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CATEGORICAL APPROACH
TO NONLINEAR CONSTANT

CONTINUOUS-TIME SYSTEMS (*)

by H. EHRIG, W. KÜHNEL (*)

Communicated by W. BRAUER

Abstract. — The state-transition function of a constant, continuous-time system is shown to be a
right action of a monoid on the state space. Using this fact, categorical approaches to réduction,
reachability, observability and minimal realization, which were mainly developed for discrete-time
automata and Systems, can be also applied to continuous-time Systems. In this way, some known results
can be unified and several new results for different types of constant, continuous-time Systems are
obtained.

Resumé. — On montre que la fonction de transitions d'un système constant à temps continu est
l'action d'un monoïde opérant à droite sur l'espace d'états. Grâce à quoi on peut appliquer aux systèmes
à temps continu les approches catégorielles de la réduction, de la connexité, de Vobservabilité et de la
réalisation minimale qui avaient été développées surtout pour les automates et les systèmes à temps
discret. De cette manière, on peut unifier quelques résultats connus et en obtenir de nouveaux pour
différents types de systèmes constants à temps continu.

INTRODUCTION

Continuous-time Systems can be studied on two different levels of
représentation. On one hand, given by a differential équation and on the other
hand given in state-transition form. Whüe the first représentation is used in most
of the literature the gênerai mathematical treatment of dynamical Systems in [7],
for example, is started with Systems in state-transition form. For smooth Systems
it is shown that the state-transition function satisfies a differential équation
leading to the first way of représentation.

We claim that for problems of reachability, observability and minimal
realization the state-transition form is much more adequate than the differential

(*) Received July 1977, revised september 1978.
(l) Technische Universitât Berlin, Fachbereich Informatik, 1 Berlin 10, Germany.
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108 H. EHRIG, W. KÜHNEL

équation form. In [10] and [11] for example, bilinear and nonlinear Systems are
studied with respect to these problems but the state-transition form is only used
implicitely. Especially the fact that the state-transition function
( p : X x R + x Q - ^ I can be regarded as a right action of the semigroup
R+ xQ (Q = space of input functions or controls) on the state space X can be
used to solve the problems mentioned above in the same way as in the case of
discrete-time automata where the state-transition function extended to the free
monoid of the input alphabet is a right action. Using the concaténation of input
functions as multiplication the space Q and hence also R+ xQ becomes a
semigroup. (This has already been used in [7], VI. 1.) Actually, we will use a

quotient monoid R+j<Q- °f R + x £X which is very similar to the semigroup S {U)
used in [12].

Starting with the basic définitions of dynamical Systems in [7] we will show in
section 1 that the state-transition function of constant, continuous-time Systems
becomes a right action of the monoid R+_x_Q on the state space such that these
Systems can be regarded as monoid automata. In section 2 we review the theory
of monoid automata in closed catégories from [3] and the concepts of minimal
realization in [4]. Moreover, we give the explicit construction and proof for left
and right adjoints of the forgetful functor V : RactM -• K where RactM is the
category of right actions of a monoid M in the closed base category K. This
resuit is most important in order to apply the gênerai concepts of minimal
realization to constant, continuous-time Systems. These applications will be
given in section 3. In particular, we will study the following types:

1. Constant, continuous-time Systems (without additional structure, in the
sensé of [7]).

2. Bicontinuous Systems (ail basic sets are topological space and ail functions
are continuous in each variable).

3. Compactly generated Systems (ail basic sets are compactly generated
Hausdorff spaces).

4. Semilinear Systems (9 ( —, (t, w)) : X -> X is linear).
5. Bilinear Systems (in the sensé of [10] and [12]).
6. Semilinear bicontinuous Systems (combination of 2 and 4).
7. Linear Systems (q>( —, t, — ) : X x£l^> X is linear).
8. Smooth Systems (similar to [11] and [7]).

Let us point out, however, that this paper is only a first approach to study
continuous-time Systems with categorical methods. The basic concepts used
from [4] are still not gênerai enough to cover the case of smooth Systems (see 3.8)
explicitly.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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1. FROM CONTINUOUS-TIME SYSTEMS TO MONOID-AUTOMATA

Following [7] définitions (1.1), (1.2) and (1.3) we use the following notation:

1.1. DÉFINITION

A continuons-time dynamical System is a construct

£ = (X, R, U,Q, Y, <p, TI)

where X (state set), U (input values), and Y (output values) are sets, R the real
numbers, Q (input functions) is a nonempty subset of ail functions from R to U, <p
(state-transition function) a (partial) function

q> : I x R x R x Q - ^ I

and r\ (readout map) a function

r\ : X xR-* Y

satisfying the following axioms:
(a) Q is closed under concaténation of inputs, i. e. for w, w' e Q and t1<t2< t3

there is an u/ 'eO such that we have for the restrictions of the functions

w"\(t M ™ W (t , i and tu"

(b) (Direction of time), cp is defined for ail

(x, T, t, w)eX xRxRxQ. with

(c) (Consistency). cp(x, t, t, w) = x for ail xeX, teR, weQ.

(d) (Composition property). For any tx<t2<t3 we have

c p ( x , tXt tZf u;) = ( p ( c p ( x , tlt t2, w), t2, t3, w).

(e) (Causality). If w, u/ e Q with w | (T) t] = w' | (Tt (] then

(p(x, x, t, w;) = (p(x, x, t, w'),

vol. 13. rf 2, 1979



110 H. EHRIG, W. KÜHNEL

The only différence to [7] is that we have not mentioned the output function
explicitly. But we use the same output function namely that given by

r\(<p(x, x, t, w), t) for t^x .

1.2 DÉFINITION

A continuous-time dynamical system is constant iff:

(a) Q, is closed under the shift operator ZT : w\->w' defined by w'(t) = w{t — x)
for T, teR.

(b) cp(x, T, t, iü) = <p(x, x + s, £ + s, Zsw) for all 5GR.

(c) The map r| (., t) : X -> Y is independent of t.

In the following we will assume that all our Systems are constant. Then we will
make the following notational simplifications:

Using 1.2 (b) we can assume that the initial time x is 0 and by 1.1 (b) cp becomes
a total function ( p : I x R + x Q - > I where the initial time x = 0 is omitted and
*eR + =[0 , oo).

Using 1.2 (c), r| becomes a function r\ : X -> Y. Causality 1.1 (e) means that cp

can be regarded as a function cp : X x(R+_x_ü) -• X where:

1.3 R+2<_Q dénotes the quotient space of R+ x O by the équivalence relation

{t, w,)~(t', w') <=> t—t' and (o, ty

Using 1.2 (b) and initial timex==0 the composition property 1.1 (a) can be
written as

<p(x, t3-tlt Z~hw) = cp(cp(x, t2-tlt Z~hw), t3-t2, Z~t2w)

for all ti < t2 < t3 and w e Q.

Using t'3 = t3 —12 and tf
2~t2-ti and wf = Z~hw we obtain

, t'2>w% tf
3,Z-^w%

That is in other notation

(p(x, ti + t2» u;) = cp(cp(x, t1# u;), t2> Z"riM;)

for all tl9 t2>o and all u?eQ.

But this is also equivalent to

1.4 <p(x, ti + t2- ^ i* t l ^2) = 9(cp(^^ î» wi)> h, w2)

for all fï. r 2 >0 and all wx, w2eQ taking w = W! *fi u?2 with

R.A.LR.O. Informatique théorique/Theoretical Informaties
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wx (t) for
w2{t-tx) for tx<t^tx + t2.

Infact,wehaveu;|{0ftlj = «?i andZ hw(t) = w(t + t1) = w2(t) for 0< t^ t2. Hence
the composition property 1.1 (d) is equivalent to (1.4) provided that wx * t i w2 is
again in O for wlt w2eQ. But this is true because, using [1.2 (a)], the
concatenation-closure of Q in [1.1 (a)] is equivalent to the fact that for
all w1,w2eQ. and tlt t2eR + there is an weQ satisfying (1.5).

Inthecases t1=Oort2 = Ou;1isrestrictedto(0, 0]or u^isrestrictedto^i, £ j .
In both cases the interval is empty, so that wx |(0> 0] = wo = w2 \(tlttl\ where
w0 : Q> -+ U is the unique function from the empty set Q to U.

Hence, consistency in 1.1 (c) is equivalent to

1.6 cp(x, 0, wo) = x for all xeX.

Summarizing the simplifications we can say (cf. section 6.1 in [7]) :

1.7 DÉFINITION

A constant, continuous-time System is a construct

Z = (Jf, R + ^ a Y. <p, ri)

where X and y are sets, Q a nonempty subset of functions from (0, oo) to a set U',

R+_x^Q as defined in 1.3, and cp and r\ are functions

cp : I x ( R + ^ Q ) - > I ,

il : X -> Y,

satisfying the foliowing axioms:

(a) R+_xQisclosedunder concaténation, i.e. for ail (tlt wx), [t2> w2)eR+ xQ

we also have (tx +12 , wx * t j iü 2 )eR+^Q with wx * f i w2 defined in (1.5).
(b) (Consistency) cp(x, 0, wo) = x, for ail xeX and the unique function

w0 : Ç> -+ U.

(c) (Composition property) For ail [tx, wx), (t2, w2)eR+jxQ:

cp(9(x, tXt wx), t2, u?2) = (

Note, that direction of time [1.1 (b)] and causality [1.1 (e)] are trivially satisfied
because the initial time x is zero and cp : X x (R+_xQ) -» X is a total function. In
view of the simplifications of définition 1.1 given in 1.3-1.6, we can state the
following corollary:

vol. 13, n°2, 1979
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1 . 8 COROLLARY

H. EHRIG, W. KÜHNEL

Given a set Q of nonempty functions w : R -> U, which is closed under the shift
operator [cf. 1.1 (a)\, there is a LI -correspondence between constant,
continuons-time, dynamical Systems (in the sense of IA and 1.2) and constant
continuons-time Systems (in the sense of 1.1).

Now, we will show that R+_xQ has the structure of a monoid such that the
state-transition-function cp becomes a right action ofR+_x_Q on the state
space X. (Note that this property essentially has been used in [14].) But first let us
review the notions of a right action (cf. [8]) and a monoid automaton (cf [3]).
They are given for the category of sets in 1.9 in such a way that the same
notation can be used in the gênerai case (given in 2.4).

1.9 DÉFINITION

Given a monoid (M, *, e) with multiplication • : MxM -+M and unit
e : M° —> M where M° is a set with one element, then we have in the category of
sets:

(1) An object X together with a morphism (p : I x M - ^ I i s called right
action, in short (X, cp)eRactM, if the following diagrams are commutative:

X x M

(a)

where ^ is used for natural isomorphisms,

id x *
X x M x M £ ^ X x M

(b)

XxM

(2) A monoid automaton A = (M, X, Y, <p, r|) consists of a right action
(X, cp)eRactM and an output morphism r\ : X -> Y,

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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i . iu THEOREM

(1) The object R+jxQ together with unit e = (0, co0)eR+_x_^ and multiplica-

tion • : (R+j^Q) x(R+j^Q) -• R + ^ ^ defined by (1.5) and

{tu ©i)*(t2, ®2) = (tl + t2, ©l*(lG>2)

is a monoid.

(2) Each constant, continuous-time system is a monoid automaton with monoid

(R+_x_Q, *, e) and vice versa.

Proof: (1) It is straight forward to verify that the multiplication • is associative
because + in R+ and concaténation in Q are associative. Moreover we have for
all (t,

(0, <ùo)*(t, ©) = (t, © 0* 0 ©)=(*,

and

showing that • is unit preserving.

(2) Obviously the closure under concaténation of R+_x_Q in 1.7 (a)

corresponds to the f act that • is a function • : (R + ^Q) x (R+_x_^) -> R+^<_^-
Consistency in 1.7 (b) and the composition property in 1.7 (c) are exactly the
conditions 1.9.1 (a) and 1.9.1 (b) for cp to be a right action. •

Problems of réduction, reachability, observability and minimal realization for
gênerai Systems and monoid automata will be studied in section 2 and for
different types of constant, continuous-time Systems in section 3.

2. MONOID AUTOMATA AND CONCEPTS OF MINIMAL REALIZATION

In section 1 we have shown that each constant continuous-time system can be
regarded as a monoid automaton. As already mentioned in remark 5.7 of [3] all
the constructions concerning réduction, minimization and realization known for
Mealy and Moore automata in closed catégories remain valid for monoid
automata. Only the free monoid I* has to be replaced by an arbitrary
monoid M. Now, let us consider additional linear and topological structure on
the state space X, on R+, and on the space of input functions Q. Unfortunately,
only in some cases there is a closed category K such that M becomes a monoid,
( p : I x (R+_xQ) - 4 l a morphism, and the system a monoid automaton in K.
But in gênerai there are different structures o n I , R + and Q, and 9 has different

vol. 13, n°2, 1979



114 H. EHRIG, W. KÜHNEL

properties in these variables. In most of these cases, however, the gênerai concept
of minimal realization given in [2] and [4] can be applied. Hence, in this section
we will give a short review of the concepts in [2] and [4] which will be applied to
spécifie examples of constant, continuous-time Systems in section 3. Moreover,
we will show in this section explicitly that monoid automata in closed catégories
can be treated in the framework of [2] and [4]: It sufficies to construct a left and a
right adjoint of the forgetful functor U : RactM -> K.

2.1 General assumption

For this section let D be a category, called category oidynamics {cf. [3]) and
K : D ^ K a functor, called forgetful functor, from D to a base category K. For
2.2-2.6 we assume that D has an G-ÏR factorization {cf. [3]) while for 2.7-2.9 it
sufficies to consider classes (£ of epi- and W of monomorphisms in D which are
closed under composition.

A System or machine (in a very gênerai sensé) is a construct Z = (ô, /, Y, %, r\)
where:

— g is an object in D {state object with dynamics structure);
— I {initial states) and Y {output) are objects in K;
— x {initial state morphism) and r| {output morphism) are K-morphisms of the

form

T T]

I-+VQ-+Y.

A morphism ƒ : L -> S' of Systems (with fixed I and Y) is a D morphism
f'Q,-*Q' satisfying Ufox = x/ and r\'oUf=T).

In the terminology of définition 1.7 the state object with dynamics structure Q
is given by the pair {X, cp) such that VQ = V{X, cp) = X is the state set X. I can be
considered as a one-element set such that T : I -> X defines an initial state

2.2 Reachable and observable Systems

Now, let us assume that V : D -* K has a left and a right adjoint, written
• § : K -• D and • § : K -> D respectively ( • is used for a blank or an empty
word):

D§— W—ID§.

Given a System S = (g, I, Y, x, i\) then there are unique extensions p : I§ -> Q,

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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called reachability map, of x : / -• Fg and a : Q -> Y"§, called observability map,
of r\ : VQ -• 7 such that the following diagram commutes

VI

By w, and ur we dénote the universal and couniversal morphisms of the
adjunction D§—W and V—| • § respectively.

A system is called reachable if p belongs to the class (£ and observable if a
belongs to 9K.

In order to get the idea of the constructions above let us consider the well-
known case of Moore automata.

2.3 Example (moore automata)

Let K be the category Sets, D the category Medv of Medvedew automata
a

X x U -> X with states X and fixed input-alphabet U, and V : Medv -> Sets be
givenby V(XxU-+X) = X.

Then a system in the sense of 2.1 is a Moore automaton
T S T]

I^X, XxU^X, X^Y.
h

Then left adjoint P is the free Medvedew automaton (/ x U*) xU -> (ƒ x U*)
with bj(i, w, u) — {i, wu) and Uj(i) = (i, D) for iel, we U*, the free monoid on U,
and ueU.ln fact, p : I x 17* -> X becomes the usual reachability map defined by
p(i, u;) = 8*(T(0, W) for zeJ, w;e 17* where 5* : X x 17* -> X is the well-known
extension of 8.

The right adjoint y§ is the cofree Medvedew automaton
L

<U*, 7>xt / -^<[7*, 7>withL(/w) = /oLHe<l7*, 7> and Zu(u;) = WIÜ and
vY(f) = f{U) iox all/e<L7*, 7>, u e ü , weU*{(U*t Y} is the set of all
function from 17* to Y). Hence, a : X -> < t/*f F > is the usual observability
map defined by a(x)(u?) = r|(8*(x, w)) for x e l , we 17*.

Note, that the extension 5* : X x U* -> X is a right action of the monoid L7*
on X in the sense of 1.9 such that Moore automata are special monoid
automata. Now, we will give the gênerai définition of monoid automata in closed
catégories:

vol. 13, n°2, 1979



116 H. EHRIG, W. KÜHNEL

2.4 DÉFINITION (right actions and monoid automata)

Let (K, ®) be a closed category where the internai hom-functor is denoted by
< K, - > : K -> K, ev : < K, Y> ® K -* Y is the évaluation, and £ the unit
object in (K, (x)).

Given a monoid M in (K, ®) with multiplication • : M ® M -> M and unit
e : E -> M (c/. [3], 5.6) right actions and monoid automata are defined as in 1.9
where ail objects and morphisms are in K, M°=E and the cartesian product
" x " has to be replaced by ®.

A morphism ƒ : (X, <p) -> (X', <p') of right actions (M fixed) is a K morphism
f:X^Xf satisfying

X ® M •

f ®M

X'®M-

In this way we obtain the category RactM of right actions and a forgetful functor
V : RactM -> K.

For initial Moore automata we have in addition a (fixed) initial states object /
and a X-morphism T : / -> X such that initial Moore automata become Systems
in the sensé of 2.1. Now we are going to give the explicit constructions and
proofs for the left and the right adjoints of V : RactM -> K. These constructions,
implicitly known in the literature, are generalizing those in 2.3 and will be used
in section 3.

2.5 THEOREM

The forgetful functor V : RactM -• K has a left adjoint D § '- K -> RactM, given
by

P = (I®M,I®* \I®M®M^I®M)
and a right adjoint • § : K -> RactM, given by

F§ = «M, F>,L:<M, 7>®M-^<M, Y))

where the left shift L is the adjoint morphism of

<M,r>®* ev

<M, Y}®M®M KM, Y>®M^ Y.

Proof: 7®* and L are satisfying (a) and (b) of 1.9 using the monoid axioms
for • and e.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



NONLINEAR CONSTANT CONTINUOUS-TIME SYSTEMS 117

Hence, it sufficies to prove the universal properties of /§ and the couniversal
ones of y§:

1. LetUj'. =(ƒ -• I ®E—>-/®M) and for gi ven right action {X, (p)andx: I -> X

define p:=/®M —

We have to show that p is the unique RactM-morphism p: 7§->(X, <p)
satisfying Kpow/ = x.

The necessity of the construction of p follows from

X ® M

and sufficiency from

X®M®M

- k®M = X® E

X®* T X®e \

id
X ® M

where all our assumptions are frequently used.
2. To prove the properties of the right adjoint let

vY: = « M , M,

and for given right action (X,(p) and r\:X-> 7 let G:X->(M, F>be the adjoint
morphism of r\ o(p: X®M -*• Y. Now, we have to show that a is the unique
RactM-morphism a: {X, cp) -^ 7§ satisfying vYo Vo = r\.

In order to prove the necessity it sufficies to show r| o cp = ev o (G®M). But this
follows from

X®M ï .

<MY>®M

vol. 13, n° 2, 1979



118 H. EHRIG, W. KÜHNEL

using VyoL^ev which is straightforward by définition of L. Vice versa, we
obtain i;roa = riand a o cp=Z,o (a® M) from the folio wing diagrams respective-
ly. In the second case we use the couniversal properties of ev.

•

id

<M,Y>

X®E-
er® E

X ® e

< M ,Y> ®E

< M,Y>®e

X®M °"°M ^<M,Y>®M =

V Y

X®M®M-

cr® id

<M,Y>®M

2.6 THEOREM (minîmal-realization)

Given n §—I V—| Q § and a System X = (Q, î, Y, T, r\) with reachability map
p: J§ -*• Q and observability map a: () —• Y§ let us call the composition
crop: /§ -• r § the behavior of H. Then we have

1. The &-W. factorization I§ -• Q' -> Q of p leads to a unique (up to isom.)
equivalent reachable System 1,' = (Q',I, Y, Vp'oUj, TJO Vff)such thatf' becomes
an yjl-morphism from 2 ' to S.

ƒ _ s

2. The (£-9CR factorization Q -* Q -> 7§ o/ a /ea^5 to a unique (up to isom.)

equivalent observable System Z = (Q, I, Y, Vf <>T, VY° Va) such thatj becomes

an (£ morphism from I toE.
P ^ à

3. 77ze £-9K factorization P -> g -• 7§ o /a o p karfs to a "minimal" realization
£ = (Q, ƒ, F, Vpou^ vYo Va) which is (up to isom.) the unique reachable and
observable System equivalent to S.

R.A.l.R.O. Informatique théorique/Theoretical Informaties
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Proof: 1. By construction E' is reachable because p' e (L The behavior of E' is
just the composition a ' o p' where a ' is defined by vY° Vo' = r| o F / ' . But on the
other hand we have (vY<> Fa ) o Vf' = r\ o F / ' , hence by adjointness cr' = a o ƒ ' .
So the behavior of E' is just the same as the behavior of E:

The uniqueness of E' as a reachable System equivalent to E with an TO-morphism
from E' to E follows from the uniqueness of the (E-9W factorization (up to
isomorphism).

2. Is proved dually to 1. The proof of 3 is similar. (Confer also [4]
theorem 1.7, 1.7* and 1.9 or the Axiomatic Minimal Realization theorem
in [2].) D

Note, that part 1 of the theorem remains true if we have only the left adjoint
and part 2 if we have only the right adjoint of F. Now, let us consider the case
that we have neither a left nor a right adjoint. More results concerning the mixed
cases are given in [4J.

2.7 DÉFINITION

Remember that we have assumed for 2.7-2.9 classes (£ (of epimorphisms)
and WK (ofmonomorphisms)closedunder composition in D.Let GTN be the class
of all "IN-V morphisms" x : / -• VQ such that for each factorization x = Vf o x'
with ƒ in m we have ƒ in <L Dually, let WlOVT be the class of all "OUT-V
morphisms" r|: VQ -• F such that for each factorization r\ =r\f o y f with ƒ in (E
we have / i n 501.

(Note, that these conditions for GIN and 9JÏOUT
 a r e m gênerai slightly weaker

than that in [4], but they are equivalent if there is an (£-9K factorization in D.)

Now a system E = (g, I, Y, x, ri) is called simple, if x belongs to (£IN, and is
called reduced, if r\ belongs to SÔ OUT-

2.8 THEOREM (construction of

vol. 13, n° 2, 1979
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We obtain unique Œ̂ -SCR (resp. <£-iïftOUT) factorizations of IN-V (resp. OUT-V)
morphisms in each of the following three cases:

1. G iv en an IN-V morphism x: ï —> VQ we construct the intersection Q' of all 9JÎ
subobjects j \ : Q,- -> g of Q for which there is a x < : ƒ -> Kg; M;Ï£/Ï K/ IOT1 = T. /ƒ D
/ia5 (large) intersections and these are preserved by V thenf: Q' -> Q is in StR and
there is ai' : J -> F g ' swc/z £fta£ F/ 'ox' =x zs (up to isomorphism) a uniquedIN-5ü?

factorization of T.

In most examples Q' is the subobject of Q generated by x(/):gg.

2. Dually, given art OUT-V morphism r\: VQ^Y we construct the

cointer section Q of all d-quotient object s f: Q^Qt of Q for which there is a

^i'- VQi~* y with rĵ o Vf^x]. J / D has (large) cointer sections and these are

preserved by V then ƒ: g -> Q is in (E and there is a r\ : VQ -• Y such

that r| o Vf =v[ is (up to isomorphism) a unique d-Wflom factorization ofr\.

_^ f _

3. Let K -*Q be the (relative) kernel pair of r\\ VQ^Y and Q^Q the

coequalizer of K^ï QinD. Ifthis coequalizer is preserved by V and (£ the class of

all coequalizers then there is a unique fj: VQ -• Y such that r\ o Vf =v\isa (up to

isomorphism) unique Ç£-$Rom factorization ofr\.

Proof: We only prove 2 and 3, because 1 and 2 are dual to each other. We start
with the proof of case 2:

Given an OUT-V morphism y; VQ^Y let f: Q^Qt(ieI) be the set of
all D morphisms ƒ ': Q -> Q' in £ such that there is an OUT-V morphism
ƒ : Kg'-> Fsatisfying y = y'o Vf'. Now, let/: Q -• Q be the cointersection of the
family ft (iel). Using the universal properties of the cointersection and the
G-9K factorization in D it is easy to see that also ƒ belongs to <£ (cf proof of
prop. 7.3 in [3]). Since V preserves cointersections there is also a unique
y: VQ -> Y satisfying y = yoJJ f In order to show yeW.olJT let us consider an
arbitrary OUT-F-factorization y = y' o Vf' of y. We have to show: ƒ ' e Wl. Now,
let ƒ ' = m o e be an d-OT factorization of/'. Hence we have y = y' o V(m) o V(e o ƒ )
with e o f e (E such that e°f = fQioi some i o e / without loss of generality. But
then using the construction o f /we have that e is an isomorphism and hence
ƒ ' = m o e e 9JÏ. Given another £-9WOUT factorization y = y0 o K/0 there is a unique
9 : o o ~ > ö e & w i t h (po/0 = / a n d y o F (p = >>o by construction of the cointersec-
tion. But y0 e 9JÏOUT implies also cp eSK such that <p becomes a D isomorphism.
In order to show that $ïïlOUT is closed under composition with SCR from left let
y2o Vf2 = yo Vflf with j;e9KOUT a n d / j e ^ . We have to show tha t / 2 is a
monomorphism. Hence, let / 3 , / 4 : ö 3 -• Qx arbitrary D morphisms
with / 2 o/3 = / 2 o/4 and /̂: g -• g 4 the coequalizer of fx o/3 and / io / 4 . Since F
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preserves coequalizers there is a unique y4: VQ4^Y satisfying
Now, yeyRom implies deW. Using also/ieïR and doflof3 =
obtain/3 = / 4 .

VQ,

= y4oVd.
oflof4r we

Proof of case 3: Let (fltf2): ô i =£ Ô be the kernel pair relative V of

y: VQ-+Y and / : Q-*Q the coequalizer of ( / 1 , / 2 ) . Since V preserves this

coequalizer there is a unique y: VQ-+ Y satisfying y = y°vj. In order to

show y e yRom let y~yfo Vf' a n d / ' = moe an Ê-2JÎ factorization of/'. It

remains to show that e is an isomorphism. By assumption eofed is again a

coequalizer, say oî(f3>f4): Q^^Q4. Hence, by construction of (fx, f2) there is a

unique f5: Q3 -> Qx satisfying fx <>f5 = / 3 and/2 o/5 = f4. Thus ƒ ° ƒ3 = ƒ ° ƒ4 such

that there is a unique/": Q" -> Q with ƒ " o e o/ = ƒ. Now ƒ e (£ implies that e is

an isomorphism showing that y is in S0ÎOUT- Using a similar proof we can show

that the (£-#ROUT factorization y = y o vj is unique up to isomorphism.

VQ

VQ"

As immédiate conséquences of theorem 2.8 we obtain the following
constructions:

2.9 COROLLARY (simple and reduced Systems)

Assuming that there are unique ŒIN-ÎR and (£-^Olomfactorizations we have for
each System S = (g, / , Y, T, r|):

T' Vf'

1. The £IN-9ft factorization I -• FQ'—>- VQ ofx ieads to a unique (up to isom.)
simple System ll

/ = (Qf, I, Y, T', r\ o Vf') such that f ' becomes an $Jl morphism
from E' to S.
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Vf — ^

2. The ^-9ÏÎOUT factorization VQ^VQ^> Y ofr\ leads to a unique (up to

isom.)reducedsystemI,=(Q,I, F, Vf <>T, r\)suchthatfbecomesan& morphism

from Q to Q.
3. The constructions of step 1 and 2 can be combined leading to a simple and

reduced System which is a "subquotient" of E, provided that (£IN is closed under
composition with &from right.

Remark: The existence of unique Ê-ÎROUT-factorizations implies that the
"réduction problem" is solvable, i. e. each "réduction"/ 2 -• E' with fin (E can
be extended uniquely by a réduction ƒ': Z'->Z to obtain the "universal"
réduction/: S -* X. Dually the simplification" problem is solvable if we have
unique (EIN-9CR-factorizations (cf. [4]).

3. APPLICATIONS TO CONSTANT, CONTINUOUS-TIME SYSTEMS

In this section the theory of monoid automata and the concepts of minimal
realization will be applied to several types of constant, continuous-time Systems
in the sense of section 1. We will start with ordinary Systems in the sense of
définition 1.7. Then additional topological and linear structure will be
considered on the state space X, the output space Y and on the monoid R+ xQ,
and we will make different assumptions for q>: X x R+_x_ü ->• X and r| : X -• 7 in
these variables. Moreover, we will consider constant, continuous-time Systems
with initial states / given by a function x: / -• X such that an initialized System is
a construct S = pf, R+_x_Q, I, Y, cp, x, r|). Especially, our constructions can be
applied to bilinear Systems in the sense of ([10] and [12] and smooth nonlinear
Systems in [11]).

3 .1 Constant, continuous-time Systems

Let K be the category Sets, D the category RactR+ ̂ n of right actions (X, cp) of
the monoid R + ^Q and V: RactR+xQ->Sets the forgetful functor deûned
by V(X, (p) = X. Then a System in the sense of 2.1 is an initialized, constant,
continuous-time System. For (E and ïïl we take the classes of surjective and
injective right action morphisms respectively (cf. 2.4). According to 2.5 the left
adjoint J§ is given by

where • is defined in 1.4 and 1.7.
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Given a System E = (X, R+^<A L Y, q>, x, r|) the reachability map (cf. 2.2)
becomes a function

defined by p (i, (t, w)) = q> (x (0*(*. «>)) for all ze/, (t, u;)eR+^Q. NOW, E is
reachable if p is surjective. If not, the image factorization/'°p' = p in 2.6.1
leads to a unique (up to isom.) equivalent reachable system E' such that
ƒ': X' -» E becomes an injective morphism of Systems. Again by 2.5 the right
adjoint Y§ is given by

7§ = « R + ^ Q , F>,L: <R+_x_Q, Y> x R + ^ Q -> <R+j<O

where the left shift L is defined by L ( ƒ, (t, w)) = foLitt w) and

Z/(t,I0)(t',ïü') = (ï+t/,w*,M?/)forall / : R " x Q ^ yand(t,w),(t',iü')GR+xQ.The
observability map (c/. 2.2) becomes a function

a: Z ^ < R + ^ Q , 7>

defined by a (x)(t, w) = r\ (cp (x,(t, u;)))for xeX,(t, M;)eR+2i^- Now, the image
factorization oof = o in 2.6.2 leads to a unique (up to isom.) equivalent
observable system E such that/: 1,^2, becomes a surjective morphism.

Finally, by 2.6.3 the image-factorization

of the composition erop leads to a minimal realization Ê = (j£, R+_x/2, J, Y, cp,
x, f|) which is (up to isom.) the unique reachable and observable system
equivalent to E. In more detail we have:

Y\fiAti w) = op(i, {t, w)) iel, (t,

: X x R + ^ Q -> X is the restriction of the left shift L, x: / -> X is given by

3 .2 Bicontinuous Systems

A system E = (X, R+j<^Q, ƒ, 7, cp, x, r\) is called bicontinuous if X, ƒ and Fare
topological spaces, (R+_x_^> *) is a bicontinuous topological monoid (see below)
and v.I->X and T]:X->y are continuous, and ( p : I x ( R + _ x ü ) ^ I is
bicontinuous, i.e. continuous in each of both components separately. This
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means that for fixed time and control function the state transition is a continuous
map from X to itself, and also for fixed state the state transition dépends
continuously on t and w simultaneously, where R + x Q carnes quotient
topology. Similarly a bicontinuous topological monoid is a monoid such that the
monoid multiplication

is bicontinuous.

Using the bitopology M®N on the cartesian product M xN (i.e. the final
topology of the family of injections {m} xJV, ->MxJV,Mx{n}->MxJV)a
map/: M® N -* P is continuous if and only if/: M xN -> P is bicontinuous. It is
easy to see that such an/induces uniquely a continuous map/: M -• C(N, P)
where C(JV, P) is the space of ail continuous functions from N to P furnished
with the topology of pointwise convergence. So the category of all topological
spaces (Top, (g)) becomes a closed category (cf. [5]).

Now let us give an example of a suitable control space Q such that (R+_x_Q, •)
becomes a bicontinuous topological monoid. Let U be a lst countable
topological space and

Q.^{w: (0, oo) -> U/w piecewise continuous}.

and R+_>^Q be the quotient space (as in 3.1) by the équivalence relation

(t, w) ~ (t', w') o t—t' and ^(o,*]^^'!^,*]-

w„(x) *w(x) for ail but a countable number of xe(0, oo). This leads to the
n -»• oo

topology of pointwise convergence up to a countable set. By easy calculation the
concaténation * regarded as a map

• : (R+ xQ)x(R+ xQ)->R+ xQ

is continuous. Getting to the quotient the concaténation

• : (R+2^2) x (R+2i^) -» R+x_Q

is bicontinuous.

Of course, there are other weak topologies on suitable function spaces
(cf. [12]).

By définition the action-part of a bicontinuous system can be regarded as a
monoid-automaton in the closed category (Top, ®). Hence we can apply
theorems 2.5 and 2.6 to bicontinuous Systems leading to the following resuit:
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for each bicontinuous system I the equivalent reachable, the equivalent
observable system, and the minimal realization are bicontinuous, too.

3.3 Compactly generated Systems

A system E is called compactly generated ïiX, Y, I, and R+2L^ a r e compactly
generated Hausdorff-spaces and <p: XTC(R+_X_Q) -> X, x and r\ are continuous,
and moreover (R+j<_Q, •) is a topological monoid in the sense that
•:(R+_xQ)rc(R+_x_Q) -• R+_x_Oiscontinuous. Herenmeans the Kelleyfication
of the topological product leading to a compactly generated space.

The Kelleyfication kX of a space X is the same underlying set furnished with
the foliowing topology: a set is closed in kX iff its intersections with each
compact subset C of X is closed in C. Let us remark that each metric space and
each locally compact space is compactly generated, and that the Kelleyfication of
the topological product is just the topological product provided that it is already
compactly generated {cf. [5]).

Now let us construct a suitable compactly generated topological monoid
(R+_xQ, • ) . Let U be a lst countable Hausdorff space and

Q' = {w: (0, oo) -> U/w piecewise continuous, and w left-continuous}

with subspace topology relative to the Q in 3.2.

Q.' is a Hausdorff space, so let Q be the Kelleyfication of Q', and from the
continuity of • : (R + xQ)x (R + xQ) -^R + xQ (cf 3.2) it foliows that
• : (R+_xQ)7t(R+_x_Q) ->R+_>^Q is continuous, too, because the functor
D n D preserves quotients (This is a gênerai fact in each cartesian closed
category, cf [9], p. 7.) Of course, the quotient topology is to be taken in the
category of compactly generated Hausdorff spaces.

Hence the action-part of a compactly generated system can be regarded as a
monoid automaton in the closed category (CG, n), so we can apply
theorems 2.5 and 2.6 to such Systems.

3.4 Semilinear Systems

A system E is called semilinear if X, Y and I are i^-modules for some ring R
and t, r\, and, for each (t, M;)GR+_X_Ü, <p(-, (t, w)) : X -> X are R-linear.

Since q> is not assumed to be linear in the other components it is not possible to
interprète the action parts of semilinear Systems as monoid automata in the
category Mod .̂
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But the forgetful functor V : D -> Mod^ from the category Dof action-parts of
semilinear Systems into ModR has a right adjoint • § and a left adjoint Q§ which
will be shown in the followmg:

Wedefinefor

where < A, B > dénotes the set of ail functions ƒ : A^B. 7§ carries in a natural
way the structure of an R-module. Together with the left shift

L : F§x(R+^Q)->y§ ,

fp(<ù'. =f(p*q)>

it is an action-part of a semilinear System.

The left adjoint is defined for 7eModR by

where F(.) dénotes the free .R-module. Hère the action <p is defined by

on the generators of the tensorproduct.
To show the universal properties of 7§ and 7§ define

vY:

by évaluation at the zero element e of the monoid R+_
Let r\ : VQ ->• Y be arbitrary. Then a necessary condition for a : Q -• 7§ to

make the following diagram commutative
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is that the following équations hold (m dénotes the action of Q):

G(q)(t, w) = L{a(q), (t, w)){e) = <j{m(q, (t, w)))(e)

= t\(m(q,(t,w))) for qeQ.

These équations are also sufficient, because obviously a can be defined
uniquely as a mapping, and it turns out that the so defined a is linear. This
complètes the construction of the right adjoint • § of V.

Now let us consider the left adjoint D§: For given T : i - • VQ necessary
conditions for p : /§ -> Q making the diagram commutative

vis

are the following:

p (x ® e) = p o Uj (x) = x (x),

p(x ® (f, u;))=p(cp(x ® e, (t, w))) = m(p(x ® e), (t, u;))

), (t, u;)) for xel.

For an arbitrary generator of the tensor product one gets a similar condition
using the linearity of p. On the other hand this shows also the existence of p.
Having shown the left and the right adjoint of V : D -> ModK we can apply
theorem 2.6 leading to a minimal realization of semilinear Systems.

3 .5 Bilinear Systems

A bilinear system in the internai sense (cf, [10], [11]) is a semi-linear system with
the special property that X and Y are finite-dimensional R-vector spaces, the
state transition <p is differentiable in t, and the vector (dq>/dt){xQ, tOt w0) is a
linear function in x0 and w0 separately. Applying our theorem 2.6 to bilinear
systems regarding them as semilinear Systems we get an equivalent reachable or
observable semilinear system. It remains to verify that bilinearity carries over
from the given system to the so constructed one.

This is clearly true for the equivalent reachable system (2.6.1) and in case of
the equivalent observable system (2.6.2) the réduction e : E -• E carries over
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bilinearity in the above sensé. This follows directly from the équation
cpo(2 xid) = eo<p. So for example proposition 2 in [10] is a corollary of our
theorem 2.6.2.

Of course, each semilinear System induces a unique représentation
R+_x_Q-»Lin(X, X)ofthemonoidR+_x_Q.Now assume that X is a topoîogical
vector space and cp is bicontinuous. This implies that the représentation above
is continuous if Linpf, X) is furnished with the topology of pointwise
convergence which does agrée with the natural topology of Lin(Z, X) regarded
as a topoîogical vector space provided that X is fini te dimensional. Vice versa
each continuous représentation of that kind induces exactly one action-part of a
semilinear System with cp being bicontinuous.

Under the additional assumption of U being a compact convex subset of R"
with nonempty interior theorem 1 in [12] shows that all these continuous
représentations are in natural bijection to the class of ail bilinear Systems. In view
of that bijection let us consider in 3.6 semilinear Systems with additional
topoîogical structure:

3 .6 Semilinear bicontinuous Systems

A System E is called semilinear bicontinuous if X, Y and I are topoîogical
vector spaces and S is semilinear in the sensé of3.4 and simultaneously
bicontinuous in the sensé of 3.2.

Let us take the same Q and R+^îP a s m 3.2.
Then the right adjoint • § to the forgetful functor F from the corresponding

category of action parts into the category of topoîogical vector space is given by

7 § : =

which is the topoîogical vectouspace of ail continuous functions from R* xQ
to Y furnished with the topology of pointwise convergence. It is easy to see that
the left shift L is bicontinuous, and the universal property of 7§ follows from the
fact that there is the same situation for bicontinuous Systems and semilinear
Systems. Note, that in the bicontinuous case the function space <R+_xQ, 7>
carries topology of pointwise convergence, too.

Instead of a left adjoint let us construct an (EIN-$R factorization of a given
ƒ

morphism I-> VQ {cf. 2.7).

We define I : = Lin (cp ( ƒ(/) x (R+_x_^))) where (p is the action in Q, and Lin (. )
means the linear hull. Clearly I is a linear topoîogical subspace of VY which by
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linearity of cp is closed under the action cp.

I = VQ'

This construction of / is the same as the £IN-9(R factorization given in 2 .8 .1
using intersections. Hence we can omit the proof that this is indeed an £IN-2R
factorization of ƒ

Hence we can apply theorem 2.6.2 and 2.9.1 to semilinear bicontinuous
Systems. Note, that the same remains true if we, in analogy to 3.3, consider
compactly generated semilinear Systems.

Remark: In the special case of semilinear Systems over suitable locally convex
vector spaces it is possible to express the differential équation generating the
state-transition in a categorical framework. This has been done in [6] where on
the level of differential équations left and right adjoints for the functors
FK : DSG (K) -> K are constructed where K dénotes a subcategory of the
category of locally convex spaces. This concept leads to results similar to that of
theorem 2.6, and moreover it gives information about the behavior of the
differential équations.

3 .7 Linear Systems

A System E is called linear if X, Y, I and Q are R-modules, x and r\ are K-linear,
and for each t e R + <p ( —, t, — ) : X x Qt -> X is R-linear, with

Q, : - {w\(t, w)eR+j<Cl}

This définition is equivalent with that of [7], définition 1.5.

The forgetful functor V from the corresponding action-category into ModR

has no left adjoint and no right adjoint because it does not preserve products or
coproducts. But we are able to construct and (£IN-$ft factorization ( Ê - ^ Q U T

factorization) of a given linear map:

x : I-+VQ (TI : VQ -> Y)

using intersections and cointersections (cf. 2.8).

Here these intersections and cointersections are constructed first in ModR.

Then they are furnished with the unique structure of an (R+ xQ)-action.
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Hence corollary 2.9 can be applied to linear Systems, or more precisely to
continuous-time constant linear Systems. We assume, however, that stronger
results can be obtained from section 2 using another représentation for linear
Systems similar to the discrete-time case in [1].

3.8 Sinooth Systems

Let us call a System Z smooth ïîX is a smooth manifold (i. e. finite-dimensional,
separable, connected C°°-manifold with or without boundary) and for each
u;eQ(p(- , — , w):X xR+ -+ X is smooth. Moreover let /, F and R+_x_^ be
topological spaces and for each x e X cp(x, —, —):R+ xQ ->Xbecontinuous,
and T and r) be continuous, too.

Hence a smooth System is bicontinuous in the sensé of 3.2 and it is similar to
smooth Systems in the sensé of [7].

On the other hand, forward complete nonlinear Systems considered by
Sussmann in [11] are smooth in our sensé. This follows from a gênerai theorem in
the theory of differential équations showing that the solution dépends
differentiably on the initial values.

However, most of the constructions for observability, orbit-minimality
(reachability) and minimal realization, given in [11], are done on the lower level
of ordinary (or alternatively bicontinuous) Systems {cf. 3.1). In a second step,
the quotient of the state space for example, is furnished with a structure of a
C°°-manifold.

Moreover, the notion of homomorphisms and weak isomorphisms in [11] are
exactly the same as in our ordinary case. But, by lemma 5 in [11] weak
isomorphisms restricted to orbits become C°°-diffeomorphisms, which are
isomorphisms for smooth Systems in our sensé. These constructions will be used
in the theorem below.

Unfortunately, our gênerai approach in section 2 is too weak, up to now, to
allow such a two level strategy for smooth Systems directly.

Since we cannot expect that the forgetful functor from the action part of
smooth Systems D to sets or topological spaces K has a left or a right adjoint we
have to construct the £IN-9K and CC-9tROUT factorization directly. For (£ we take
surjective submersions and for 93? injective immersions. We restrict ourselves
to / being a one-element space. Then we construct the GIN-ÏR factorization of a
function f : I -* VQ defming S to be the orbit of the single element ƒ(/).

Clearly, S is a submanifold of VQ (with boundary) which is closed under the
action 9, hence the inclusion m : {S, cp) -+ Q belongs to the class 9K of injective
immersions. Furthermore the restriction ƒ ' : I -> S=V(S, cp) is an (£IN morphism
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because for every factorisation ƒ ' = m' 'o e'', with m' injective immersion, m' is
already surjective and hence a diffeomorphism. The uniqueness of the
factorization ƒ = m o ƒ ' up to strong isomorphisms in the action-category follows
from the rank theorem for smooth mappings.

n
Of course, only for special mappings VQ -+ Y it is possible to construct an

(£-SROUT factorization. Let VQ be a manifold without boundary (we don't know

whether the foliowing remains true for manifolds with boundary). Consider the

machine morphism M : VQ -> <R+_x_n» Y} in Sets.
The quotient VQ/R where R dénotes the équivalence relation induced by M,

carries the structure of a C00-manifold such that the natural map becomes a
submersion, if (1) and (2) hold:

(1) Ris closed in VQxVQ;

(2) the set of everywhere defined symmetry vector fields of R is weakly
transitive, meaning that it spans at each point x the whole tangent space Tx M.

This has been proved as theorem 9 in [13].

In our case (1) is satisfied because we can regard M as the continuous machine-
morphism in Top. Let us assume that (2) is satisfied, too, then

VQ/R

is an &-yJlOVT factorization: first of all m is an 9[ROUT morphism because for each
factorization m = m'oe' with e' surjective submersion, e' is injective because m is
injective, and hence e' is a diffeomorphism. The uniqueness of the £-9WOUT

factorization up to strong isomorphisms in the action category follows similar to
that of the ÊIN-5ÏR factorization from the rank theorem.

Now let vY : < R+^<_^ r > -^ F be the évaluation on the unit element
(cf. 2.5). Then it is easy to see that m is an 9KOUT morphism if and only if
Vyom : VQ/R^ Yïs an 9WOUT morphism, and hence (vYom)°e = M is in fact an
Ct-^ouj factorization for r\^vYoM.

Since smooth Systems are also Systems in the sense of 3.1, reachability and
observability can be defined as in 3.1.

The set of vector fields F defined by

F(x)=—<p(x, t,w)
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is called the family of associated vector fields (denoted by gs in [13]), where w
runs over the controls weQ.

Furthermore a system E is called regular if the set of associated vector fields
has maximal rank at each point xeM,i. e. it spans the whole tangent space Tx M
(this condition is slightly stronger than the "accessibility property" in the sense
of [11]).

Now we are able to formulate the following theorem corresponding to some of
the main results in [11]. On the other hand part (i) and (ii) are more or less
theorem 2.9.1 and 2.9.2 respectively:

THEOREM: (i) For each smooth system E with I = {p} (one point) there exists an
equivalent reachable smooth system E' and a morphism ƒ : E' —• £ which is an
injective immersion.

Moreover E' is unique with this property up to isomorphism.
(ii) For each smooth regular system E with M being a connected manifold

without boundary there exists an equivalent observable system E and a morphism
e : 2,^2, which is a surjective submersion. Moreover E is unique with this
property up to isomorphism.

(iii) Equivalent reachable and observable smooth Systems are strongly
isomorphic (i.e. the isomorphism is a diffeomorphism).

Proof: The proof of (i) follows from 2.9.1 using the dIN-SR factorization of the
function x : I -> VQ above. This is the same construction as in paragraph 8
in [11].

Similarly (ii) follows from the existence of an £-9WOUT factorization of the
output function T\ : VQ -> Y (cf. 2.9.2). We only have to verify the condition (2)
above, namely the weak transitivity of the set of everywhere defined symmetry
vector fields of R. Now the family of associated vector fields is contained in the set
of all everywhere defined symmetry vector fields {cf. Lemma 3 (c)in [ll]),andby
assumption that E is regular, this family of associated vector fields is weakly
transitive.

(iii) holds, of course, in the category of ordinary Systems (cf. 3.1 and 2.6).
Hence two equivalent reachable and observable Systems are weak isomorphic, in
the sense that the homomorphism is bijective. Applying lemma 5 in [11] we
obtain that it is smooth in both directions and hence a strong isomorphism. •

Remark: Of course, one can compose (i) and (ii) to construct an equivalent
reachable and observable system. But this works only if the state space of the
reachable system constructed in (i) is a manifold without boundary.
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We have stated this theorem here in the present form to apply the gênerai
concept of £IN-ÏR factorization and £-9KOUT factorization. Of course, in special
cases there may hold stronger versions.
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