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R.A.I.R.O. Informatique théorique/Theoretical Computer Science
(vol. 12, n° 4, 1978, p. 319 à 337)

FRONTIERS OF INFINITE TREES (*)

by Bruno COURCELLE (*)

Communiqué par Maurice Nivat

Abstract. — The frontier of an infinité tree is a generalized {infinité) word called an
arrangement. An équation in arrangements has an initial solution which is the frontier of its
solution in the domain of infinité trees. Certain Systems of équations can be solved explicitely.

INTRODUCTION

The theory of languages deals with finite words and sets of finite words.
Infinité words as séquences of éléments of some finite alphabet X indexed
by Jf have been considered in many papers (in particular McNaughton [5]
and Nivat [6]).

It is clear that the reversai of an infinité word is not defined : it should be
a séquence indexed by the set of négative integers. And the concaténation
of finite words is extended to infinité words in such a way that uv = u if u is
infinité and v finite or infinité, which is somewhat unnatural.

We shall consider a more gênerai concept of infinité word, called an
arrangement. An arrangement of éléments of A" is a family of éléments of X
indexed by some linearly ordered set. (It is convenient to keep the term
"infinité word" for arrangements indexed by Jf^) The reversai of an arran-
gement is now defined, and the concaténation of arrangements does not
satisfy the above property.

We shall consider équations (and Systems of équations) in arrangements.
For example the équation u = aub (where u is a variable ranging over arran-
gements and a, b are symbols from X) has the solution u = a® b~m. It has
many other solutions (of the gênerai form am Ab~m where A is an arbitrary
arrangement) but d* b~& is clearly "the simplest one". For every System
of équations, we shall define a "simplest" solution, which is in some sensé
"generated" by the System considered as a context-free grammar.

To do this rigorously, we shall use dérivation trees. Let us recall that the
frontier of a finite tree is the finite string of the labels of its terminal nodes
considered from left to right. A word is generated by a context-free grammar
if and only if it is the frontier of one of its dérivation trees.

(*) Reçu en février 1978 et révisé en mai 1978.
(*) I.R.I.A., Rocquencourt, Le Chesnay, France.
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320 M, COUKCELLB

The same idea will be used for our équations. Each équation has one infi-
nité dérivation tree. lts "simplest" solution is the frontier of this dérivation
tree (the frontier can be naturally defined as the arrangement of the labels of
the terminal nodes, considered from left to right). We characterize it as an
(thé) initial object in the category of all solutions of the given équation. Equa-
tions in catégories are more generally considered by Lehmann [4], Some
other results are proved:

1) every countable arrangement is the frontier of an infinité tree;
2) to have the same frontier (up to an isomorphism) is an équivalence

relation on infinité trees which is a "global" property, not expressible in
terms of the finite approximations of the considered trees (technically which
is not algebraic in the sensé of Courcelle and Nivat [2]);

3) certain Systems of équations (called quasi-rational) can be solved expli-
citely by means of regular expressions with parameters,

1. ARRANGEMENTS

1.1. Let X be a finite alphabet. An arrangement is a triple A = < | A |, n9 h >
consisting of :

1) a set \A\;
2) a linear order % on | A | ;
3) a mapping h : | A | —» X
Let se (X) be the class of ail arrangements and $$f{X) [resp. sémQC)~\

the class of finite (resp. countable) arrangements i. e. such that | A | is finite
[resp. countable].

If X = { a }, an arrangement A is simply a linearly ordered set denoted
by A = < | A |, n >. By convention, "let A = < | A |, n > be an arrangement..."
means that X is singleton.

Let £ be the unique arrangement A such that ( A | = 0 . Words on X will
be identified with finite arrangements: to the word u—axa2...an

(where at E X) will correspond the arrangement < { 1> 2, . . . , « } , g , h >
where h (i) = at for i = 1, 2, . . . , « . The notation X* will be used instead
of sef (X). An arrangement of the form <*/T? ^»/*> corresponds to an
infinité word in the sensé of [6]. Let X* be the set of such arrangements
and I ° ° = r u X*. Finally, for a e X, let us define

and a~m = < { —njn BJT } , ^9h} with h (i) —a for ail i.
In order to compare arrangements, we define morphisms.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



FRONTTERS OF INFINITE TREES 321

Let A = < | A |, %, h > and A' = < | A'
|

9n',hfy belong to *é(X). A
morphism oc : À—* A' is a mapping a : | A

1) which is one-to-one and order-preserving, i. e. (since % and n' are linear),
a (x) TE' a (y) o x % y for ail x, y e \ A \ ;

2) such that h (x) = h' (oc (x)) for x e \A |.

If a is onto, it is called an isomorphism and we write A m A'.

It would be pleasant to identify isomorphic arrangements but this will
not be always possible since there may exist several isomorphisms: A —> A'.
For A and A' in Xe0 there exists at most one isomorphism: A —> A'9 hence
A ~ A' can be replaced by A = A' without ambiguity. We will often do so
for arbitrary arrangements when no difficulty arises. Let us finally point
out that there may exist morphisms a : A^> B and p : B —• A although A and B
are not isomorphic. Just take A = a (abz abz à)m and B = abz a (abz abz a)&

(this dépends on définitions and notations given below; thanks to B. Lang
for this example).

1.2. We will define the concaténation of arrangements, which will generalize
the concaténation of words for finite arrangements.

This will be done in terms of another opération called the substitution
which we now define.

Let A = < | A |, 7T, h) zsé(X) and cr = | 4̂ | —> se {X) be a partial
mapping. Let us extend G into a total mapping G by taking for G (X) the one-
element arrangement h (x) [i. e. < { 1 }5 %9 k > where k (1) = h (x)] when G (X)
is undefined and G (X) otherwise. Let G (X) = < | G (X) |, nx, hx > for x e | A \.

Then G (A) = A' = < | A' |, n\ h' > with:

1) | ^ ' | ={{x9y)lxe\A\ and j e | G(X) | };

2) (x, y) n' (x', y') if and only if either x ^ x' and x TC X' or x = x' and

Note that a (̂ 4) does not depend on h if a is total.

Furthermore, if a : A± —> A2 is a morphism, at : | 4̂f | —» ^ (X) is a
substitution for f = 1, 2, 5^ : Gj (X) —• a2 (a(x)) is a morphism for ail x
such that ax (x) is defined, one can define a canonical morphism
y : CTX (AJ -* a2 (^2) by taking:

y ((x, 1)) = (a (x), 1) if ax (x) is not defined,

Y ({x, y)) = (a (x\ &x (y)) if Gj (X) is defined and j e | GX (X) |.

As an example, for A e ̂  (X), let ^ = G (<^"5 g » and ^ - • = G « ^ g ' »
where <j(i) = 4̂ for ail ieJT and i ^ 7 iff j ^ i for i
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3 2 2 B. COURCELLE

The concaténation oî A and A e sé (X) is defined by AA = a « { 0,1 }, ^
where, a (0) —A and a (1) = A. In particular ÛT*0 O0 ca az.

1.3. PROPOSITION : The concaténation is associative. Namely, there exists
a canonical isomorphism: A1 (A2 A3) —» (A1 A2) Az for Au A2, A3e $$ (X).
Hence we will write At A2 A3 for A1 {A2 A3).

For arrangements in X *, this concaténation coïncides with the usual one.
But it does not with the concaténation on Xe0 described in [6] (Recall that
uv = u if u e Z®

1.4. Examples;

O CA * 00

aa = a , i e aa ca (

1.5. We now focus our attention on countable arrangements and represent
them in the form < L, ^ J , / I ) where L c { 0, 1 }* and ^ / is the lexicographie
ordering on L.

Let us recall some définitions.

Let u, v e { 0, 1 }* ; then u < v iff v = uw for some w e { 0, 1 }* and u ^ ( v
if and only if :

(1) either u -< v;

(2) or u = w 0 «', Ï; = «? 1 u' for some u?, «', Ü' e { 0, 1 }*.

A language L <= { 0, 1 }* is prefix-free if w -< i? implies M = Ü for all w, Ü G Z.

A complete language is a maximal element of the set of prefix-free languages

ordered by inclusion.

1.6. LEMMA [7]: A prefix-free language L c { 0 , l } * is complete if for all
u9ve{0,l}*:

uOveL => ulweLfor some we{0, 1}*

and

ulveL =̂  uOweLfor some we{0, 1}*.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



FRONTŒRS OF INFINITE TREES 323

1.7. THEOREM : Every A e jtfa (X) is of theform(K9 ^ j , A: > for some complete
language K a { 0, 1 }*.

Proof: The case of a finite arrangement A is trivial. For an infinité A, the
proof will be done in two steps: we first define a prefix-free language L such
that A ~ < L, g l91 > ; secondJy, we transform L into a complete language K
such that < U eu O * < K, ûi, k>.

Let us take A = <tyK, TC, h > for some linear order n on^T and A :*/f —> X.

We define a séquence (wn)ne,r °f words on {0, 1 } such that, for ail n:

1) Ln = { M05 "i> • • •» «„ } is prefix-free;

2) for ail m # «, Um ^ un and wm g , «„ iff m TC«;

3) there exists u G { 0, 1 }* such that Ln u { v } is prefix-free and i> ̂  z w,
for ail i = 0, . . . , «;

4) there exists u; G { 0, 1 }* such that L„ u { w } is prefix-free and tij ^ z M;
for ail z = 0, . . . , » ;

5) for ail Uje {0, 1, . . . n } such that ƒ # ƒ and ITEJ, there exists
zu ^ { 0, 1 }* such that Ln u { zitj } is prefix-free and ut èi^ij Si^j'

Assuming this, we will take L = (J Ln and l : L^>X defined by
ne/

/ («J = h(n). We construct un inductively;

• «0 = 10. Note that 3) and 4) hold, the other conditions being trivîally
satisfied;

• • having defined un we now define un+x in the following way:

(i) if (n +1) u i for ail i = 0, 1, . . . , n, let v be a word defined by 3) for Ln

Then we take nn+1 = v 10;

(it) if in (« + 1) for i = 0, 1, . . . , « , let u; be defined by 4) for Ln. Then
we take un+1 — u; 10;

(iii) if i n (n +1) nj for some / , ; e { 0 , . . . , « } and

{k/0^k^n,ink nj } = { /,; }

then we take un+i = zitJ 10 where zitj is defined by 5) for Ln.

Conditions 3 to 5 express that there is room left for other éléments to the
left and to the right of what has already been constructed and between any
two éléments. These possibilités are used in cases (i), (ii) and (iii) of the
définition of Ln+V The factors "10" are used to preserve conditions 3 to 5.

vol. 12, n° 4, 1978



3 2 4 B. COURCELLE

The rest of the proof follows from:

1.8. LEMMA: Let L <= {0, 1 }* be prefix-free. There exists a complete
language Ke { 0, 1 }* such that < L, ^ , > ~ < K, ^ , >.

Proof: Let L <= { 0, 1 }* be prefix-free.

We define a mapping cp : L —• { 0, 1 }*, we will take K — <p (L), and (p will
be the required isomorphism cp : < L, ^ £ > —> < K, ^ > .

A prefix u of some word in L is critica! if :

« 0 { 0 , l } * n L = 0 <=|=> wl{0 , l } * n L = 0 .

Note that L is complete if and only if it has no critical prefix by lemma 1.6.

Let xx . . . xk e L with xu . . . , xk s { 0, 1 }.

Then <p (xx . . . xk) = yx . . . yk9

where

yf = x£ if Xi . . .X;-! is not critical

= s if x l t . .x(-_t is critical.

CLAIM 1 : Lef u,u'eL. If cp (M) -< <p (w') *Ae« M = w'.

Assume by contradiction that u ^ u'. Then M = t? 0 M? and M' = v 1 u?'
for some v> wy wr e {0, 1 }* (or vice versa); but v is «o? critical hence
cp («) = x 0 j> and <p (M') = x 1 y for some x, y, y' e { 051 }* and we cannot
have q> (w) -< q> («').

Q. E. D.

CLAIM 2 : Ler w, u' e L . If u ^lu
r then cp («) ^ , cp («').

We have w = v 0 tü and M' = Ü 1 ÏÜ' for some i?s w, w' e { 0, 1 }* hence v

is «o? critica] and cp (M) = x 0y, cp («') = x 1 ƒ for some x, y9 y' e { 0, 1 }*.

Q. E. D.

Claim 1 shows that AT is prefix-free and that cp is one-to-one, claim 2 that cp
preserves ^ , . We need only show that K is complete.

Let cp (w) = v 0 u ) for some ueX, v, w e { 0, 1 }*. Then, by the définition
of cp, we can write:

M — xt.. .xfc with Xj = 0 for some 1 ^ / ^ fc,

z~A > as in the définition of <p,

xx.. .x£_i is not critical.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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Hence there exists v! = xx . . . x^t 1 zeL for some z e { 0, 1 }* and
clearly,

<p(M') =s j ^ . . .yl„xlw' for some w/e{0, 1}*

= vlw'.

Lemma 1.6 shows then that K is complete.
If we represent prefix-free languages by trees, the transformation of L

into K corresponds to the suppression of nodes with only one son.

As an example, if

L = {0, 1010, 100010, 100011 }

then K = { 0, 100, 101, 11 }.

2. THE FONTIER OF AN INFINITE TREE

2.1. Let F = { • } u X. The symbol • will be given the arity 2 and each
x e X the arity 0.

We recall from [1] the définition of M°° (F), the set of infinité (and finite)
trees on F by adapting it to the special set F that we are considering.

A tree T is a partial mapping: {0, l } * - > I u { * } such that the set
of its nodes, Dom (T) = { u e { 0, 1 }*/T(u) is defined } satisfies the following
properties :

1) u < veDom (T)=>u e Dom (T);
2) T(u)eX if and only if u is maximal in Dom (T) w. r. t. -<.
Let T# = {ue { 0, 1 }*/r(«)eX}, the set of terminal nodes. Then rff

is prefix-free. It is complete if and only if T is locally finite [1] i. e. if each
node is prefix of some terminal node. We let M {F) dénote the set of finite
trees (with a finite set of nodes) and Mlcc (F), the set of locally finite trees.

A binary opération on trees is defined by T = T0*Tt if T(s) = • and
T(iu) = Ti (u) for u e { 0, 1 }* and i = 0, L

2.2. Examples:

corresponds to the mapping To such that To (l
n 0) = a and To (l

n) =
for n ^ 0, otherwise undefined.

vol. 12, n° 4, 1978



326 B. COURCELLE

Other examples of trees are:

/ \

A
/V\ A

The trees Tu T2, T3 are locally finite, but U is not.
The frontier of TeM™(F) is the countable arrangement

{the third element of this triple is in fact the restriction of T to T )̂.
Hence $ (To) = d», O (7\) = a~m, O (r2) = d» a~^, O (C7) = e.
For a finite T, O (71) e X* and coincides with the usual frontier defined

fot instance in [8]. An immédiate conséquence of theorem (1.7) is

2.3. THEOREM:

jém (X) = { O (T)/Te M00 (F) } = { 8 } u { O (T)/re Mloc (F) }.

2.4. PROPOSITION: O (Tic T) = O (r ) O ( r ) .

2.5. Example: Let T3 = TO*TX (where r0 , 7\ are from 2.2).
This tree looks like:

IX

î N
Clearly * (T3) = $ (r2) = aa a"*.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



FRONTTERS OF INFINITE TREES 327

3. SOLVING EQUATIONS IN tf (X)

3.1. We want to solve in $£ (X) Systems of équations of the form

the u^ s are variables of arity 0, V = { «i, . . . , «ft }, ^ ( l u F )* and ff£ F
for i = 1, . . . , /:.

Such a system is a context-free grammar with the special property that
right handsides of équations are monomials rather than polynomials.

It is known that the language generated by a context-free grammar is the
set of frontiers of the trees generated by a regular tree-grammar. A similar
result is used here.

Given X, we define a system 2 of the form < ut = tu 1 ^ i ^ k > such

that 7t e M (F u V) and $ (fj) = 7, for i = 1, . . . , k.

This new system has a unique solution < T l5 . . . , Tk> in M00 (F) and,
by (2.4), < <b (T±), . . . , O (Tk) > is a solution of I in ^ (X). We shall charac-
terize it by an initiality property and show that it does not depend on the
choice of S.

3.2. Examples [see (2.2) for To, Tu T2 and U]:

«i = ut a

W2 = ##2 a

u = uu M = UicU

Solution of £

T2

U

Solution of S

a» = ^ (To)

8 = 0) (i7)

Any solution in j ^ ^ (X) ofw= wow is a dense countable linearly ordered
set without least and greatest element, hence is isomorphic to the order type
of rational numbers.

3.3. NOTATIONS : If ut is a variable of S, we let T (S, ut) dénote the component

of the solution of S in Mm (F) associated with uiy and A (X, ut) dénote
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328 B. COURCELLE

Let T&) = <r(Ë, ttl), . . . . ^(^Wfc)) and

3.4. 4̂n open décision problem

(P ) : Given E and E', can we décide whether A (E, wA) is isomorphic ta
A (E', «!)?

In the special case where Jf = { a }, this problem is equivalent to the
following one:

(P') : Given two prefix-free rational languages L and L' on { 0, 1 }, can
we décide whether < L, g z > and < L\ ^ z > are isomorphic order types?

In fact these two problems are equivalent. Let us show that (P) reduces
to (i>'). If Z = {aua2, . . . , a „ } we can "code" at by ûf"œ am, a2 by
a-m a -c ^ ? Qn b y ^ - ^ n ao F o r m a l ] y s i f A (S j Wi) = < I ̂ ( |? TC> h y w e

define a substitution cy such that

a(x) = (a-<ù)ia& if xe\A\ and /i(x) = af

and similarly, a substitution CT' associated with A (L\ uf
x).

One easily constructs Xt and 2^ such that

a 04(1,

and one shows that:

wi) iff

3.5. Quasi-rational Systems

A System S = < M; = tu 1 ^ i ^ fc > is quasi-rational if it is a quasi-rational

context-free grammar i. e. if for ail u( and ? e ( Z u F)* such that ut—>t

then W| occurs at most once in t.

The system S is preordered if there exists a preorder 0 on { 1, . . . , f c}
such that for all i and j :

(i) if My occurs in tt then y 0 i (i. e. y* is less than i w. r. t. 0),

(ii) if Uj and ut have distinct occurrences in t{ (and possibly j = /) f 0 /
and i 0 / do not hoJd together.

3.6. PROPOSITION: A system E is quasi-rational if and only if it is preordered.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



FRONTIERS OF INFINITE TREES 329

Proof: Only if. Let E be quasi-rational. TakeyQi if i — jox^-^t for some

t e(X KJ F )* with at least one occurrence of Uj. Then 0 is clearly a preorder,
(i) is satisfied; if Uj and ux have distinct occurrences in tt and if / Qj and / 0 /

then one can find some ? e ( I u F )* such that: wf—•*,- —»f and Wj occurs
twice in f.

Hence £ is not quasi-rational.

If Let I be preordered by 0. By induction on the length of a dérivation

ut —> t, one shows that if uj and ut have distinct occurrences in t then i' 0 j and
/ 0 / do not hold together. In particular, this implies that E is quasi-rational. •

3.7. In order to solve explicitly quasi-rationàl Systems, we define a certain
kind of regular expressions (r. e.) involving exponentiation to co and — G>.
Similar expressions are used in [5],

They are obtained by a finite number of applications of the foUowing
rules:

(i) every Ö G Ü S a r. e., and s is a r. e.,

(ii) RR' is a r. e.,
(iii) (JR)0* is a r. e., and

(iv) (R)~m is a r. e., if R and R' are r. e. We also define regular expressions
with parameters Ul9 . . . , Uk by adding foliowing rule:

(v) Ui is a r. e. for i = 1, . . . , fc.

By définitions 1.2 and proposition 1.3, every r. e. i£ has a well defined
value in sfa (X). A r. e. with parameters Uu . . . , Uk has a value in J ^ (Z)
for every assignaient of values in si (X) to the parameters. (The same symbol
will dénote a regular expression and its value.)

An arrangement A is quasi-rational if A — A (S, u^) for some quasi-rational
system E.

3.8. THEOREM: -4/J arrangement is quasi-rational if and only if it is defined
by some regular expression.

Proof: The "if" part is proved by induction on the structure of regular
expressions :

(i) if R = a e X u { e }, then R = A (S, wt) where S = < wx = a >;
(ii) if R = Rx R2, one constructs Sx = < «i = *i, . . . , wk = /k >;

2 2 = < afc+1 = //,+ !,..., «! = /,> such that l^i
then iï = 4̂ (E, wz+i) where E = 2^ u S2 u

(iii) if iï = JIJ, where Rx = A (E, Wj) then R = A(T,, uk+ x) where
E = Ex u < uk+1 = MX «fc+1 ) (easy lemma left to the reader) and similarly:

(iv) if R = i?'*0, then iï = ^ (E, wfe+1) where E = Ex u

vol. 12i nö 4, 1978



330 B. COURCELLE

One easily checks at each step of this construction that one gets preordeired
Systems.

Let X be preordered by 8 and A = A (S, ut).
For each ie { 1, 2, . . . , k } one can find t\ e ( I u F)* such that:

(1) tAtU
(2) if Uj occurs in tf

t then jd i;
(3) if Uj occurs in t\ and iQj then i = j ;
(4) «f has at most one occurrence in tr

v

Let E' = < Ml = t[, ..., ttjk = ^ > ; then 1 ( 2 ) = 1 ( S ' ) .
We now define Rt such that Rt = 4̂ (E', ut) for f = 1, . . . , k.
We define Rt in terms of the R/ s such that j 9 f and i # j .
(a) If f/ contains no occurrence of uu then by (2) f ƒ contains only occurrences

of tif such that j 8 f and i # ƒ Then we take Rt = // [i^j/wj], the substitution
of Rj to each occurrence of us in t[ for all ƒ

(p) If t( contains an occurrence of ui9 then we obtain three cases:
(PI) */ =sUis';
(p2) // = W | / ;
(p3) / /=« / , ;

where s and J ' only contain occurrences of Uj such that j 8 i and j ^ L Let
5 = sf [Rj/toj] and S' = s [Rj/u/] [same notation as in case (<x)]. We tben
take Rt = S" S""* in the first case, Rt = S"m in the second and Rt = Sm

in the third. D

3.9. Example: Let us define i ^ = A(L% ux) where

u2 =
«3 =

w4 = au5

u5 = ab;
R5 = ab,
R4 — aab,

The first équation is transformed into

A = a«3 but u29

R2 = (aabTb^iaiaabyb-oTiiaabTb-or*.
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FRONTTERS OF INFINITE TREES 331

By using regular expressions with parameters, we can also define all solutions
of a given quasi-rational system E. In order to do so we state without proof
the following:

3.10 LEMMA: Let A, A! ej$(X). An arrangement U satisfies the équation
U = AUA' (resp. U = UAf) (resp. U = AU) if and only if U = Am BA'-*
(resp. ü = BA"*) {resp. U = A" B) for some Besé(X).

Given £ as in the second part of the proof of 3.8, let Ut be a parameter
for all i e { 1, . . . , k } such that ti contains an occurrence of ut let P be this
set of parameters.

We define regular expressions Rt with parameters in P in the same way
as before except in case (P) where we take:

R. = sm Ui Sf"m in subcase (p 1),

R( = Ui S'~* in subcase (P 2),

R. = sm Ui in subcase (P 3).

We obtain with lemma 3.10 and the above notations:

3.11. THEOREM: The class of solutions of E is exactly the class of values of
< Ru . . . , Rk > where parameters range over sé (X).

3.12. Example: Let E be defined in example 3.9:

R5 = ab,
i?4 = aab9

R3 = (aabfU3b-\
R± = (a (aab)m U3 b'T Ut {{aaVf U$ b'm)'m9

R2 is left to the reader.
Hence, the gênerai solution of S dépends on two parameters, Ut and J73.
We conclude this section by another characterization of quasi-rational

Systems.
Let Te Mm (F). An infinité branch of J i s a word w e { 0, 1 }* such thât

w [w] (i. e. the finite prefix of w of length n) belongs to Dom (T) for all n eJT.
À tree is sparse (in French : éparpillé) if it has at most countably many infinité

branches.

3.13 PROPOSITION: A system E is quasi-rational if and only if each F (E, ut)
is sparse.

Proof: Assume that E is not quasi-rational. Then ut-^t with two occurrences
of ut in t. Then JT(E, ut) contains as a subgfaph the tree 17 = U-k U of 2.2.
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lts set of infinité branches is { 0, 1 }* which is not countable.

Conversely, let 2 be preordered. One shows that r ( 2 , «,) is sparse by
the same induction as for the construction of the Rt

9s in the proof of 3.8
and the remark that if T is the solution in Af00 {F) of an équation

T=t[T/v0, TJvu . . . , 7 > „ ] ,

such that

Tl9 . . . , Tk are sparse,
teM(F u { v0, ..., vn}), t =£ v0 and v0 has one occurrence in t,

then T is sparse. •

This proposition shows in particular that the arrangement A such that
A ~ A a A (see examples 3.2) is not quasi-rationaL

4. INITIALITY OF A (E)

4 . 1 . Let 2 = < ut = wt; 1 g i ^ k} be a System of équations over
sé (X) where w ^ e ^ u F ) * for all i (and V = {uuu2, ...,uk}). Let
Ë = < z/f = tt; 1 ^ / ^ & > be a System over M00 ( f ) where *fe M{F\J V)
is choosen in such a way that $ (tt) = wf. We shall see that all possible choices
for 2 yield the same result.

We redefine the concept of a solution of 2 in sé (X), more precisely than
we have done yet:

A solution of 2 is a &-tuple < (Au <x£); 1 ^ i ^ A:> of pairs consisting

of an arrangement At and an isomorphism a ; : Ai—^wi \A~] where Wi [^4]
is the substitution of At to the parameter ut in the regular expression wi9

or equivalently, wt [A~\ = a (wt) where a is the substitution such that
<y (x) = At ifiVi (x) = w,- (considering now wr- as a finite arrangement on l u F).

A morphism of solutions of 2, denoted

p : < ( A i 9 a d ; l ^ i ^ k y - ^ i {A'i9 0 0 ; l ^ i ^ k >
—••

is a £-tuple of morphisms p = < p j ; l g ï g f c > where, for each i9 pf is a
morphism : Ai—^A'i and the foliowing diagram commutes:
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The morphism wt [p] is canonically defined : w{ \A~\ —» u^ \_A'~\ as y in 1.2
with Ax = A2 = t^jj 7i the identity on wu hx = p,- if w£ (x) = ut. We redefine

it in this context: using the fact that ŵ  = <3> {tt), we get for wt [p] the following
définition with

tg> = { z e Dom (td/U (z) = iiy }

and /<f> = { z e D o m W / ^ ^ e l } :

w,[P]( (z , l ) ) - (2 , l ) if zeix> (4.1.1)

w, [ p ] ((z, 2')) = O*, Pi (^)) if z e fW) (whence z' e | Aj |). (4.1.2)

4.2. Let now < 7\, T2, . . . , Tfc > be the unique solution of Ë in M00 (F).
We shall define morphisms yls y2, . . . , yk such that < (̂ > (Tt)9 yt); 1 ^ / ^ A: >
is a solution of S in the sense of 4.1.

From the équation

ï» = 4X) T l f u . . . utf#> r f e f u ^ (4.2.1)

there exists a bijection

?i :• Ttf - <a>x T1# u . . . u 4k) x r w u 4X) x {1} (4.2.3)

such that

y£(z) = (z , l ) if ze4 X )

= (ZU Zz) if Z = Z l Z2 f ° r S O m e Z l G ' ^ a n d Z2 e I}* •

It foliows from the définitions and the properties of trees (see for instance [ l ] )
that yt is a bijection. lts codomain is exactly | cr; (<D> (tj) | where
a£ : | O O») \—>st(X) is the substitution such that at (z) = O (7}) if
rf (z) = up for z e ?l#. Hence, yt is an isomorphism of <$> (T() onto
a, (O (O) - f*, [O (Tx)luu . . . , O (7y/«J.

We can now state and prove:

4.3. THEOREM: < (O (Tt), yt); 1 ^ i ^ ^ > w i/utàz/ m ?/ie category of solutions
of E.

7m//a/ means that for every solution < (Diy S ^ l g f g ^ ) of E there
exists one and only one morphism from < ($(7V)? y ^ l g / ^ f c ) to it,

Proo/; Given a solution < (D l5 5^ , . . . , (Z>fes 5fc) >5 assume first the existence
of (Pl5 . . . , Pfe) such that:

Wfffifri^StP, f o r 1 ^ ^ * - (4.3.1)
Then Pi : T» —• |'2), | satisfies the following:

if ze i X ) then y£(z) = (z, 1) and W|[P]((z, 1)) = (z, 1); (4.3.2)
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by (4.1.1) hence p, (z) - S f ' t f z , 1)) by (4.3.1),

if z = zx z2 with zx G tU\ z2 e TJ9, then y,(z) = (z1? z2)
and (4.3.3)

by 4.1.2, hence p, (z) = Sf1 ((zlf p, (z2))).

These properties insure in fact the existence and unicity of p.
Since yt is bijective, every z e T# either belongs to t\P and P( (z) is defined

by (4.3.2) in a unique way, or is of the form z = ztz2 with zx e t$ and
z2 e Tj9 in a unique way and z2 is shorter than z (since tt $ V) and pf (z)
is defined by (4.3.3) in a unique way if Py (z2) is, which can be assumed since
| z2 | < | z | (in a proof by induction).

— * •

Hence we have shown the existence and unicity of p. •
Since initial objects are isomorphic, < (<S>(Tj)9 Ji)l 1 ^ i ^ ky does not

depend on the précise choice of S which has been done to define Tl9 . . . , Tk.
More precisely, if S(j) = < ut = t^; 1 ^ i ^ /e >, 7 = 1, 2 are two Systems

such that #> 6 M ( f u F ) - F a n d O (fj1^ - O (*<2>) for 1 ^ i S k then:

4.4. COROIXARY: O (r(S ( 1 ) , w;)) - O (r(S(2>, M;)) /or 1 ^ / ^ fc.

5. THE ALGEBRAIC STRUCTURE OF jtf.GO/*

5.1. Let us try to find an algebraic présentation of st& (X)/~, the set of
isomorphism classes of countable arrangements.

We have shown that every countable arrangement is isomorphic to O (T)
for some TeM«>(F) (theorem 2.3).

Let = be the équivalence relation on M00 (F) defined by T == T' iff
O (T) ~ O (T'), It is a congruence by 2.4, i. e. Tt • T2 ~ ^ • 7^ if r f = T\
for 1 = 1, 2.

It follows that j /œ( jr) /ûi is isomorphic to M" ( F ) / s .
Equivalences on M00 (F) have been investigated in [2] for a different

purpose. We shall use the concepts of [2] and show a négative resuit, that =
is not an algebraic congruence on M00 (F), It will follow that M00 (F)/ =
and s$m (X)l^i are not "pleasantly" presented, as we would like them to be.

Let us recall that M00 (F) is the set of maximal éléments of an ordered
set MQ (F) defined as follows: the alphabet is augmented with a new symbol Q
and M ^ ( J F ) = ¥ w ( F u { Q }). An order relation < on M™ (F) is defined
as follows: T<T iff Dom(T) c Dom(77/) and for ail u in Dom (T),
T(u) = Q or T(u) = T' (w).
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Intuitively T < T if and only if T is obtained from T by the substitution
of arbitrary éléments for certain occurrences of Q in T. One can also think
of T as an "initial subtree of T"9 if T< T'.

Let MQ (F) be the set of trees of Mg (F) with a finite set of nodes. Letters t,
t\ sy s\ fl5 . . . will be reserved to éléments of Ma(F).

Every increasing séquence (tn) in Ma (F) has a least upper bound Sup (£„)
in Mg (F), and conversely, every element of Mg (F) is the least upper bound
of an increasing séquence in MQ(F).

We shall show that the équivalence = does not satisfy the following
continuity property:

If (tn) and (t'J are increasing séquences in Ma (F) such that tn = t'n for
ail n eJT, then Sup (Q = Sup (Q.

To do so we take an example.
5.2. Example:

Let sm s'n and s„ be the increasing séquences in Ma(F) defined by:

The séquences ^B*4' a n ^ •y»*^ also are increasing and have least upper
bounds T0*T2 and T2*Tt respectively (To, 7^ and F2 are defined in 2.2).

We have clearly:

• T2) = amama-m^ a&a~ma^m = «>(T2 • 7\). D

5.3. We can also show that = is not an algehraic congruence on M00 (F).
Using définitions of [2], a congruence on M00 (F) is said aïgebraic if there

^xists a preorder R on Ma (F) satisfying the following

t<tf => f Kt', (5.3.1)

ttRft and *2i*r2 => Oi*^)Jl( ' i*^) (5.3.2)

for ail increasing séquences (tn) and (t^) in M^ (F) with least upper bounds
in M™ (F):

Snp(tn) = Sup(O o Vn3rns.t.tnRt'm and VmBnsA.t'mRtn (5.3.3)

5.4. PROPOSITION: 77Ï£ congruence = O/Î Mm {F) is not aïgebraic•*
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Proof: Assuming the existence of a preorder R on Mn (F) satisfying (5.3.1)
to (5.3.3) we shall show that

Vn, 3ms.t(3JI*Oll(4*O (5.4.1)

and

Vm, 3ns.t.(si*4)*fe*O- (5.4.2)

But a contradiction will follow since Sup (sn*s%) fé Sup(^*5^) as shown
in 5.2.

In order to prove (5.4.1), let us fix n and consider S(n} = Uin)+ U'inï

where

U<*+1> Ja • C/(w); t//1(«+1) = a • (IT(|° • a)..

It is clear that ®(Uin)) =an®(T2) = am a~m and

Finally, ^(S ( n )) = ^ a~m a"m hence
Since sn • 4' "< ̂ (ïl)» we get from (5.3.3) the existence of m such that

(snürsQR(s^'ks'n). And (5.4.1) is proved. One proves similarly (5.4.2)
and a contradiction is obtained. •

The meaning of 5.2 and 5.4 is that the équivalence of two trees is a global
property which cannot be deduced from a comparison of the finite approxi-
mations of the trees involved.

Another conséquence is that $$& (X)/~ cannot be defined as a quotient
of M00 (F) in a usable way, and a fortiori is not the set of ideals of a quotient
otMa(F).

6. CONCLUSIONS

Many problems are left open.
1. Deciding whether A1 (E) ca Ax (!') for Systems E and E'.
2. Find a complete system of axioms and rules for the equality of regular

expressions.
3. Extend regular expressions to represent the solutions of arbitrary Systems.
4. What can be said of the set of arrangements A (G) which are generated by

a context-free grammar? of the équivalence relation on grammars defined
by A (G) ca A (Gf) i. e. for every B e A (G) there exists some B' e A (G')
such that B cz B' and vice versai
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This work being complétée!, I happened to know that équations in arran-
gements have already been considered by S. Heilbrunner [3]. In particular,
he gives a solution to the third problem that I am leaving open.
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