname{pref}\left(f^{s}(b)\right)$ for some $b$ in $\Sigma$. By induction hypothesis, there exists a vector $z_{1}$ in $d\left(w_{1}^{\prime}\right)$ such that $\psi\left(\bar{f}^{n}\left(\bar{x}_{i}\right)\right) \geqq z_{1}$. Now, since $a \in \operatorname{sub}(\bar{f}(a))$ for each $a$, we conclude from (3) that there exist a constant $k$ and a word $u$, with $\psi(u)=z_{1}$, such that:

$$
\begin{equation*}
\psi\left(\bar{f}^{n}\left(\bar{x}_{i}\right)\right) \geqq \psi\left(u v^{k}\right) \quad \text { where } \quad\left|u v^{k}\right| \geqq\left|f^{q}(x)\right| . \tag{5}
\end{equation*}
$$

By (2), (5) and the definition of $w_{2},\left|u v^{k}\right| \psi(v)-\psi\left(w_{2}\right)$ contains only positive components. Moreover, by the definition of $\bar{f}$, the same holds true for all vectors $\psi(\bar{f}(y))-|y| \psi(v)$ where $y \in \Sigma^{*}$. Consequently, we obtain:

$$
\begin{aligned}
& \psi\left(\bar{f}\left(u v^{k}\right)\right) \geqq \psi\left(\bar{f}\left(u v^{k}\right)\right)-\left|u v^{k}\right| \psi(v)+\psi\left(w_{2}\right) \\
&=\psi(\bar{f}(u))-|u| \psi(v)+\psi\left(f\left(v^{k}\right)\right)-\left|v^{k}\right| \psi(v)+\psi\left(w_{2}\right) \\
& \geqq \psi(\bar{f}(u))-|u| \psi(v)+\psi\left(w_{2}\right) .
\end{aligned}
$$

Because of the relation $\psi(\bar{f}(u))-|u| \psi(v) \geqq 0$ there exists in $d(\bar{f}(u))$ a vector, say $z_{2}$, such that $\psi(\bar{f}(u))-|u| \psi(v) \geqq z_{2}$. Now, remember that $\psi(u) \in d\left(w_{1}^{\prime}\right)$. This implies, since $\operatorname{sp}(L)$ is closed under $f(c f$. Lemma 3.4) and hence also
under $\bar{f}$, that there exists in $d\left(w_{1}\right)$ a vector, say $z_{3}$, such that $z_{2} \geqq z_{3}$. In conclusion, we have:

$$
\psi\left(\bar{f}\left(u v^{k}\right)\right) \geqq z_{3}+\psi\left(w_{2}\right) \quad \text { where } \quad z_{3} \in d\left(w_{1}\right)
$$

which, by (4) and the identity $w=w_{1} w_{2}$, completes the induction.
By (4), to complete the proof of the lemma it is enough to show that, for $i=0, \ldots, s-1$ :

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|\bar{f}^{n}\left(\bar{x}_{i}\right)\right|}{\left|f^{n s}\left(\bar{x}_{i}\right)\right|} \rightarrow 0 . \tag{6}
\end{equation*}
$$

Let $M_{1}$ and $M_{2}$ denote the growth matrices of $G$ and $G_{1}$, respectively, cf. [13]. By the definition of $\bar{f}$, we have $M_{1}^{s} \geqq M_{2}+I$, where $\geqq$ denotes the natural componentwise order. Let $\pi=\psi\left(\bar{x}_{i}\right)$ and $\eta=(1, \ldots, 1)^{T}$. We have:

$$
0 \leqq \frac{\left|\bar{f}^{n}\left(\bar{x}_{i}\right)\right|}{\left|f^{n s}\left(\bar{x}_{i}\right)\right|}=\frac{\pi M_{2}^{n} \eta}{\pi M_{1}^{s n} \eta} \leqq \frac{\pi M_{2}^{n} \eta}{\pi\left(M_{2}+I\right)^{n} \eta} \leqq \frac{\pi M_{2}^{n} \eta}{\pi\left(n M_{2}^{n-1}\right) \eta} \leqq \frac{C t^{2}}{n}
$$

where $C$ is an upper bound for the values of entries in $M_{2}$. So (6) and hence also Lemma 6.1 follows.

We also need another lemma, a lemma on formal power series (as a general reference of the topic we mention [14]).

Lemma 6.2: Let $F: \Sigma^{*} \rightarrow \mathbb{Z}$ be a $\mathbb{Z}$-rational formal power series and $N$ a constant. There exists a constant $n_{0}$, depending on the cardinality of $\Sigma$ and $N$ only, such that $F$ is unbounded if and only if there exists a word $u$ such that $N<|u| \leqq N+n_{0}$ and $F(u) \notin\{F(w)|\quad| w \mid \leqq N\}$.

Proof: The proof of Lemma 6.2 can be derived as an application of the theory of Hankel matrices, e. g. by using Corollary II. 3.4 in [14].

Next we prove an analogy of Theorem 5.1.
Theorem 6.1: Let $G=(\Sigma, f, x)$ be a positive DOL system and $L=L(G)$. There exists a finite subset $F^{\prime}$ of $L$ such that $F^{\prime}$ is a test set for all pairs of morphisms having unbounded balance on L, i.e., for each pair $(h, g)$, $h \equiv g$ implies that $h \equiv g$ or $(h, g)$ has bounded balance on $L$.

Proof: By the standard decomposition technique, cf. [12], we may decompose $G$ into a finite number of systems such that each such system $(\bar{\Sigma}, \bar{f}, \bar{x})$ satisfies: $\operatorname{sub}_{2}(\bar{f}(a))=\operatorname{sub}_{2}(\bar{f}(b))$ for all $(a, b) \in \bar{\Sigma} \times \bar{\Sigma}$. Consequently, we may assume that $G$ shares this property.

We first assume that $x \in \Sigma$, say $x=a$. This means that $\operatorname{sub}_{2}(L)=\operatorname{sub}_{2}(f(G))$ for all $b \in \Sigma$. Let ( $h, g$ ) be an arbitrary pair of morphisms having unbounded balance on $L$. We show that there exists an $n_{0}$ such that if $h$ and $g$ agree on $\left\{f^{n}(a) \mid n \leqq n_{0}\right\}$, then they agree on $L$, too. Since $n_{0}$ is shown to be independent of $(h, g)$ the theorem follows for DOL languages generated by positive systems with the axiom of length 1 .

From now on we consider a fixed, but arbitrary, pair of morphisms having unbounded balance on $L$ and agreeing on a later specified finite language $F^{\prime} \subseteq L$. Since $h(f(a))=g(f(a))$, we have:

$$
\sum_{a \in \Sigma} m_{a}|h(a)|=\sum_{a \in \Sigma} m_{a}|g(a)|
$$

for some positive integers $m_{a}$. Consequently, there exists a constant $q$, independent of $(h, g)$, such that:

$$
\begin{equation*}
\min \{\|h\|,\|g\|\} \geqq \frac{1}{q} \max \{\|h\|,\|g\|\} \tag{7}
\end{equation*}
$$

On the other hand, the positiveness of $G$ implies the existence of a constant $K>0$, again independently of $(h, g)$, such that:

$$
K|w| \quad\|h\| \leqq|h(w)| \leqq \frac{1}{K}|w| \quad\|h\|
$$

and:

$$
\begin{equation*}
K|w| \quad\|g\| \leqq|g(w)| \leqq \frac{1}{K}|w|\|g\| \text { ? } \tag{8}
\end{equation*}
$$

for every subword $w$ of $L$ containing all letters of $\Sigma$. Consequently, setting $K^{\prime}=q / K^{2}$ we have:

$$
\begin{equation*}
\frac{1}{K^{\prime}}|g(w)| \leqq|h(w)| \leqq K^{\prime}|g(w)| \tag{9}
\end{equation*}
$$

for $w \in \operatorname{sub}(L) \quad$ with $\quad \operatorname{alph}(w)=\Sigma$.
We choose a constant $k$ such that:

$$
\begin{equation*}
\left|f^{k-1}(b)\right|_{b} \geqq K^{\prime}+1 \quad \text { for each } \quad b \in \Sigma \tag{10}
\end{equation*}
$$

R.A.I.R.O. Informatique théorique/Theoretical Informatics

Let now $f^{n}(a)=u v$ for some words $u$ and $v$ and large enough $n$. Further let $|u| \leqq|v|$ (the other case is symmetric) and $\operatorname{pref}_{1}(v)=\alpha$. We search for ancestors of $\alpha$, i. e., occurrences $\alpha_{1}, \alpha_{2}, \ldots$ of letters in $L$ such that $f^{i}\left(\alpha_{i}\right)$ contains the above mentioned occurrence of $\alpha$. Clearly, since $G$ is positive, there exist $\alpha_{i}$ and $\alpha_{j}, i<j$, and a constant $N>0$ such that $\alpha_{i}=\alpha_{j}$, their right neighbours in $L(G)$ are the same, say $\beta$, and moreover:

$$
\begin{equation*}
\left|f^{i-k}(b)\right| \geqq \frac{1}{N}\left|f^{n}(a)\right| \tag{11}
\end{equation*}
$$

for all $b$ in $\Sigma$, large enough $n$, and $k$ defined in (10). Observe that constant $N$ can be chosen independently of $u, v$ and $n$, while $\alpha_{i}$ and $\alpha_{j}$, of course, depend on $u, v$ and $n$. This is because $\alpha_{i}$ and $\alpha_{j}$ can always be chosen from the uniformly bounded initial part of the sequence generated by $G$. (Here the assumption $|v| \geqq|u|$ is needed to guarantee the existence of $\beta$.)

Our next goal is to fix the integer $n$ in the decomposition $f^{n}(a)=u v$. By (7), (8) and (11), we have:

$$
\left|h\left(f^{i-k}(b)\right)\right| \geqq \frac{K}{N q}\left|f^{n}(a)\right| \max \{\|h\|,\|g\|\}
$$

and:

$$
\begin{equation*}
\left|g\left(f^{i-k}(b)\right)\right| \geqq \frac{K}{N q}\left|f^{n}(a)\right| \max \{\|h\|,\|g\|\} \tag{12}
\end{equation*}
$$

On the other hand, by Lemma 6.1, for every $\varepsilon>0$ there exists $n_{\varepsilon}$ such that:

$$
|d(u)|_{\min } \leqq \varepsilon\left|f^{n}(a)\right| \quad \text { for } \quad n \geqq n_{\varepsilon}
$$

and hence:

$$
\begin{equation*}
|\beta(u)| \leqq \varepsilon\left|f^{n}(a)\right| \max \{\|h\|,\|g\|\} \quad \text { for } \quad n \geqq n_{\varepsilon} . \tag{13}
\end{equation*}
$$

By (12) and (13), if $n$ is large enough, then for all letters $b$ in $\Sigma$ :
and:

$$
\left.\begin{array}{l}
\left|h\left(f^{i-k}(b)\right)\right| \geqq 2\left|\beta_{\max }\right|,  \tag{14}\\
\left|g\left(f^{i-k}(b)\right)\right| \geqq 2\left|\beta_{\max }\right|,
\end{array}\right\}
$$

where $\beta_{\max }=\max \left\{|\beta(w)| \quad \mid w \in \operatorname{pref}\left(f^{m}(a)\right)\right.$ for some $\left.m \leqq n\right\}$, i. e., we can find for any decomposition $f^{n}(a)=u v$, with $|v| \geqq|u|$ and $n$ large enough, $\alpha_{i}$ (and $\alpha_{j}$ ) satisfying (14). So far we have not used the assumption that $(h, g)$ has unbounded balance on $L$. Now we do so. We fix the decomposition $f^{n_{0}}(a)=u v$ requiring that $n_{0}$ is large enough to yield (14) and that the balance
$\beta_{h, g}(u)$ is different from the balances of the prefixes of $\left\{f^{n}(a) \mid n<n_{0}\right\} \cup\{u\}$, i. e., for any such prefix $w \neq u,\left|\beta_{h, g}(w)\right| \neq\left|\beta_{h, g}(u)\right|$. Observe here that we have two possibilities: either $|u| \leqq|v|$ (handled in detail above) or $|u| \geqq|v|$ (which is symmetric). Observe also that the above is the only point which makes $n_{0}$ dependent on ( $h, g$ ). However, by Lemma 6.2 and the considerations of the beginning of the proof of Theorem 5.1, there exists a uniform upper bound for $n_{0}$. Consequently, $n_{0}$ can be after all chosen independently of $(h, g)$. We further assume that $n_{0} \geqq|\Sigma|$.

Now we set $F^{\prime}=\left\{f^{n}(a) \mid n \leqq n_{0}\right\}$ and recall our assumption: $h \equiv g$. We have:

$$
\begin{gathered}
f^{n_{0}}(a)=u_{1} u^{\prime} v^{\prime} v_{1} \\
f^{n_{0}-j+i}(a)=u_{2} u^{\prime} v^{\prime} v_{2}
\end{gathered}
$$

where $u_{1} u^{\prime}=u, u^{\prime} v^{\prime}=f^{i}\left(\alpha_{i} \beta\right)$. The choice of $\alpha_{i}$ and $\alpha_{j}$ can be illustrated as in Figure 1.


Figure 1
R.A.I.R.O. Informatique théorique/Theoretical Informatics

Since the above specified $\alpha$ is in $f^{i}\left(\alpha_{i}\right),\left|f^{i}(\beta)\right| \leqq\left|v^{\prime}\right|$.
So using (10), (14) and (9) we deduce:

$$
\left.\begin{array}{l}
\left|h\left(v^{\prime}\right)\right| \geqq\left|h\left(f^{i}(\beta)\right)\right|=\left|h\left(f^{i-k}\left(f^{k}(\beta)\right)\right)\right|  \tag{15}\\
\geqq 2\left|\beta_{\max }\right|+\left|h\left(f^{i-k}\left(f\left(\beta^{K^{\prime}}\right)\right)\right)\right| \geqq 2\left|\beta_{\max }\right|+K^{\prime} \mid h\left(f^{i-k}(f(\beta)) \mid\right. \\
\geqq 2\left|\beta_{\max }\right|+\max \left\{\left|h\left(f^{i-k}(f(\beta))\right)\right|,\left|g\left(f^{i-k}(f(\beta))\right)\right|\right\},
\end{array}\right\}
$$

and that the same holds true when $h$ and $g$ are interchanged.
By our assumption $h\left(f^{n_{0}}(a)\right)=g\left(f^{n_{0}}(a)\right)$. Therefore since $u v^{\prime} \in \operatorname{pref}\left(f^{n_{0}}(a)\right)$ there exists a word $y$ such that $y h\left(v^{\prime}\right) \operatorname{Pref} g\left(v^{\prime}\right)$ or $h\left(v^{\prime}\right) \operatorname{Pref} y g\left(v^{\prime}\right) \quad$ with $\quad|y|=|\beta(u)| . \quad$ Similarly, since $h\left(f^{n_{0}-j+i}(a)\right)=g\left(f^{n_{0}-j+i}(a)\right)$ there exists a word $y^{\prime}$ such that either $y^{\prime} h\left(v^{\prime}\right)$ Pref $g\left(v^{\prime}\right)$ or $h\left(v^{\prime}\right)$ Pref $y^{\prime} g\left(v^{\prime}\right)$ with $\left|y^{\prime}\right|=\left|\beta\left(u_{2} u^{\prime}\right)\right|$. Moreover, by the choice of $|\beta(u)|,|y| \neq\left|y^{\prime}\right|$. Consequently, we have the situation illustrated in Figure 2 (where we assume that $h\left(v^{\prime}\right)$ pref $y g\left(v^{\prime}\right)$ and $y^{\prime} h\left(v^{\prime}\right)$ pref $g\left(v^{\prime}\right)$; the other three possibilities can be handled with the very same manner).


Figure 2

That is to say, we have three representations for a prefix of $h\left(v^{\prime}\right)$. Consequently, the prefix $\bar{w}$ of $h\left(v^{\prime}\right)$ with the length:

$$
\begin{equation*}
\min \left\{\left|h\left(v^{\prime}\right)\right|,\left|g\left(v^{\prime}\right)\right|-\left|\beta_{\max }\right|\right\} \tag{16}
\end{equation*}
$$

is quasiperiodic with the period $p=y y^{\prime}$, i. e., $\bar{w} \in \operatorname{pref}\left(p^{*}\right)$. Possibly by choosing $p$ shorter we may assume that $p$ is primitive, $c f$. [9].

Now let:

$$
c_{i}=f^{i-k}(c) \quad \text { for each } \quad c \in \Sigma
$$

By (14):

$$
\begin{equation*}
\left|h\left(c_{i}\right)\right| \geqq 2\left|\beta_{\max }\right| \geqq|p| . \tag{17}
\end{equation*}
$$

vol. $17, \mathrm{n}^{\circ} 3,1983$

Let $L_{2}=\left\{c d \in \Sigma^{2} \mid c d \in \operatorname{sub}(L(G))\right\}$. We claim that $h\left(c_{i} d_{i}\right) \in \operatorname{sub}\left(p^{*}\right)$ for every $c d \in L_{2}$. Now, by (15), its symmetric form for $g$, (16) and the fact $L_{2} \subseteq \operatorname{sub}(f(\beta))$ we conclude that $h\left(c_{i} d_{i}\right) \in \operatorname{sub}(\bar{w})$ for every $c d \in L_{2}$. Thus $h\left(c_{i} d_{i}\right) \in \operatorname{sub}\left(p^{*}\right)$. Now, by (17) and the primitiveness of $p$, we conclude that $h\left(f^{i-k}(y)\right) \in \operatorname{sub}\left(p^{*}\right)$ for every word $y$ in $\Sigma^{*}$ such that $\operatorname{sub}_{2}(y) \subseteq L_{2}$. In particular:

$$
\begin{equation*}
h\left(f^{i-k}\left(f^{n}(a)\right)\right) \in \operatorname{sub}\left(p^{*}\right) \quad \text { for } \quad n \geqq 0 \tag{18}
\end{equation*}
$$

Symmetrically, we find a primitive word $p^{\prime}$ such that:

$$
\begin{equation*}
g\left(f^{i-k}\left(f^{n}(a)\right)\right) \in \operatorname{sub}\left(p^{*}\right) \quad \text { for } \quad n \geqq 0 \tag{19}
\end{equation*}
$$

So, by the primitiveness of $p$ and $p^{\prime}$ and by the fact $h\left(f^{i-k}(a)\right)=g\left(f^{i-k}(a)\right)$, we must have $p=p^{\prime}$.

Finally, we are ready to finish the proof of Theorem 6.1 in the case of one letter axiom. Since $h \stackrel{F^{\prime}}{\equiv} g$ and $n_{0} \geqq|\Sigma|$ we, by Lemma 3.3, conclude that $h \stackrel{L}{\equiv}{ }_{l} g$. Moreover, $n_{0} \geqq|\Sigma|$ implies that if $L$ contains a word starting with some letter in $\Sigma$, then also $F^{\prime}$ contains such a word. Consequently, (18) and (19) guarantee that $h \stackrel{L}{\equiv} g$.

The proof for the general case, i. e., for the case when $x$ need not be of length one, is obtained as a modification of the above in the following way. Let:

$$
L_{2}=\left\{c d \in \Sigma^{2} \mid c d \in \operatorname{sub}(L(G))\right\}
$$

and:

$$
L_{2}^{\prime}=\left\{c d \in \Sigma^{2} \mid c d \in \operatorname{sub}\left(\bigcup_{a \in \Sigma}\left\{f^{n}(a) \mid n \geqq 0\right\}\right)\right\}
$$

Now, we cannot require that, for each $b \in \Sigma, f(b)$ contains as subwords all words from $L_{2}$, but we can require, as we did, that this is true for words from $L_{2}^{\prime}$. Hence, by the arguments above, there exists a primitive word $p$ such that:
and:

$$
\left.\begin{array}{l}
h\left(f^{i-k}\left(f^{n}(b)\right)\right) \in \operatorname{sub}\left(p^{*}\right)  \tag{20}\\
g\left(f^{i-k}\left(f^{n}(b)\right)\right) \in \operatorname{sub}\left(p^{*}\right)
\end{array}\right\}
$$

for all $n \geqq 0$ and $b \in \Sigma$.

Let $x=a_{1} \ldots a_{r}$ with $a_{j} \in \Sigma$. As in the case $x=a$, we have $h \equiv g$ and $h \equiv{ }_{l} g$, and we should show that $h \stackrel{L}{\equiv} g$. This follows if we show that:

$$
\begin{equation*}
h\left(f^{n}\left(a_{1} \ldots a_{j}\right)\right) \operatorname{Pref} g\left(f^{n}\left(a_{1} \ldots a_{j}\right)\right) \tag{21}
\end{equation*}
$$

for $n \geqq 0$ and $j=1, \ldots, r$.
Let us consider (21) for $j=2$. We define, for $n \geqq 0, a_{0}(n)=\operatorname{pref}_{1}\left(f^{n}\left(a_{1}\right)\right), a_{1}(n)=\operatorname{suf}_{1}\left(f^{n}\left(a_{1}\right)\right)$ and $a_{2}(n)=\operatorname{pref}_{1}\left(f^{n}\left(a_{2}\right)\right)$. Clearly, the sequence $\left(a_{0}(n), a_{1}(n), a_{2}(n)\right)_{n \geqq 0}$ is periodic, i. e., for some integers $\tau$ and $\rho$ the following holds:

$$
\begin{equation*}
a_{i}(\tau+l+m \rho)=a_{i}(\tau+l+(m+1) \rho), \tag{22}
\end{equation*}
$$

for $i=0,1,2, l=0, \ldots, \rho-1$ and $m \geqq 0$. We fix $l$ and show that (21) holds for $n=\tau+l+\rho m$ with $m \geqq 0$.

For notational convenience let $f^{\tau+l+m \rho}\left(a_{1}\right)=\gamma(m)$ and $f^{\tau+l+m \rho}\left(a_{2}\right)=\delta(m)$. For $\tau+l+m \rho \leqq i-k$ we are done: the required equation is among our assumptions. So let $m$ assume only values such that $\tau+l+m \rho \geqq i-k$. Observe that, by (20) and (22):

$$
\left.\begin{array}{c}
h(\gamma(m)) \in p_{1} p^{*} p_{2}  \tag{23}\\
h(\delta(m)) \in p_{2}^{\prime} \operatorname{pref}\left(p^{*}\right) \\
g(\gamma(m)) \in p_{1} p^{*} p_{3} \\
g(\delta(m)) \in p_{3}^{\prime} \operatorname{pref}\left(p^{*}\right)
\end{array}\right\}
$$

for some words $p_{1}, p_{2}^{\prime}, p_{3}^{\prime} \in \operatorname{suf}(p)$ and $p_{2}, p_{3} \in \operatorname{pref}(p)$.
Now, we assume that $\beta_{h, g}(\gamma(m))$ assumes at least two different values, say $\beta_{h, g}\left(\gamma\left(m_{1}\right)\right) \neq \beta_{h, g}\left(\gamma\left(m_{2}\right)\right)$. Because $\left(\beta_{h, g}(\gamma(m))\right)_{m \geqq 0}$ is governed by a difference equation of order $t$, we may, possibly enlarging $n_{0}$, assume that $m_{1}, m_{2} \leqq n_{0}$. By (23), $\left|\beta_{h, g}\left(\gamma\left(m_{1}\right)\right)-\beta_{h, g}\left(\gamma\left(m_{2}\right)\right)\right|$ is a multiple of $|p|$. Let:

$$
\operatorname{suf}_{\left|\beta_{\max }\right|}\left(h\left(\gamma\left(m_{1}\right)\right)\right)=\gamma_{1}=\operatorname{suf}_{\left|\beta_{\max }\right|}\left(h\left(\gamma\left(m_{2}\right)\right)\right)
$$

and:

$$
\operatorname{pref}_{\left|\beta_{\text {max }}\right|}\left(h\left(\delta\left(m_{1}\right)\right)\right)=\delta_{1}=\operatorname{pref}_{\left|\beta_{\text {max }}\right|}\left(h\left(\delta\left(m_{2}\right)\right)\right) .
$$

Since

$$
h\left(f^{m_{1}}(x)\right)=g\left(f^{m_{1}}(x)\right), h\left(f^{m_{2}}(x)\right)=g\left(f^{m_{2}}(x)\right) \quad \text { and }
$$ $\left|\beta_{h, g}\left(f^{m_{i}}\left(a_{1}\right)\right)\right| \leqq\left|\beta_{\max }\right|$, for $i=1,2$, we have, by (23), the situation illustrated

in Figure 3 (where we assume that $\beta_{h, g}\left(\gamma\left(m_{1}\right)\right) \geqq 0$ and $\beta_{h, g}\left(\gamma\left(m_{2}\right)\right) \leqq 0$; the other cases are similar):


Figure 3

So it follows from (23), from the primitiveness of $p$ and from the fact that $\left|\beta_{h, g} \gamma\left(m_{1}\right)-\beta_{h, g} \gamma\left(m_{2}\right)\right|$ is larger than $|p|$ that $p_{3} p_{3}^{\prime}=p$. It also follows from Figure 3 that $p_{2} p_{2}^{\prime}=p$. Consequently, by (23), the equation (21) follows in this case.

The other possibility, i. e., the case when $\beta_{h, g}(\gamma(m))$ assumes only one value is simpler. Clearly, (21) now follows from (23) and from the fact that $h(\gamma(m) \delta(m))=g(\gamma(m) \delta(m))$ for some value of $m$, say $m^{\prime}$.

Equation (21) for cases $j>2$ can obviously be derived in the very same manner. Indeed, to prove (21) for some $j$, only the behaviour of $h$ and $g$ near the occurrences of subwords $\operatorname{suf}_{1} f^{n}\left(a_{j-1}\right) \operatorname{pref}_{1} f^{n}\left(a_{j}\right)$ are needed. This, finally, completes our proof for Theorem 6.1.

## 7. TEST SETS FOR POSITIVE DOL LANGUAGES

Now, we are ready for our main result concerning DOL languages.
Theorem 7.1: Every positive DOL language L possesses a test set. Moreover, a test set for $L$ can be effectively found.

Proof: Let $F$ and $F^{\prime}$ be subsets of $L$ determined by Theorems 5.1 and 6.1. Clearly, $F \cup F^{\prime}$ is a test set for $L$ proving the first sentence of Theorem 7.1. The second sentence follows from Theorem 3.2 in [5], which shows that if a test set for a DOL language exists it can be effectively found.

In order to be able to state a corollary of Theorem 7.1 we need the following definition. Let $\mathscr{L}$ be a family of languages. Morphism equivalence problem for $\mathscr{L}$ is to decide whether two given morphisms agree string by string on a given language of $\mathscr{L}$.

Corollary 7.1: Morphism equivalence problem for positive DOL languages is decidable.

Proof : Immediate by Theorem 7.1.
As regards possibilities to generalize the above the following remark is in order. Let $L$ be a positive DOL language and $(h, g) \in \mathscr{H}(L)$. By the proof of Theorem 6.1, either $(h, g)$ agree on $L$ with bounded balance or there exists a constant $i$ [independent of $(h, g)$ ] and a word $p$ such that:

$$
\begin{equation*}
h\left(f^{n}(b)\right), g\left(f^{n}(b)\right) \in \operatorname{sub}\left(p^{*}\right) \quad \text { for } \quad n \geqq i \quad \text { and } \quad b \in \Sigma \tag{1}
\end{equation*}
$$

i. e., $h$ and $g$ are, in a sense, "very periodic on $L$ ". This is not true for arbitrary DOL languages as seen from

Example 7.1: Let G be the DOL system defined by the morphism:

$$
f:\left\{\begin{array}{l}
a \rightarrow a b c \\
b \rightarrow b b \\
c \rightarrow c \\
d \rightarrow d \\
e \rightarrow e e \\
f \rightarrow c e f
\end{array}\right.
$$

and the axiom abdef. Further let $h$ and $g:\{a, b, c, d, e, f\}^{*} \rightarrow\{1,2,3,4,5\}^{*}$ be the morphisms defined by:

$$
h:\left\{\begin{array}{l}
a \rightarrow 1234, \\
b \rightarrow 2323, \\
c \rightarrow 4, \\
d \rightarrow 24, \\
e \rightarrow 32, \\
f \rightarrow 5,
\end{array} \quad g:\left\{\begin{array}{l}
a \rightarrow 1, \\
b \rightarrow 23 \\
c \rightarrow 4 \\
d \rightarrow 42 \\
e \rightarrow 3232 \\
f \rightarrow 4325
\end{array}\right.\right.
$$

It is straightforward to see that $h \equiv g, c f$. [10]. It is also clear that (1) is not satisfied for $G, h$ and $g$. However, $(h, g)$ has unbounded balance on $L(G)$. In fact, for each $w \in L(G)$ :

$$
\beta_{h, g}\left(\operatorname{pref}_{(1 / 2)|w|-1}(w)\right) \geqq \frac{1}{3}|w| .
$$

On the other hand, we believe that our considerations can be generalized to cover all simple DOL languages, $c f$. [3], i. e. languages generated by DOL systems satisfying: for each pair $(a, b)$ of letters $a$ is generated from $b$ in a number of steps. Indeed, we have:

Theorem 7.2: Each simple DOL language containing a word of the length one has effectively a test set.

Proof : A DOL system generating such a language can be decomposed, $c f$. [13], into a finite number of positive DOL systems. We leave the details for the reader.

We conclude with a simple observation which somewhat extends our main result.

Lemma 7.1: If a test set (effectively) exists for each language from $L$ than the same holds also for the morphic closure of $L$.

Proof: Obvious.
Corollary 7.2: Every HDOL language based on a positive DOL language possesses (effectively) a test set.

## ACKNOWLEDGEMENTS

The authors are very grateful to the anonymous referee for reading the manuscript carefully and making the comments which improved the terminology and presentation.

## REFERENCES

1. J. Albert, K. Culik II and J. Karhumaki, Tests Sets for Context Free Languages and Systems of Equations Over a Free Monoid, Information and Control, Vol. 52, 1982, pp. 172-186.
2. K. Culix II, The Ultimäte Equivalence Problem for DOL Systems, Acta Informatica, Vol. 10, 1978, pp. 79-84.
3. K. Culik II, Homomorphisms: Decidability, Equality and Test Sets, in R. Bоoк, Ed., Formal Language Theory, Perspectives and Open Problems, Academic Press, New York, 1980.
4. K. Culik II, On the Decidability of the Sequence Equivalence Problem for DOL Systems, Theor. Comp. Science, Vol. 3, 1977, pp. 75-84.
5. K. Culik II and J. Karhumaki, Systems of Equations Over a Free Monoid and Ehrenfeucht's Conjecture, Discrete Mathematics, Vol. 43, 1983, pp. 139-153.
6. K. Culik II and A. Salomaa, On the Decidability of Homomorphism Equivalence for Languages, J. Comput. Systems Sc., Vol. 17, 1978, pp. 163-175.
7. K. Culik II and A Salomaa, Test Sets and Checking Words for Homomorphism Equivalence, J. Comput. Systems Sc., Vol. 21, 1980, pp. 379-395.
8. S. Eilenberg and M. P. Schützenberger, Rational Sets in Commutative Monoids, J. of Algebra, Vol. 13, 1969, pp. 173-191.
9. M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, Massachusetts, 1978.
10. J. Karhumäki and I. Simon, A Note on Elementary Homomorphisms and the Regularity of Equality Sets, EATCS Bulletin, Vol. 9, 1979, pp. 16-24.
11. M. Karpinski, Ed., New Scottish Book of Problems, in preparation.
12. A. Mandel and I. Simon, On Finite Semigroups of Matrices, Theor. Comp. Science, Vol. 5, 1977, pp. 101-111.
13. G. Rozenberg and A. Salomaa, The Mathematical Theory of LSystems, Academic Press, New York, 1980.
14. A. Salomaa and M. Sorttola, Automata-Theoretic Aspects of Formal Power Series, Springer Verlag, New York, 1978.
R.A.I.R.O. Informatique théorique/Theoretical Informatics

[^0]:    (*) Received June 1981, revised February 1982.
    (**) This research was supported by the Natural Sciences and Engineering Research Council of Canada, Grant A 7403.
    $\left({ }^{1}\right)$ Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
    ( ${ }^{2}$ ) Department of Mathematics, University of Turku, Turku, Finland.

