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ON THE EHRENFEUCHT CONJECTURE
FOR DOL LANGUAGES (*) (•*)

by Karel CULIK II C)
and Juhani KARHUMÀKI (2)

Communicated by J. BERSTEL

Abstract. — Ehrenfeucht conjectured that each language L over a finite alphabet E possesses a
test set, that is a finite subset F of L such that every two morphisms on E* agreeing on each string
in F also agree on each string in L. We introducé the notion of déviation of a string with respect to
a language and use it to give a sufficient condition for the existence of such a test set. Moreover, we
prove that a test set effectively existsfor each positive DOL language. The well known open problem
whether this holdsfor every DOL language remains open.

Resumé. — Ehrenfeucht a énoncé la conjecture suivante : chaque langage L sur un alphabet
fini S possède un ensemble de test, c'est-à-dire une partie finie F de L telle que deux morphismes
quelconques sur S*, qui coïncident sur les mots de F, coïncident aussi sur les mots de L. Nous
introduisons la notion de déviation d'un mot par rapport à un langage et nous l'utilisons pour donner
une condition suffisante à l'existence d'un ensemble de test. Déplus, nous démontrons qu'un ensemble
de test existe effectivement pour tout langage DOL positif Le problème ouvert bien connu, de savoir
si ceci est vrai pour tout langage DOL, reste ouvert.

1. INTRODUCTION

Ehrenfeucht conjectured (Problem 108 in [11]) that for every language
L ç S * there exists a finite subset F of L such that for any pair of morphisms
on E*, g(x) — h(x) for each x in L if and only if g(x) = h(x) for each x in F,
Such a finite subset F has been called a test set for L in [7] where it has been
shown that Ehrenfeucht's conjecture holds for every language over a binary
alphabet. It is clear from arguments in [6] that a test set can be effectively
constructed for each regular language and this has been extended to context
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206 K. CULIK II, J. KARHUMÀKI

free languages in [1], The effective existence of a test set for a language L
clearly implies that we can test whether any given morphisms g, fc on S* agree
on L, i. e., whether or not g(x) = h(x) for each xeL. Therefore a test set
cannot effectively exist for each context sensitive language since the testing of
morphism équivalence for them has been shown to be undecidable in [6].

Both the existence of a test set and the decidability of morphism équivalence
are open for all families of languages between DOL and indexed languages,
cf- [3] where positive answers are conjectured. The proof of these conjectures
is not expected to be easy since already the weakest one of them, the
decidability of morphism équivalence on DOL languages, implies the
decidability of the HDOL séquence équivalence problem, cf. [3], a longstanding
open problem.

Our main purpose is to provide a partial resuit in the direction of these open
problems, namely we show that a test set effectively exists for each positive
DOL language. A DOL system is positive if each letter can be derived from
every other letter in one step.

In section 3 we introducé the déviation of a string with respect to a
language. It is a generalization of weighted différence from [7], which for any
pair of morphisms is linearly proportional to the balance of the considered
string. However, the situation in the case of an arbitrary finite alphabet is
essentially more complicated than in the binary case. We show that every
language L with bounded prefix déviation and fair distribution of letters
possesses a test set.

In the next section we show that it is decidable whether a given DOL
language L has the above properties, and if so, that a test set for L can be
effectively constructed. For positive DOL languages the case covered in
section 4 is also covered in section 5, but we have included it since the
arguments in the case of bounded prefix déviation are more intuitive
(generalization of bounded weighted différence in [7]) and the effective
existence of a test set is, unlike in section 5, shown independently of [5].

In section 5 we construct for a positive DOL language a "partial" test set
covering all pairs of morphisms agreeing on the language with bounded
balance. The part of a test set covering the pairs of morphisms agreeing with
unbounded balance is constructed in section 6.

In the last section we obtain our main resuit, the effective existence of a test
set for each positive DOL language, by combining the partial test sets from
the previous two sections. This immediately implies the decidability of
morphism équivalence for positive DOL languages.
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ON THE EHRENFEUCHT CONJECTURE 207

2. PRELIMINAIRES

This paper deals with basic properties of free monoids from the point of
view of formai language theory. As a gênerai référence we mention [9]. The
basic properties and more background material on DOL Systems as well as
DTOL Systems can be found in [13].

A free monoid generated by a finite alphabet Z is denoted by X*. For the
notational convenience we fix £ = {ai, . . .,at} if not explicitly mentioned
otherwise. The éléments of Z* are words or strings and its subsets languages.
The identity element of £*, called empty word, is denoted by X, and

The length of a word x and the cardinality of a finite set A is denoted by | x |
and | A \, respectively. For we£*, the number of a's in w is denoted by | w |a.
When S = {a l9 . . . ,a ,} we usually write | x | ; instead of |x | a . . The Parikh
mapping^: £* -> M'is defined by x|/(x) = ( |x | i , . . . , | x | t ) . Consequently, the
Parikh vector of a word x is denoted by x|/(x). We call words x and y Parikh
equivalent if \|/(x) = \ | /(». For a word x, alph(x) dénotes the set of letters
occurring in x.

For x, y in E*, the left (right) quotient of x by y is denoted by y~x x (xy~ *).
It is undefined if y is not a prefix (suffix) of x. If x is a prefix of y we write x
pref y, while x Pref y means that either x pref y or y pref x holds. By prefn (x)
we mean the prefix of x of length n. By définition, if | x | < n then prefn (x) = x.
For a word x (resp. language L) pref (x) [resp. pref (L)] dénotes the set of all
préfixes of x (resp. ail préfixes of words in L). Similarly for suffixes if "pref"
is replaced by "suf . We say that y is a subword of x if x = x^yx2 for some
words xi and x2. The set of ail subwords of a language L is denoted by
sub(L), The set of ail such words of length n is denoted by sub„(L). We say
that y is a sparse subword of x if y is obtained from x by erasing some of its
occurrences of letters.

Throughout this paper our central notion is a morphism of a free monoid.
We say that a morphism h : S* -• A* is X-free if h(a)^X for ail a e S. The size
of a morphism h, denoted by \\h\\, is 11 h | | = max { | h (a) | | a e Z }. Let
h, g : S* -• A* be two morphisms and L a language over 2. We say that h

L L

and g agrée (resp. length-wise agrée) on L, in symbols h = g (resp. h=tg\ if
h(x) = g(x) for ail x in L [resp. |fc(x)| = |g(x) | for ail x in L]. The set of all
pairs of morphisms agreeing on L (resp. agreeing on L length-wise) is denoted
by Jf (L) [resp. J^t (L)]. We call a language L rich if
3tf (L) = {(h,h)\h : E* -• A* is a morphism}, Le., only pairs with identical
components agrée on L. By a test set for a language L we mean any finite
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208 K. CULIK II, J. KARHUMÂKI

F

subset F of L satisfying: for any pair (h, g) of morphisms h = g implies
L

h = g. Ehrenfeucht conjecture states: Every language has a test set.
Let h and g be two morphisms S* -> À* and w a word. The balance of a

word w with respect to (h, g), in symbols P/,,fl(w), or shortly P(w) if h and g
are known, is defined by:

cf. [3], We say that a pair (A, g) has bounded balance on a language L if there
exists a constant c such that | P(w)|^c for ail wepref(L). Moreover, we say

L

that (h, g) agrée on L with bounded balance if h = g and (h, g) has bounded
balance on L.

Next we introducé briefly DOL Systems. A DOL system G is a triple
(£, ƒ,*), where E is a finite alphabet, / i s a morphism S* -• S* and x, called
axiom of G, is a nonempty word of £*. A DOL system G defines a séquence
of words: x,/(x), /2(x), . . . A language L(G) = {/n(x) |n^0} is the language
generated by G. We call a DOL system positive if a e sub ( ƒ (G)) for each pair
(a, 6 ) e 2 x 2 , Le., any letter of Z is derived from any other letter in one step.

Finally, we need some terminology concerning vectors over rational
numbers Q and nonnegative integers M. For two vectors z and z' in Q\ ziLz'
means that z is componentwise smaller or equal than z'. If z^z' and z#z', we
write z<z'. By the absolute value of a vector z = (zu • • -,Zt) w e niean the

t

number | z | = £ | z; |.

Let M e Q ' . The vector space over Q generated by M is denoted by <M>.
When M ^ IV we call an element z of M minimal if there does not exist in M
any element z' such that z' <z. The set of minimal éléments of M is denoted
by Min (M). By the well-known König Infinity Lemma, cf. [9], Min (M) is
always finite. If M is a finite set of numbers we dénote the smallest and the
largest number of M by min (M) and max(M), respectively.

3. DEVIATION

In this section we define and study our central notion: déviation of a word
with respect to a language. This notion is closely related to the notion of
balance of a word with respect to two morphisms, however, our new notion
dépends on the considered language only.

R.AXR.O. Informatique théorique/Theoretical Informaties



ON THE EHRENFEUCHT CONJECTURE 209

Let L b e a language over {au . . . , a t } . We define a subset of N' induced
by L, in symbols sp(L)5 by setting:

Since \|/(sp(L)) is a subtractive submonoid of the additive monoid f̂ Jf we have,
see [8],

LEMMA 3.1: For each language L over {ai, . . . , a f } , \|/(sp(L)) is finitely
generaled submonoid of(M\ +) .

By Lemma 3.1, there exists a finite set P of vectors in N', say
|3 = {é?i, . . . , e p } , such that:

, for i=\, . . ,9

Now, we state our basic définition.

DÉFINITION 3 .1: Let L be a language over £ = { au - . ., a%} and w e E*. The
déviation ofw with respect to L, in symbols dL(w) or briefly d(w) when L is
known, is the set:

Example 3.1: Let L = afc* c. Then:

sp(L) = {xe{a,b,c}*

and, in terms of Lemma 3.1:

Further for each proper prefix abl of a word in L, d (ab1)^ {(1,0,0)}.

Roughly speaking d(w) tells how far w is from the language sp(L). By the
König Infinité Lemma, see [9], dL (w) is always finite. The relation between the
déviation and the balance is as follows. For every pair {Kg)e J^t (L) and every
word w:

|fc||,||^||}. (1)

We also have the following important lemma.

LEMMA 3.2: Let L be a language and (Kg) a pair ofmorphisms in
Ifu and w are words such that \|/ (u) e dL (w), then $h,g(u) — $htg(w).

vol. 17, n° 3, 1983



2 1 0 K. CULIK II, J. KARHUMÂKI

Proof: Immédiate, since v|/(w) — \|/(u)e\|/(sp(L)) and h and g agrée length-
wise on sp(L).

We continue with the following observation.

THEOREM 3 . 1 : Every language L over {au...,at} containing t linearly

independent Parikh-vectors is riek

Proof: In this case \|/(sp(L)) = N', and hence for any pair (h,g)eM?i(L\
|fc(a,-)| = |g(fli)| f o r i = l, . . . ,£. Consequently, for any pair (h,g)eJ>F(L\
h(ai)=g(ai) holds true for i= 1, ...,£, too.

The problem of whether we can effectively find sp(L) for a given language,
or as a special case effectively décide whether L is rich, dépends, of course, on
the way how L is given. For DOL languages, which we are particularly
interested in, this can be done by:

LEMMA 3.3: Let G = (Zs/,x) be a DOL System. There exists an integer
k<\T,\ such that \|/(L(G)) is included in the vector space generated by

Lemma 3.3, as well as Lemma 3.4, follows easily from the properties of
vector spaces.

LEMMA 3.4: Let L be a DOL language generated by a DOL system (2, f x).
If uesp(L), then also/(u)esp(L).

DÉFINITION 3.2: Let L and L' be languages over the same alphabet We say
that L has bounded prefix déviation with respect to V if there exists a
constant C such that for every prefix w of a word in L:

min{|z| |zedL-(w)}SC.

If the above is satisfied for L = L' we say that L has bounded prefix déviation.
It follows from (1) that if L has bounded prefix déviation, then each pair

(h, g) of morphisms in 2^x (L) has bounded balance on L. However, the bound
dépends on the pair. On the other hand, a pair (h,g) may have bounded
balance on such a language which does not have bounded prefix déviation, see
Example 5.1.

Our notions of the déviation and the bounded prefix déviation are
generalizations of those of the weighted différence and the bounded prefix
différence defined in [7]. We can also generalize some arguments of [7] to yield
the following theorem. To be able to state it we still need one notion. We say
that a language L has a fair distribution of letters if there exists a constant q
such that every subword in L with the length of least q contains all letters of
the alphabet of L.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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THEOREM 3.2: Every language L over {au...,at} with bounded prefix
déviation and fair distribution of letters has a test set.

Proof: Let the prefix déviation of L be bounded by C and let q be a
constant giving a fair distribution of letters for L. We first prove:

Claim: There exists a constant JV such that for any uvepteï(L\ with
| v | ̂  JV, the foliowing holds true: for any pair (fc, g) in 3tfi (L):

min{\h(uv)l\g(uv)\}^max{\h(u)\,\g(u)\}.

The claim is proved as follows. Let z be a vector in d (u) such that | z | g C.
We start by showing that there exist a constant D and a vector zx in \|/(sp(L))
such that:

z + Dri^Zj^z, (2)

where T]=(1S . . . , 1), Le. all components of rj equal 1. According to
Lemma 3.1 let \|/(sp(L)) be generated by {eu - • -, ep}. We set:

p P

u = C H- C 2 J I ̂ i I a n < l Z l = ^ ZJ »̂"
1 = 1 t = 1

Then:

and:
Z < | z | T j ^

where the last inequality follows since each letter at occurs in a word of L,
Hence (2) has been proved.

Now, let N=Dq. Since \v\^N, v contains as a sparse sub word a word v'
such that \|/ (v') ̂  D r|. Assuming, without loss of generality, that | h (u) | > | g (u) |
we should show that |g(Mt?)|^|/r(w)|. For a vector y in N* let y dénote a word
such that \|/(y)=y. Then, by Lemma 3.2 and the above, we obtain:

= \g(ïv)\-\h(7)\Z\g(ïv')\-\h(z)\

Thus, the proof of the claim is completed and we return to the proof of the
theorem.

voh 17, n° 3, 1983



2 1 2 K. CULIK II, J. KARHUMÀKI

We divide L into two parts F and L - F b y setting F={WGL\ \W\<^3N}.

Moreover, for every w in L — F we choose a fixed décomposition:

w = ui . . .um with N^\UJ\^2N. (3)

For each such décomposition and for eachj = 1, . . . , m we define pairs (zjt uj),
where zj is a fixed vector in d(ui . . .u,--i) satisfying |zj |^C. Such pairs are
called pièces. Clearly, the number of different pièces is finite. We say that two
pièces (z, x) and (z', x') occur consecutively in L if there exists in L a word w
such that x and x' occur consecutively in its décomposition (3), say x = Uk and
x' = uk + u and moreover zed («i.. .uk_i) and z'ed{u\.. .ufe). Now, we choose
a finite subset L' of L such that for any pair of pièces if they occur
consecutively in L they occur consecutively already in L'.

Finally, obviously there exists a finite subset F' of L such that
s p ( F U ^ ' U F / ) = sp(L). We infer that F U L ' U F ' i s a test set for L. We

FuL'vF' L

should show that for any pair (Kg) of morphisms h = g implies h = g. Let
(h, g) e «3f (F U L' U F*) and w be an arbitrary word in L - (F U L' U F'). Let
the décomposition of w according to (3) be w = ux . . .um. Since
(fc, g) G ̂  (F U L' U F') and sp (L) = sp (F U L' U F'), h and g agrée lengthwise
on L and therefore by the claim and the choice of (3):

L'

for i= 1, . . . ,m. Consequently, the choice of L' and the fact /i = g imply that
if h(ui . . .tt£_i)Pref g(t*i.. .Ui_i) then also h(ux.. .M£) Pref g(iii.. .u£). So we
dérive inductively that ft(w)=g(w) which complètes the proof of the theorem.

We note that not only the assumption that L has bounded prefix déviation
but also the assumption that L has fair distribution of letters is essential for
our above proof, i. e. for the pièce construction. This is seen as follows.

Example 3.1 (Continued): As already mentioned the language L = ab*c has
bounded prefix déviation. However, the pairs (hh9 gk) of morphisms, for k ̂  1,
defined by:

a(ba)k, a - • ab,f '
hk : | fc -> ba, gk :i ba,

•ab,

(abfa,

show that the claim in the proof of Theorem 3.2 does not hold true for L.
Despite of that we, of course, believe that the theorem is true without the
assumption of fair distribution of letters. Indeed, { ac, abc} is a test set for L.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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4. DOL LANGUAGES WITH BOUNDED PREFIX DEVIATION

Whether the assumptions of Theorem 3.2 imply the effective existence of
a test set dépends, of course, on how L is given. In this section we show that
it is decidable whether a given DOL language satisfies the assumptions of
Theorem 3.2 and, moreover, if this is the case, that a test set for it can be
effectively found.

LEMMA 4 .1 : Given a DOL language L, it is decidable whether it has fair
distribution of letters. Moreover, if this is the case a constant q such that any
subword u of L, with \u\^q, contains all letters of L can be effectively found.

Proof: Let L = L (G) for a DOL System G = (E, ƒ, x) satisfying E ç sub (L (G)).
For each a in E let Ga = ÇL,f a). We divide E into two disjoint parts E7 and
E* by setting E r = { a e X | L (Ga) is finite } and E< = E - Ex. If E,- ̂  Ç), i. e., L (G)
is finite, we are done.

So, assume that E^Ç). We claim that L has a fair distribution of letters,
if and only if, the following two conditions are satisfied:

(i) there exists an n0 such that for every a in Ê  alph(/n(a)) = £ for n^n0,
and

(ii) the language E? H pref(L(Ga)) and Hf O suf (L(Ga)) are finite for
every a in S.

Clearly, the conditions (i) and (ii) are necessary for a fair distribution of
letters in L. They are also sufficient since (ii) rules out the possibility that L
would contain arbitrarily long subwords from S^ and after that (i) guarantees
that any long enough subword contains all letters from S. Now, the first
sentence of the lemma follows, since the validity of (i) and (ii) for a DOL
language can easily be checked. Furthermore, if L satisfies the conditions (i)
and (ii) then a bound giving a fair distribution for L can be effectively found.

LEMMA 4.2: Given a DOL language L, it is decidable whether it has bounded
prefix déviation. Moreover, if this is the case an upper bound for it can be
effectively found.

Proof: Let L = L{G) for a DOL system G = (L,f ©) with ï = {a1, . . , , a f } .
By Lemma 3.3, we can effectively find sp(L). Let F : E* -> M be a mapping
defined by:

t

F(w)= £ nt\w\i for some nteZ
i=i

and satisfying:

F(w) = 0 if and only if wesp(L). (1)
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Such an F can be defined, e. g., via a linear functional Q' -> Q having
<\|/(sp(L))> as its kernel. Consequently, F can be computed from L. Let h
and g be morphisms of £* satisfying | h (ai) \ — \g (ai) \ = rit. Therefore
F(w) = p*,ff(w)forall wel* .

We claim that L has bounded prefix déviation if and only if the pair (Kg)
has bounded balance on L. The implication "bounded prefix déviation implies
bounded balance" is clear, see équation (1) in Section 3. So assume that (h,g)
has bounded balance on L, i. e. F(x) is bounded on pref(L). We show that:

F-1(m)n( U d(w)), (2)
wepref(L)

is finite for each me{F(v)\vepref(L)}. If this is not the case, then, by the
König Infinité Lemma, cf. [9], there exist words wt and w2 in pref (L) such
that F(wi) = F(w2), x|/(w1)<\|/(w2) and \|/(w4), \|/(W2)G U d(w). Let

we pref (L)

w/ey\f~i(^(wi)-y\f(w2)l Then F(w') = 0 and, hence, by (1), w'esp(L).
Consequently, \|/(w2) cannot be in d(w) for any wu a contradiction. So (2) is
always finite, and theref ore L has bounded prefix déviation.

Now, the first sentence of Lemma 4.2 follows. Indeed, in [2] it has been
shown that it is decidable whether an arbitrary pair of morphisms has
bounded balance on a DOL language.

Knowing that the prefix déviation of L is bounded, an upper bound for it
can be effectively found as follows. Let xaepref(L), with aeX{J {X}. We

associate to xa a pair (d(x\ a) where d(x) is a fixed element in d(x). Let Lo

be the set of all such pairs. For each pair {d(x\ a) we define a finite set

S(d(x\ a) of pairs as follows. Let yb e pref (f (a)), where b e E o r if f(a) = X

then b = X, and let x' be a fixed word inf(y\f'1(d(x))). S (d(x\ a) contains all

pairs (d(x'y), b) where again d(x'y) dénotes a fixed vector in d(x'y). Let the
set of all pairs thus obtained be L\ and let Li = L0\JL[. We proceed
inductively to define the sets Lt for z^O. Now, the important observation is
that all the déviations (or more precisely a représentative of all the déviations)
of préfixes of words in {hi(w)\iSn} are obtained as first components of
éléments of L„. This follows easily from Lemma 3.4 by induction on n. From
the définition of Lrsets it follows that Lo^Lx ^ L 2 ^ . . . Moreover, since L has
bounded prefix déviation we finally find an i0 such that L,-o +1 = L;o, and
consequently, assuming that the fixation of the value of déviation is always
done in the same way, we have Li = Lio for each ï^i0* Hence, a bound for the
prefix déviation has been found.

Now, we are ready for the main resuit of this section.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ON THE EHRENFEUCHT CONJECTURE 215

THEOREM 4 .1 : Given a DOL language L, it is decidable whether L has
bounded prefix déviation and fair distribution of letters, and if this is the case,
then a test set for L can be effectively found.

Proof: Let L = L(G) for a DOL System G = (£, ƒ co). The first part of the
theorem is proved in Lemmas 4.1 and 4.2. The second part is deduced from
the proof of Theorem 3.2 as follows. Now, instead of using pièces where the
lengths of the second components are between N and 2 N it is préférable to use
pièces of the length between N and 2 KN, where K is a constant satisf ying: if
u e sub (L), with | M 12> KN9 then | hn (u) | ̂  N for each n ̂  0. Such a constant K
clearly exists. Namely, this makes it possible to generate the "pièce
décomposition of L", i. e., L with the information how its words are
decomposed according to (3) in Theorem 3.2 into pièces, as a DOL language.
Let Gp~(Lp,fp,Xp) be such a System. Consequently, Sp consists of all second
components of pièces of L as well as short words, i. e., words in i% specified
in the proof of Theorem 3.2.

We continue by showing that we can incorporate into each occurrence of
Zp in L also the information about what is the déviation at the beginning óf
this occurrence of a letter. More precisely, let y x y' be a word in L such that x
corresponds to a pièce. We want to put into x the information about d(y).
This can be done as follows. First, we recall that the constant N was selected
in the proof of Theorem 3.2 such that if M G sub (L), with | u | ̂  AT, then for ail
wepref(L) there exists z in d(w) such that \|/(u)^z. Consequently, we can
incorporate the information about d (y) into x, for example, by using barred

letters. (Observe that for short words d(y) = 0.) But can the séquence still be
generated by a DOL System? The answer is "yes", since, as we have already
pointed out, sp(L) is closed under ƒ (Lemma 3.4), and consequently the
déviation at the beginning of an occurrence of a pièce obtained from x by
applying fp can be computed from ƒ (x) and d(y\ i. e., from x and the barred
letters of x. So a new morphism, and also a DOL System, say

Gp = (Lp,fpyxp) can be defined in such a way that it contains the entire
information about how words of L are decomposed into pièces.

The construction of a test set for L is now easy. The requirement for L' in

the proof of Theorem 3.2 is surely fulfilled if we take from L(GP) SL finite

subset Lp such that it contains all the subwords of L (Gp) of the length two,
and choose U equal to a finite subset of L corresponding to Lp. By
the définition of Lp, we can effectively find an n0 such that

Lp^{//(Xp)|n^n0}. Consequently, a finite set {/n(x) |n^n0} is a test set
for L.
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COROLLARY 4.1: Given a positive DOL language L with bounded prefix
déviation a test set for L can be effectively found.

Proof: Clearly, positive DOL languages have fair distribution of letters.

5. MORPHISMS AGREEING ON A POSITIVE DOL LANGUAGE WITH BOUNDED
BALANCE

In this section we consider the case when two morphisms agrée on a given
positive DOL language L with bounded balance. We show that there exists a
finite subset F of L such that any pair of morphisms with bounded balance
on L agrées on L if and only if it agrées on F, Thus the considérations of this
section yields an alternate proof for the existence of a test set (and hence also
for the effective existence of a test set, cf Section 7) for positive DOL
language with bounded prefix déviation (cf. Corollary 4.1). Moreover, this
section takes also care of morphisms agreeing on a positive DOL language
with bounded balance although the language itself has unbounded déviation.
The reason why we included Section 4 is that the considérations therein are,
we believe, more intuitive and neater.

Example 5.1: Let G be a positive DOL system defined by the morphism:

a -> aaabcd,

b - • abcbcd,
1 c - • acbcbd,

d -* acbddd

and the axiom abcd, Clearly, \|/(L(G))ç{(fc, k,k9 k)\k^l} and therefore
\Ksp(L(G))) = {(fc,fc,fe,fc)|fc^l}. We claim that, for each n ^ l ,
x„ = pref6nƒ

n{abcd) satisfies |x n | a - |x„ | d ^2" . Since xx=aaabcd the claim is
true for n= 1. So the claim follows from the relation xn + 1 =ƒ (x„) by induction
on n. The claim immediately implies that L (G) has unbounded prefix
déviation. Consequently, a positive DOL language may possess unbounded
prefix déviation.

Consider now two morphisms defined by:

h:

Clearly, h and g agrée on the language L~{a,bc,cb,d}* with bounded
balance (in f act, with balance 2). Since L(G)^L, (h,g) also agrées on L(G)
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with bounded balance. It is also easy to give (periodic) pairs of morphisms
agreeing on L with unbounded balance.

To cover the cases like in the above example, we have to prove:

THEOREM 5.1: Let L be a positive DOL language. There exists a fînite
subset F of L such that F is a test set for ail pairs (h, g) o f morphisms having

F

bounded balance on L, Le.y for any pair (Kg), h = g implies that
L

either h = g or (h, g) has unbounded balance on L.
Proof: Let L be generated by a positive DOL System G = (£, f x) with

Z = {ai, .. . , a t }. As shown in [2] we can construct a DTOL System G' and a
morphism x such that:

pref(L) = T(L(G')).

Consequently, \|/(pref (L)) has a matrix représentation, i. e., there exist matrices
Mi, . . . , Mk, M and a vector n over l̂ j such that \|/(pref (L)) coincides with the
range of the function F : { 1, . . . , k }* -• f̂ l111 defined by:

F(il...iq) = nMii...MiqM for q*0, î j e { l , . . . , f c } .

Moreover:

* ( p r e f ( / " ( x ) ) ) = { F ( y ) | \y\ = n+l). (1)

Now, let h and g be two morphisms of E*. Clearly:

{ P M ( w ) | w e p r e f ( L ) } = { F ( y ) î î M ^ e { l , . . . , & } • } > (2)

where r]htg = (\h(al)\-\g(a1)l . . . , |h(at)\-\g(at)\). We assume that (2) is
finite, i.e., (Kg) has bounded balance on L, and apply results of Mandel and
Simon, cf [12] Section 5, in the following form. There exists a constant nG

such that all the values of (2) are obtained when y ranges over
{j>e{l, . . . ,&}* | | j | < n G } . Moreover, nG can be chosen independently of
r\htg, i.e., independently of (Kg). Consequently, by (1), for any pair (Kg) of
morphisms having bounded balance on L, ail possible values of the balance
on L are already obtained on the finite language U — { ƒ " (x) | n ̂  nG}.

Next we establish an analogy to the claim of the proof of Theorem 3.2.

Claim Î: There exists a constant N such that for any ui;epref(L), with
| v | ̂  N, the following holds true: for any pair (K g) in J^i (L) having bounded
balance on L:
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Claim I is proved as follows. Let (h, g) be a pair of morphisms satisfying the
above assumptions and let K~ max {| x | | x e V}. Then:

|PM(w)|^Xmax{| |A| | , | |g | |} for every w in pref(L).

Consequently, if we show that there exists a constant N such that for every
vesub(L\ with |t?|^JV:

(3)

then Claim I follows. To prove (3) we apply the length argument to a fixed
word of L containing all letters of X, i. e. we obtain that:

1 = 1 1 = 1

for some positive values of nu . . . , nt. Therefore:

|ft(z)|è|U|| and |s(z)|è||*|| (4)

whenever \|/(z)^(ni, . . . , nr). Now, we use the positiveness of G. This yields a
constant TV such that if z;esub(L), with |ü|^iV, then ^(v)^K(nu . . . ,n t).
Thus, (3) and also Claim I follows from (4).

To complete the proof of Theorem 5.1 we have to show how Claim I
implies the existence of a finite subset of L such that it tests whether arbitrary
pair of morphisms having bounded balance on L agrées on L. First we recall
a resuit mentioned already in the proof of Theorem 4.1: there exists a DOL

system Gp — (Ep, fp, xp)9 where Ep = U E* for some N' > N, such that the letters
t = i

J V - l

in U El occur only in a finite subset of L(GP) and \|/(L(GP)) = L, where \|r is
i = i

the morphism mapping each element of Ep into a corresponding word of E*.
We make another claim.
Claim II: Let w', WelLp and (Kg) be a pair of morphisms in 34fi(L) having

bounded balance on L. There exists a finite language L//(^L(GP\ independent
of (h, g), such that:

(wi w 0) | wi w'w" W2 e L" for some Wi, vv2 e E*}

= { Ph,3 Ok (wi wO) | wi w' w" w2eL (Gp) for some wl9 w2 e E* }.

The proof of the Claim II is as follows. It is a simple modification of the
construction presented in [2] to see that there exist a DTOL system GA and a
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morphism ti such that:

pref (L(GP)) p | 2£ Ww* =

Consequently, the ideas of the beginning of this proof become applicable, and
prove Claim IL

Now, we are ready to finish the proof of Theorem 5.1. Indeed, Claims I
and II guarantee that the arguments of the proof of Theorem 3.2, e. g. the
pièce construction, can be modified in a obvious way to complete the proof
of Theorem 5.1.

Note that we do not require that F in Theorem 5.1 is found effectively.

6. MORPHISMS AGREEING ON A POSITIVE DOL LANGUAGE WITH UNBOUNDED
BALANCE

Now, we turn to consider the case when two morphisms agrée on a positive
DOL language L with unbounded balance. Necessarily, this means that the
DOL language must have unbounded prefix déviation. We shall prove an
analogy to Theorem 5.1 for pairs of morphisms having unbounded balance
on L. In doing this we use ideas, especially the "shifting argument", presented
in [4].

LEMMA 6.1. Let G = (L,fx) be a positive DOL System. For each e>0
there exists an integer nz such that:

for every n^nB and w e pref ( ƒ " (x)), where | à (w) | min = min {| z | \zed (w) }.

Proof : Let D be a word in L(G) such that
Since G is positive we find a constant s such that for ail a in E:

fs (a) = afl pa ya with v|/ (afl) ̂  \|/ (u) and \|/ (ya) ̂  \(/ (Ï;). ( 1)

Now, for each a in E, we fix ua to be a word obtained from ƒ s (a) by erasing

from it a word Parikh-equivalent to v, and we define ƒ : E* -> E* by

f(a) = va. This means that for each word y ^( / s(y)) —v|/( ƒ0)) belongs to
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\|/(sp(L)). Let q be a constant satisfying:

v|/ (vlfHx)ï) ^ \|/ ( fs (a)) for all a e E. (2)

We set x o =/ r (x ) where r satisfies:

• ( /P(x))è( | /«(x) | + l)+(i;) (3)

and define, for i = 0, . . .,s— 1, DOL Systems:

G, = (Z, ƒ, xi) where x, = ƒ ' (x0).

We first claim that for every prefix wepref( fns+r + i(x)) there exists a
vector z in d (w) such that:

for n^O. (4)

We fix an i and prove (4) by induction on n. The case n = 0 is clear since

/0 (xO=/ r + *(x). So let wepref(/( /I + 1)s+r+f(x)), Lc, w = w1w2 where
Wi= / s(wi) for some word w\ and w2epref( fs(b)) for some è in S. By
induction hypothesis, there exists a vector zx in d(wi) such that

\|/(/B(Xf))^Zi. Now, since a 6 sub ( ƒ (a)) for each a, we conclude from (3) that
there exist a constant k and a word u, with \|/(u) = zl5 such that:

\|/ ( ƒn (xt» ̂  v|/ (uvk) where | ui;fc | ̂  | ƒ9 (x) |. (5)

By (2), (5) and the définition of w2) \uvk\ \|/(i?) — v|/(w2) contains only positive

components. Moreover, by the définition of ƒ the same holds true for all

vectors \|/( f{y)) — \y\ \|/(iO wherej^eS*. Consequently, we obtain:

x|/ ( ƒ (uvk)) ̂  ^(f(uvk)) - | U Ü * | ^ ( Ü ) + * (w2)

Because of the relation \|/( ƒ (w)) — | u | \|/(t>)^0 there exists in d(f(u)) a vector,

say z2, such that \|/( ƒ(«)) — |u| \|/(t;)^z2. Now, remember that \|/(w)e^ (wi).
This implies, since sp(L) is closed under ƒ (c/ Lemma 3.4) and hence also
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nndevf that there exists in d(wl) a vector, say z3, such that z2^z3- In
conclusion, we have:

where z3 ed (wO,

which, by (4) and the identity w = W! w2î complètes the induction.
By (4), to complete the proof of the lemma it is enough to show that, for

— \f(Xt)\

Let Mi and M2 dénote the growth matrices of G and Gu respectively, cf. [13].

By the définition of/, we have M\Ï>M2+I, where ^ dénotes the natural

componentwise order. Let 7c = \(/(xI) and T | = ( 1 , . . . , l) r . We have:

nMn
2T] < % M\ r|

where C is an upper bound for the values of en tries in M2. So (6) and hence
also Lemma 6.1 follows.

We also need another lemma, a lemma on formai power series (as a gênerai
référence of the topic we mention [14]).

LEMMA 6.2: Let F : E* ™> Z fee a Z-rational formai power series and N a
constant. There exists a constant n0, depending on the cardinality of E and N
only, such that F is unbounded if and only if there exists a word u such that
N<\u\<N+noandF(u)${F(w)\ \w\^N}.

Proof: The proof of Lemma 6.2 can be derived as an application of the
theory of Hankel matrices, e. g. by using Corollary II. 3.4 in [14].

Next we prove an analogy of Theorem 5.1.

THEOREM 6.1: Let G = (S , / , x) be a positive DOL System and L = L(G).

There exists a flnite subset F of L such that F' is a test set for all pairs
of morphisms having unbounded balance on L, Le., for each pair (h,g),

F' L

h^g implies that h= g or (h, g) has bounded balance on L.
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Proof: By the standard décomposition technique, cf. [12], we may
décompose G into a finite number of Systems such that each such System

(E, ƒ, x) satisfies: sub2( /(a)) = sub2( f{b)) for ail ( a , t ) e l x E. Consequently,
we may assume that G shares this property.

We first assume that x G E, say x = a. This means that sub2 (L) = sub2 ( ƒ (G))
for all freX. Let (h, g) be an arbitrary pair of morphisms having unbounded
balance on L. We show that there exists an n0 such that if h and g agrée on
{ƒ * (a) | n ̂  n0 }, then they agrée on L, too. Since n0 is shown to be independent
of (h, g) the theorem follows for DOL languages generated by positive Systems
with the axiom of length 1.

From now on we consider a fixed, but arbitrary, pair of morphisms having
unbounded balance on L and agreeing on a later specified finite language
Fç=L. Since h(f(a))=g(f(a)), we have:

aéZ aeL

for some positive integers m9. Consequently, there exists a constant q,
independent of (h, g), such that:

^ | g | | } . (7)

On the other hand, the positiveness of G implies the existence of a constant
K>0, again independently of (h, g), such that:

K\w\ | | h | | ^ | / i ( w ) | ^ |

and:

\\g\

(8)

for every subword w of L containing all letters of Z. Consequently, setting
2 wehave:

;\g(w)\^\h(w)\SK\g(w)\ (9)

for w G sub (L) with alph (w) = Z.
We choose a constant k such that:

l for each ^GE. (10)
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Let now fn(a) = uv for some words u and v and large enough n. Further let
| u | ̂  | v | (the other case is symmetrie) and pref 1 (v) = a. We search for ancestors
of ot, i.e., occurrences a1)a2j... of letters in L such that ƒ'(a*) contains the
above mentioned occurrence of a. Clearly, since G is positive, there exist a*
and oc,-, i<j, and a constant N>0 such that 0Ci = o,-, their right neighbours in
L (G) are the same, say P, and moreover:

(H)

for ail b in E, large enough n, and k defined in (10). Observe that constant N
can be chosen independently of w, V and n, while a* and a,, of course, depend
on w, i; and n. This is because a,- and a,- can always be chosen from the
uniformly bounded initial part of the séquence generated by G. (Hère the
assumption | v | ̂  | u is needed to guarantee the existence of p.)

Our next goal is to fix the integer n in the décomposition ƒ n{a) = uv. By (7),
(8) and (11), we have:

and: (12)

On the other hand, by Lemma 6.1, for every e>0 there exists ne such that:

\d(u)\nin£e\f"(a)\ for n^nE,

and hence:
for n^n£. (13)

By (12) and (13), if n is large enough, then for all letters b in S:

and: (14)

where pmax = max{| p(w)| |wepref ( fm{d)) for some m^n}, Le., we can
find for any décomposition ƒ "(a) = uv, with | v | ^ | u | and n large enough, at

(and aj) satisfying (14). So far we have not used the assumption that (h, g) has
unbounded balance on L. Now we do so. We fix the décomposition
fn°(a) = uv requiring that n0 is large enough to yield (14) and that the balance
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$h,g (w) is different from the balances of the préfixes of {ƒ " (a) | n < n0} U { w},
i. e., for any such prefix w^u, | ph,9(w) | ̂  | $h,g(ü) |. Observe here that we have
two possibilities: either | u | ̂  | v | (handled in detail above) or | u | ̂  11; | (which
is symmetrie). Observe also that the above is the only point which makes n0

dependent on {Kg). However, by Lemma 6.2 and the considérations of the
beginning of the proof of Theorem 5.1, there exists a uniform upper bound
for n0. Consequently, n0 can be after all chosen independently of {Kg). We
further assume that n0 ̂  | X |.

F'

Now we set F = { ƒ " (a) | n ̂  n0} and recall our assumption: h = g. We have:

ƒ"

where «i w' = u, u /t; /=/ i(atP). The choice of af and a7 can be illustrated as in
Figure 1.

Figure 1
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Since the above specified a is in ƒ l (a,-), | ƒ ' (P) | g | t/ |.

So using (10), (14) and (9) we deduce:

225

(15)

and that the same holds true when h and g are interchanged.
By our assumption h ( ƒ "° (a))=g(fn° (a)). Theref ore since

m/e pref ( ƒ "° (a)) there exists a word ƒ such that yh (v') Pref g (v') or
h (i/) Pref yg (i/) with = | p (w) |. Similarly,| | | ) | y since
h(fn°-J+i(a))=g(fnQ-j+i(à)) there exists a word / such that either
y' h (v') Pref g (v') or A (i/) Pref / g (i/) with | / 1 = | p (u2 u') |. Moreover, by the
choice of |P(u)|, |y | / | / | . Consequently, we have the situation illustrated in
Figure 2 (where we assume that h (v') pref yg (v') and y'h (v') pref g (v'); the
other three possibilities can be handled with the very same manner).

y1 h(v' )

^ ¥ =

ifcl
g(v)

Figure 2

That is to say, we have three représentations for a prefix of h (v').

Consequently, the prefix w of h (v') with the length:

| - |P»« |} (16)

is quasiperiodic with the period p=yy\ i.e., wepref(/?*). Possibly by
choosing p shorter we may assume that p is primitive, cf. [9].

Now let:

for each ce2.
By(14):

(17)
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Let L2 = { cd e S2 | cd e sub (L(G))}. We claim that h (cidd e sub {p*) for every
cdeL2. Now, by(15), its symmetrie form for g, (16) and the fact

L2Çsub(/(p)) we conclude that h (ctdi) e sub (w) for every cdeL2. Thus
h (Cidi) e sub (/?*), Now, by (17) and the primitiveness of/?, we conclude that
h(fi~k(y))esub(p*) for every word y in E* such that sub2(j/)^L2. In
particular:

*(/'~k(/"(a)))esub(p*) for n£0. (18)

Symmetrically, we find a primitive word /?' such that:

s(/'~*(/n(a)))esub(/?'*) for n^O. (19)

So, by the primitiveness of/? and/?' and by the fact h(fi~k(a))=g(fi~k(a)\
we must have /?=/?'.

Finally, we are ready to finish the proof of Theorem 6.1 in the case of one
F'

letter axiom. Since h = g and w o ^ |£ | we, by Lemma 3.3, conclude that
L

h=ig. Moreover, n o ^ | £ | implies that if L contains a word starting with
some letter in X, then also F contains such a word. Consequently, (18) and

L

(19) guarantee that h = g.
The proof for the gênerai case, i. e., for the case when x need not be of

length one, is obtained as a modification of the above in the following way.
Let:

L2 = {cdelt
2\cdesub(L(G))}

and:

L2 = {cdeI,2\cdesub{U {fn(a)\ n^

Now, we cannot require that, for each be£, f(b) contains as subwords all
words from L2, but we can require, as we did, that this is true for words from
L2. Hence, by the arguments above, there exists a primitive word /? such that:

and: J (20)

g(.fl-k{f"(b)))esab(p*) )

for all n^OandèeE.
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F'
Let x = ai...ar with a,eE. As in the case x~a, we have h= g and
L L

h~ig, andwe should show that h = g. This follows if we show that:

fc(/"(fll.. .aj))Prefg(/"( f l l . . .a,)) (21)

for n ̂  0 and 7 = 1, . . . , r.
Let us consider (21) for :xj = 2. We define, for

n^09 ao(n) = prQî1(f
ntal)\a1(n) = suî1(f

n\a1)) and a2(n) = prefx(ƒ• (a2)).
Clearly, the séquence (ÜO(W), ÛI (n), a2(n))n^0 is periodic, i.e., for some
integers T and p the following holds:

aÉ(T + / + mp) = ûi(T + iH-(m+l)p), (22)

for.ï = 0, 1, 2, / = 0, . . . , p - l and m^O. We fix / and show that (21) holds for
n = x + / + p m with m ̂  0.

For notational convenience let/T + I+mp(a1) = y(m) and /T"H + mp(a2) = ô(m).
For x + Z + m p ^ î — fc we are done: the required équation is among our
assumptions. So let m assume only values such that H-/-fm p^i — k. Observe
that, by (20) and (22):

h(y(m))ep1p*p29

Ji (S (m)) e/?2 pref (/?*),
(23)

for some w o r d s ^ i ^ ^ ^ e s u f ^ ) and p
Now, we assume that Pft,5(y(m)) assumes at least two different values, say

$hig(y(mi))^$h,g(y(rn2)). Because (PM(y (m)))m^0 is governed by a différence
équation of order t, we may, possibly enlarging n0, assume that
By (23), | Pft.,(Y(mi))-P*.*(Y(m2))| is a multiple of |p| . Let:

s u f IPmaxI (h (y ( m i ) » = 7i = su fI

and:

Since fc(/MlW) = g ( /^ (x ) ) , f c ( /^ (x ) )=^( /^ (x ) ) and
I Pft.s(ƒmi(«i)) | ^ | Pmax|, for i=l ,2 , we have, by (23), the situation illustrated
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in Figure 3 (where we assume that Pft,ff(y(mi))^O and p/,^(Y(m2))^O; the
other cases are similar):

Figure 3

So it follows from (23), from the primitiveness of p and from the fact that
| Pfc,gY(wli)~P/i,ff'y(m2)| is larger than \p\ Ûvai p3p3—p. It also follows from
Figure 3 that p2pi =ƒ>. Consequently, by (23), the équation (21) follows in this
case.

The other possibility, i. e., the case when PA,S(Y(W)) assumes only one value
is simpler. Clearly, (21) now follows from (23) and from the fact that
h (y (m) 8(m))=g(y(m) 8 (m)) for some value of m, say m'.

Equation (21) for cases j>2 can obviously be derived in the very same
manner. Indeed, to prove (21) for some j , only the behaviour of h and g near
the occurrences of subwords s\xfxfn(aj-1)pTeî1f

n(aj) are needed. This,
finally, complètes our proof for Theorem 6.1.

7. TEST SETS FOR POSITIVE DOL LANGUAGES

Now, we are ready for our main resuit concerning DOL languages.

THEOREM 7.1: Every positive DOL language Lpossesses a test set. Moreover,
a test set for L can be effectively found.

Proof: Let F and F be subsets of L determined by Theorems 5.1 and 6.1.
Clearly, F{J F' is a test set for L proving the first sentence of Theorem 7.1.
The second sentence follows from Theorem 3.2 in [5], which shows that if a
test set for a DOL language éxists it can be effectively found.

In order to be able to state a corollary of Theorem 7.1 we need the
following définition. Let if be a family of languages. Morphism équivalence
problem for S£ is to décide whether two given morphisms agrée string by string
on a given language of S£.

COROLLARY 7 .1: Morphism équivalence problem for positive DOL languages
is decidable.
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Proof : Immédiate by Theorem 7,1.
As regards possibilities to generalize the above the following remark is in

order. Let L be a positive DOL language and (Kg)eJ^(L). By the proof of
Theorem 6.1, either (h,g) agrée on L with bounded balance or there exists a
constant i [independent of (Kg)] and a word p such that:

h(fn(b)\g(fn(b))esub(p*) for n*i and bel:, (1)

i. e., h and g are, in a sensé, "very periodic on L". This is not true for arbitrary
DOL languages as seen from

Example 7.1; Let G be the DOL system defined by the morphism:

a -> abc,

b -> bb,

f: C-C'

e -> ee,

f^cef,
and the axiom abdef. Further let h and g : {a, b, c, d, e, ƒ} *
be the morphisms defined by:

h:

{ 1,2, 3,4, 5 }

• a ->

b ->

c ->

d -»

e -»

1234,
2323,

4,

24, g :

32,

5,

a

c

d
e

f

-» 1,
^ 2 3 ,

-4,
^ 4 2 ,

-» 3232,

-» 4325.

L(G)

It is straightforward to see that h = g9 cf. [10]. It is also clear that (1) is not
satisfied for G, h and g. However, (Kg) has unbounded balance on L(G). In
f act, for each weL (G):

P M (pref(1/2)|w| -1 (w)) ̂  - | w |.

On the other hand, we believe that our considérations can be generalized to
cover all simple DOL languages, cf. [3], i. e. languages generated by DOL
Systems satisfying: for each pair (a, b) of letters a is generated from b in a
number of steps. Indeed, we have:

THEOREM 7.2: Each simple DOL language containing a word of the length
one has effectively a test set.
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Proof : A DOL system generating such a language can be décomposée!,
cf. [13], into a finite number of positive DOL Systems. We leave the details for
the reader.

We conclude with a simple observation which somewhat extends our main
resuit.

LEMMA 7.1: If a test set (effectively) existsfor each language from L than the
same holds also for the morphic closure of L.

Proof: Obvious.

COROLLARY 7.2: Every HDOL language based on a positive DOL language
possesses (effectively) a test set.
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