RAIRO. InFORMATIQUE THÉORIQUE

Dan A. Simovici
 Sorin Istrail

Computing grammars and context-sensitive languages

RAIRO. Informatique théorique, tome $12, \mathrm{n}^{\mathrm{o}} 1$ (1978), p. 33-48
http://www.numdam.org/item?id=ITA_1978__12_1_33_0
© AFCET, 1978, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

COMPUTING GRAMMARS AND CONTEXT-SENSITIVE LANGUAGES (*)

by Dan A. Simovici and Sorin Istrail (${ }^{1}$)

Communicated by J. F. Perrot

Summary. - We introduce the notion of a computing grammar and we study the family of functions that can be defined by such a grammar with a linearly limited buffer size. These functions in turn define context-sensitive languages. We investigate various closure properties of this family of functions and use them to show that certain languages are context-sensitive.

I. INTRODUCTION

It is a well known fact that every context-sensitive language is a recursive set. Using a diagonalization argument it is possible to prove that the class of context-sensitive languages is strictly included into the class of recursive languages. Moreover, the progress of Computational Complexity Theory now permits the direct specification of languages that are recursive but not context-sensitive since they require exponential space for recognition-e. g. extended regular expressions denoting the empty set ([1], chap. 11)- and are therefore outside the scope of any linear bounded automaton.

Therefore, for formal language theory it is an important matter to clarify as much as possible the border of the class of context-sensitive languages by proving that certain classes of recursive languages are composed in fact by context-sensitive languages.

By N_{1} we shall denote the set of positive natural numbers $N_{1}=N \backslash\{0\}$. The aim of our paper is to study a certain subset of the set of functions $\left\{f \mid f: N_{1}^{h} \rightarrow N_{1}^{k}, k, h \in N_{1}\right\}$ for which the bounded languages

$$
L_{f}=\left\{i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} \mid\left(m_{1}, \ldots, m_{h}\right) \in f\left(N_{1}^{k}\right)\right\}
$$

are context-sensitive. Here i_{1}, \ldots, i_{h} are symbols belonging to an appropriate alphabet I.

[^0]After studying closure properties of this class of functions with respect to common operations of recursive function theory we consider some elementary examples which justify the interest of this topic.

II. COMPUTING GRAMMARS AND FUNCTIONS COMPUTABLE WITH A LINEARLY-LIMITED BUFFER-SIZE

In the sequel we shall introduce a new revriting device.
DÉfintition : A computing grammar (cg) is a 7-uple

$$
K=\left(I_{N}, I_{T},\left\{x_{1}, \ldots, x_{k}\right\},\left\{i_{1}, \ldots, i_{h}\right\}, b, \neq, F\right)
$$

where I_{N} and I_{T} are finite nonvoid sets representing respectively the nonterminal and the terminal alphabet, $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq I_{N}$ is the set of start symbols, $I_{T}=\left\{i_{1}, \ldots, i_{h}, \#, b\right\}$, where "\#" is the marker and " b " is the buffer and F is a finite set of pairs of words from $\left(I_{N} \cup I_{T}\right)^{+} \times\left(I_{N} \cup I_{T}\right)^{*}$.

In addition, we suppose that if $(u, v) \in F$ then:
(i) u contains at least a nonterminal symbol;
(ii) if "\#"' occurs in u then " \#" has exactly only one occurence both in u and v, namely in the first position of these words.

If (u, v) $\in F$ this fact will be denoted by $u \rightarrow v$.
The generation relation " $\underset{K}{\Rightarrow}$ " and its reflexive and transitive closure are considered exactly as for grammars.

A cg is length-increasing if for every rule $u \rightarrow v$ we have $l(u) \leqq l(v)$, where $l(p)$ is the length of the word p.

If $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right) \in N_{1}^{k}$ the number $\|\mathbf{n}\|$ is the $\operatorname{sum} \sum\left\{n_{j} \mid 1 \leqq j \leqq k\right\}$.
A function $f: N_{1}^{k} \rightarrow N_{1}^{h}$ is computed by a cg $K=\left(I_{N}, I_{T},\left\{x_{1}, \ldots, x_{k}\right\}\right.$, $\left.\left\{i_{1}, \ldots, i_{k}\right\}, b, \#, F\right)$ if for every $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right) \in N_{1}^{k}$, there exists an unique $\mathbf{m}=\left(m_{1}, \ldots, m_{h}\right) \in N^{h}$ so that

$$
\# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} \stackrel{\star}{\stackrel{\star}{\Rightarrow}} \# i_{h}^{m_{1}} \ldots i_{h}^{m_{h}} b^{M_{f}^{K}(\mathbf{n})}
$$

The number $M_{f}^{K}(\mathbf{n})$ is the buffer sizer for the function f and the input \mathbf{n} in the $\operatorname{cg} K$. In this manner we obtain a function $M_{f}^{K}: N_{1}^{k} \rightarrow N_{1}^{h}$.

A function $f: N_{1}^{k} \rightarrow N_{1}^{h}$ is computable with a linearly limited buffer size by the length-increasing $\operatorname{cg} K$ if there exists $c \in R_{+}$so that:

$$
M_{f}^{K}(\mathbf{n}) \leqq c\|f(\mathbf{n})\|
$$

for every $\mathbf{n} \in N_{1}^{k} \backslash Q_{f}$, where Q_{f} is a finite subset of N_{1}^{k}.
Let $L L B S$ be the class of functions which are computable by lengthincreasing cgs with linearly limited buffer size.

The usefulness of this concept of cg is pointed out by:
Theorem 1: If a function $f: N_{1}^{k} \rightarrow N_{1}^{h}$ belongs to LLBS then the language

$$
L_{f}=\left\{i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} \mid \mathbf{m}=\left(m_{1}, \ldots, m_{h}\right) \in f\left(N_{1}^{k}\right)\right\}
$$

is a context-sensitive one.
Proof: Suppose that f is computed by the length-increasing $\operatorname{cg} K=\left(I_{N}, I_{T}\right.$, $\left.\left\{x_{1}, \ldots, x_{k}\right\},\left\{i_{1}, \ldots, i_{h}\right\}, b, \#, F\right)$ and let us consider the length-increasing grammar

$$
\begin{aligned}
& G=\left(I_{N} \cup\left\{y_{1}, \ldots, y_{k}\right\},\right. \\
& \quad I_{T}, x_{0}, F \cup\left\{x_{0} \rightarrow \# y_{1} \ldots y_{k}, y_{1} \rightarrow y_{1} x_{1},\right. \\
& \\
& \left.\left.\quad y_{1} \rightarrow x_{1}, \ldots, y_{k} \rightarrow y_{k} x_{k}, y_{k} \rightarrow x_{k}\right\}\right),
\end{aligned}
$$

where y_{1}, \ldots, y_{k} are new symbols non belonging to the set $I_{N} \cup I_{T}$.
We infer that the language

$$
\begin{aligned}
L= & \left(L(G) \cap\{\#\}\left\{i_{1}\right\}^{+} \ldots\left\{i_{h}\right\}^{+}\{b\}^{*}\right) \\
& -\left\{\# i_{1}^{q_{1}} \ldots i_{h}^{q_{h}} \mid\left(q_{1}, \ldots, q_{h}\right) \in f\left(Q_{f}\right)\right\}
\end{aligned}
$$

is again context-sensitive since the class of context-sensitive languages is closed with respect to intersection with regular languages.

Let us take $p \in L$. The derivation $x_{0} \underset{G}{\star} p$ can be split as follows:

$$
x_{0} \Rightarrow \# y_{1} \ldots y_{k} \stackrel{\star}{\Rightarrow} \# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} \stackrel{\star}{\Rightarrow} \# i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} b^{M_{j}^{K_{j}}(\mathbf{n})},
$$

where the last part of the derivation uses only rules from F.
We conclude that L has the following form

$$
L=\left\{\# i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} b^{M_{F}^{K}(\mathbf{n})} \mid \mathbf{m}=f(\mathbf{n}), \mathbf{n} \in N_{1}^{k} \backslash Q_{f}, \mathbf{m}=\left(m_{1}, \ldots, m_{h}\right)\right\} .
$$

Let us consider now the homomorphism

$$
H:\left\{i_{1}, \ldots, i_{h}, b, \#\right\} \rightarrow\left\{i_{1}, \ldots, i_{h}\right\}^{*}
$$

given by:

$$
H(y)=\left\{\begin{array}{lll}
y & \text { if } & y \in\left\{i_{1}, \ldots, i_{h}\right\} \\
e & \text { if } & y \in\{b, \#\} .
\end{array}\right.
$$

H is a ($c+2$)-linear erasing homomorphism with respect to L for, if $p=\# i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} b^{M_{f}^{K}(\mathrm{n})}$ we have

$$
\begin{aligned}
l(p) & =1+\|f(\mathbf{n})\|+M_{f}^{K}(\mathbf{n}) \leqq 1+\|f(\mathbf{n})\|+c\|f(\mathbf{n})\| \\
& \leqq(c+2)\|f(\mathbf{n})\|=(c+2) l(H(p)),
\end{aligned}
$$

since $H(p)=i_{1}^{m_{1}} \ldots i_{h}^{m_{h}}$ and $f\left(n_{1}, \ldots, n_{k}\right)=\left(m_{1}, \ldots, m_{h}\right)$.
vol. $12, \mathrm{n}^{\circ} 1,1978$

Taking into account that the class of context-sensitive languages is closed under linear erasing [4] it follows that $H(L)$ is a context-sensitive language.

III. CLOSURE PROPERTIES OF THE CLASS OF FUNCTIONS COMPUTABLE BY LENGTH-INCREASING cgs

This part of the paper contains a study of closure properties of functions computable by length-increasing cgs.

We shall recall first the definitions of several well known operations on functions.

If $f: N_{1}^{k} \rightarrow N_{1}^{h}$ and $g: N_{1}^{b} \rightarrow N_{1}^{c}$ are two functions, the combination of f and g is the function $f \times \mathrm{g}: N_{1}^{k} \times N_{1}^{b} \rightarrow N_{1}^{h} \times N_{1}^{c}$, given by

$$
(f \times g)(\mathbf{m}, \mathbf{p})=(f(\mathbf{m}), g(\mathbf{p}))
$$

for every $\mathbf{m} \in N_{1}^{k}$ and $\mathbf{p} \in N_{1}^{b}$.
The exponentiation of the function $f: N_{1}^{k} \rightarrow N_{1}^{k}$ is the function $f: N_{1}^{k+1} \rightarrow N_{1}^{k}$ which is defined by:

$$
f \#(\mathbf{n}, p)=\underbrace{f \circ f \circ \ldots \circ f(\mathbf{n})}_{p}
$$

where '。 \circ ' denotes the composition of functions.
The function $f: N_{1}^{k+1} \rightarrow N_{1}^{l}$ is obtained by primitive recursion from $g: N_{1}^{k} \rightarrow N_{1}^{l}$ and $h: N_{1}^{k+1+l} \rightarrow N_{1}^{l}$ if $f(\mathbf{n}, 1)=g(\mathbf{n})$ and

$$
f(\mathbf{n}, p+1)=h(\mathbf{n}, p, f(\mathbf{n}, p)), \mathbf{n} \in N_{1}^{k}, p \in N_{1} .
$$

The operations of composition, combination, exponentiation and recursion are not independent. For instance, it is possible to prove [2] that each function defined by exponentiation starting from a primitive recursive function can also be defined by primitive recursion from primitive recursive functions. In this proof the projections are inherently involved. Since these functions are obviously non-computable by a length-increasing computing grammar, it is useful to study closure properties of the set of functions with respect to the whole set of operations.

The strategy of our approach is the following. In the next four theorems prove closure properties of the class of functions computable by cgs.

After establishing evaluations for the buffer size of the computed functions we obtain in the corollaries, closure properties of the class of $L L B S$ functions.

Theorem 2: The class of functions which are computable by lengthincreasing cgs is closed with respect to composition.

Proof: Let $f: N_{1}^{k} \rightarrow N_{1}^{h}, g: N_{1}^{h} \rightarrow N_{1}^{l}$ be the functions computed respectively by the grammars:

$$
\begin{aligned}
& K_{f}=\left(I_{N f}, I_{T f},\left\{x_{1}, \ldots, x_{k}\right\},\left\{i_{1}, \ldots, i_{h}\right\}, b, \#, F_{f}\right), \\
& K_{g}=\left(I_{N g}, I_{T g},\left\{x_{1}^{\prime}, \ldots, x_{h}^{\prime}\right\},\left\{i_{1}^{\prime}, \ldots, i_{l}^{\prime}\right\}, b, \#, F_{g}\right) .
\end{aligned}
$$

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

Without loss of generality we assume that

$$
I_{N f} \cap I_{N g}=\emptyset \quad \text { and } \quad I_{T f} \cap I_{T g}=\{b, \#\}
$$

Then the composition $g \circ f: N_{1}^{k} \rightarrow N_{1}^{l}$ is computed by the cg :

$$
\begin{aligned}
& K_{g \circ f}=\left(I_{N f} \cup I_{N g} \cup\left(I_{T f} \backslash\{b\}\right), I_{T g},\left\{x_{1}, \ldots, x_{k}\right\},\right. \\
& \left.\quad\left\{i_{1}^{\prime}, \ldots, i_{l}^{\prime}\right\}, b, \#,\left\{i_{m} \rightarrow x_{m}^{\prime} \mid 1 \leqq m \leqq h\right\} \cup F_{f} \cup F_{g}\right)
\end{aligned}
$$

since we can write:

$$
\begin{aligned}
\# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} & \stackrel{\star}{\Rightarrow} \# i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} b^{M_{f}^{K_{f}}(\mathbf{n})} \\
& \stackrel{\star}{\Rightarrow} \# x_{1}^{\prime m_{1}} \ldots x_{h}^{\prime m_{h}} b^{M_{f}^{K_{f}}(\mathbf{n})} \# i_{1}^{p_{1}} \ldots i_{l}^{p_{l}} b^{M_{g}^{K_{z}}(f(\mathbf{n}))+M_{f}^{K_{f}}(\mathbf{n})}
\end{aligned}
$$

Corollary 1: If $f, g \in L L B S,\|g(\mathbf{n})\| \geqq\|\mathbf{n}\|$ for almost all $n \in N_{1}^{k}$ (excepting possibly a finite set $\left.Q \subseteq N_{1}^{k}\right)$ and $f^{-1}\left(Q_{g} \cup_{k}^{*} Q\right)$ is a finite set then the composition $g \circ f$ belongs to LLBS.

Proof: From the proof of th. 2 it follows that
hence it is possible to obtain the following evaluation:

$$
\begin{aligned}
M_{g \| f}^{K_{g}{ }_{j} f}(\mathbf{n}) \leqq & c_{g}\|g(f(\mathbf{n}))\|+c_{f}\|f(\mathbf{n})\| \leqq c_{g}\|g(f(\mathbf{n}))\| \\
& +c_{f}\|g(f(\mathbf{n}))\| \leqq \max \left(c_{g}, c_{f}\right)\|g(f(\mathbf{n}))\|,
\end{aligned}
$$

where $f(\mathbf{n}) \notin Q_{g} \cup Q$ and $\mathbf{n} \notin Q_{f}$. These restriction can be summarized asking $\mathbf{n} \notin Q_{f} \cup f^{-1}\left(Q_{g} \cup Q\right)$ and, since this last set is finite it follows $g \circ f \in L L B S$.

Theorem 3: The class of functions which are computable by length-increasing cgs is closed with respect to combination.

Proof: Suppose that $f: N_{1}^{k} \rightarrow N_{1}^{h}$ and $g: N_{1}^{j} \rightarrow N_{1}^{l}$ are two functions computed by the cgs:

$$
\begin{aligned}
& K_{f}=\left(I_{N f}, I_{T f},\left\{x_{1}, \ldots, x_{k}\right\},\left\{i_{1}, \ldots, i_{h}\right\}, b, \#, F_{f}\right), \\
& K_{g}=\left(I_{N g}, I_{T g},\left\{x_{1}^{\prime}, \ldots, x_{j}^{\prime}\right\},\left\{i_{1}^{\prime}, \ldots, i_{l}^{\prime}\right\}, b^{\prime}, \#^{\prime}, F_{g}\right) .
\end{aligned}
$$

Assuming that $I_{N f} \cap I_{N g}=\varnothing$ and $I_{T f} \cap I_{N f}=\varnothing$ we shall consider the following length-increasing cg :

$$
\begin{aligned}
& K_{f \times g}=\left(I_{N f} \cup I_{N g} \cup\left\{b, \#^{\prime}\right\},\left(I_{T f} \backslash\{b\}\right) \cup\left(I_{T g} \backslash\left\{\#^{\prime}\right\}\right)\right. \\
& \left\{x_{1}, \ldots, x_{k}, x_{1}^{\prime}, \ldots, x_{j}^{\prime}\right\}, b^{\prime}, \#, \\
& F_{f} \cup F_{g} \cup\left\{b x_{1}^{\prime} \rightarrow b \#^{\prime} x_{1}^{\prime}, i_{h} x_{1}^{\prime} \rightarrow i_{h} \#^{\prime} x_{1}^{\prime}\right\} \\
& \left.\cup\left\{b i_{t}^{\prime} \rightarrow i_{t}^{\prime} b \mid 1 \leqq t \leqq l\right\} \cup\left\{b^{\prime} \rightarrow b\right\}\right)
\end{aligned}
$$

vol. $12, \mathrm{n}^{\circ} 1,1978$

Denoting by $c=M_{f}^{K_{f}}(\mathbf{n})$ and $d=M_{g}^{K_{g}}(\mathbf{q})$ we have in this new cg :

$$
\begin{aligned}
\# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{1}^{\prime q_{1}} \ldots x_{j}^{\prime q_{j}} & \stackrel{\star}{\Rightarrow} \# i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} b^{c} x_{1}^{\prime q_{1}} \ldots x_{j}^{\prime q_{j}} \\
& \stackrel{\star}{\Rightarrow} \# i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} b^{c} \#^{\prime} x_{1}^{q_{1}} \ldots x_{j}^{\prime q_{j}} \\
& \stackrel{\star}{\Rightarrow} \# l_{1}^{m_{1}} \ldots i_{h}^{m_{h}} b^{c} i_{1}^{\prime p_{1}} \ldots i_{l}^{\prime p_{1}} b^{\prime d} \\
& \stackrel{\star}{\Rightarrow} \# i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} i_{1}^{\prime p_{1}} \ldots i_{l}^{\prime p_{1}} b^{\prime c+d} .
\end{aligned}
$$

Hence, the function $f \times g$ is computed by the $\operatorname{cg} K_{f \times g}$ and we have

$$
\begin{equation*}
M_{f \times g}^{K_{f \times g}}((\mathbf{n}, \mathbf{q}))=M_{f}^{K_{f}}(\mathbf{n})+M_{g}^{K_{g}}(\mathbf{q}) \tag{1}
\end{equation*}
$$

Corollary 2: The combination of any two functions from LLBS is again in $L L B S$.

Proof: Let $f, g \in L L B S$, where $M_{g}^{K_{f}}(\mathbf{n}) \leqq c_{f}\|f(\mathbf{n})\|$ for $\mathbf{n} \in N_{k}^{1} \backslash Q_{f}$ and $M_{g}^{K_{g}}(\mathbf{q}) \leqq c_{g}\|\mathbf{g}(\mathbf{q})\|$ for $\mathbf{q} \in N_{1}^{b} \backslash Q_{g}$. Taking into account (1) it is possible to obtain the following evaluation:

$$
\begin{aligned}
M_{f \times g}^{K_{f \times \boldsymbol{g}}}((\mathbf{n}, \mathbf{q}))= & M_{f}^{K_{f}}(\mathbf{n})+M_{g}^{K_{g}}(\mathbf{q}) \leqq c_{f}\|f(\mathbf{n})\| \\
& +c_{g}\|g(\mathbf{q})\| \leqq \max \left(c_{f}, c_{g}\right)(\|f(\mathbf{n})\|+\|g(\mathbf{q})\|) \\
= & \max \left(c_{f}, c_{g}\right)\|f \times g(\mathbf{n}, \mathbf{q})\|
\end{aligned}
$$

for $n \notin Q_{f} \cup Q_{g}$, hence $f \times g \in L L B S$.
Theorem 4. If f is a function computed by a length-increasing cg then there exists a length-increasing cg which computes its iteration $f^{\#}$.

Proof: Let us suppose that the function $f: N_{1}^{k} \rightarrow N_{1}^{k}$ is computed by the length-increasing $\mathrm{cg} K=\left(I_{N}, I_{T},\left\{x_{1}, \ldots, x_{k}\right\},\left\{i_{1}, \ldots, i_{k}\right\}, b, \#, F\right)$ and let us take

$$
\mathbf{q}^{h}=\left(q_{1}^{h}, \ldots, q_{k}^{h}\right)=\underbrace{f \circ f \circ f \ldots \circ f(\mathbf{n})}_{h \text { times }} \quad \text { and } \quad d^{h}=M_{f}^{K}\left(q^{h-1}\right)
$$

We shall consider the cg:

$$
\begin{aligned}
K_{\#}=\left(I_{N} \cup\{ \right. & \left.x_{k+1}, z_{1}, \ldots, z_{k}, y\right\} \\
& \left.I_{T},\left\{z_{1}, \ldots, z_{k}, x_{k+1}\right\},\left\{i_{1}, \ldots, i_{k}\right\}, b, \#, F \cup F_{1}\right)
\end{aligned}
$$

where F_{1} consists of the following rules:
(i) $z_{j} x_{k+1} \rightarrow x_{k+1} x_{j}, 1 \leqq j \leqq k$;
(ii) $i_{j} x_{k+1} \rightarrow x_{k+1} x_{j}, 1 \leqq j \leqq k$;
R.A.I.R.O. Informatique théorique/Theoretical Computer Science
(iii) $b x_{k+1} \rightarrow x_{k+1} b$;
(iv) $\# x_{k+1} x_{1} \rightarrow \# y x_{1}$;
(v) $y i_{j} \rightarrow i_{j} y, 1 \leqq j \leqq k$;
(vi) $i_{k} y b \rightarrow i_{k} b b, i_{k} y x_{k+1} \rightarrow i_{k} b x_{k+1}$.

Since F consists only from length-increasing rules so $F \cup F_{1}$ does, hence $K_{\#}$ is indeed a length-increasing cg.
Now, we obtain in $K_{\#}$ the following derivation:

$$
\begin{aligned}
& \# z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} x_{k+1}^{p} \underset{(\mathrm{i})}{\stackrel{\star}{\Rightarrow}} \# x_{k+1} x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p-1} \\
& \underset{\text { (iv) }}{\Rightarrow} \quad \# y x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p-1} \stackrel{\star}{\Rightarrow} \quad \# y i_{1}^{q_{k}^{1}} \ldots i_{k}^{q_{k}^{1}} b^{d_{1}} x_{k+1}^{p-1} \\
& \underset{\text { (v) }}{\stackrel{\star}{\Rightarrow}} \quad \# i_{1}^{q_{1}^{1}} \ldots i_{k}^{q_{k}^{1}} y b^{d_{1}} x_{k+1}^{p-1} \underset{\text { (iv) }}{\Rightarrow} \quad \# i_{1}^{q_{1}^{1}} \ldots i_{k}^{q_{k}^{1}} b^{d_{1}+1} x_{k+1}^{p^{p}-1} \\
& \underset{(\mathrm{iii})}{\star} \# i_{1}^{q_{1}^{1}} \ldots i_{k}^{q_{k}^{1}} x_{k+1} b^{d_{1}+1} x_{k+1}^{p-2} \\
& \underset{\text { (ii) }}{\stackrel{\star}{\Rightarrow}} \# x_{k+1} x_{1}^{q_{1}^{1}} \ldots x_{k}^{q_{k}^{1}} b^{d_{1}+1} x_{k+1}^{p-2} \\
& \Rightarrow \quad \# y x_{1}^{q_{1}^{1}} \ldots x_{k}^{q_{k}^{1}} b^{d_{1}+1} x_{k+1}^{p-2} \\
& \text { (iv) } \\
& \stackrel{\star}{\Rightarrow} \quad \# y i_{1}^{q_{1}^{2}} \ldots i_{k}^{q_{k}^{2}} b^{d_{1}+d_{2}+1} x_{k+1}^{p-2} \\
& \stackrel{\star}{\Rightarrow} \ldots \stackrel{\star}{\Rightarrow} \# i_{1}^{q_{1}^{p}} \ldots i_{k}^{q_{k}^{p}} b^{d},
\end{aligned}
$$

where $d=p+\sum\left\{d_{j} \mid 1 \leqq j \leqq p\right\}$.
It is clear now that $f^{\#}: N_{1}^{k+1} \rightarrow N_{1}^{k}$ is computed by $K_{\#}$. Moreover, we have

Corollary 3: Suppose that for the function $f: N_{1}^{k} \rightarrow N_{1}^{k}$ there exists $\alpha \in(0,1)$ so that $\|\mathbf{n}\| \alpha \leqq\|f(\mathbf{n})\|$, excepting possibly a finite set $Q \subseteq N_{1}^{k}$. If $f \in L L B S$ and $f\left(N_{1}^{k}\right) \cap Q=\emptyset$ then $f^{\#} \in L L B S$.

Proof: We have to evaluate $M_{f \#}^{\mathrm{K} \#}(\mathbf{n}, p)$. In view of the fact that $\|\mathbf{n}\| \leqq \alpha\|f(\mathbf{n})\|$ we have the following non-decreasing sequence of real numbers:

$$
\left\|f^{j}(\mathbf{n})\right\| \leqq \alpha\left\|f^{j+1}(\mathbf{n})\right\| \leqq \alpha^{2}\left\|f^{j+2}(\mathbf{n})\right\| \leqq \ldots \leqq \alpha^{p-j} f^{p}(\mathbf{n}) \|,
$$

vol. $12, \mathrm{n}^{\circ} 1,1978$
for every $j, 0 \leqq j \leqq p-1$, since $f\left(N_{1}^{k}\right) \cap Q=\varnothing$. Hence

$$
\begin{aligned}
M_{f^{\#}}^{K_{\# 7}}(\mathbf{n}, p) & =\sum_{j=0}^{p-1} M_{f}^{K} \underbrace{f \circ f \circ \ldots \circ f(\mathbf{n}))+p}_{j} \\
& \leqq \sum_{j=0}^{p-1} c \| \underbrace{\|\rho f \circ \ldots \circ f(\mathbf{n})\|+p<\sum_{j=0}^{p-1} c \alpha^{p-j}\left\|f^{p}(\mathbf{n})\right\|+p}_{j} \\
& =c\left\|f^{p}(\mathbf{n})\right\|\left(\sum_{k=1}^{p} \alpha^{k}\right)+p=c\left\|f^{p}(\mathbf{n})\right\| \frac{\alpha-\alpha^{k+1}}{1-\alpha}+p \\
& <\frac{\alpha c}{1-\alpha}\left\|f^{p}(\mathbf{n})\right\|+p .
\end{aligned}
$$

From $\|\mathbf{n}\|<\alpha\|f(\mathbf{n})\|$ it follows that $\|f(\mathbf{n})\|>A\|n\|$, where $A=1 / \alpha>1$. Hence $\left\|f^{p}(\mathbf{n})\right\|>A^{p}\|\mathbf{n}\|>[1+p(A-1)]\|\mathbf{n}\|>p(A-1)$. Therefore $p<1 /(A-1)\left\|f^{p}(\mathbf{n})\right\|$ and the previous inequality is completed as follows:

$$
\begin{aligned}
M_{f^{\#}}^{K \#}(\mathbf{n}, p) & <\left(\frac{\alpha c}{1-\alpha}+\frac{1}{A-1}\right)\left\|f^{p}(\mathbf{n})\right\|=\frac{c(1+\alpha)}{1-\alpha}\left\|f^{\#}(\mathbf{n}, p)\right\| \\
& =c_{1}\left\|f^{\not \#}(\mathbf{n}, p)\right\|
\end{aligned}
$$

hence $f^{\#} \in L L B S$.
Theorem 5: The class of functions which are computable by length-increasing grammars is closed under primitive recursion.

Proof: Let us consider the cgs K_{g} and K_{h} which compute the functions $g: N_{1}^{k} \rightarrow N_{1}^{l}$ and $h: N_{1}^{k+1+l} \rightarrow N_{1}^{l}$, respectively

$$
\begin{aligned}
& K_{g}=\left(I_{N g}, I_{T g},\left\{z_{1}, \ldots, z_{k}\right\},\left\{i_{1}^{\prime}, \ldots, i_{l}^{\prime}\right\}, b, \not, F_{g}\right), \\
& K_{h}=\left(I_{N h}, I_{T h},\left\{s_{1}, \ldots, s_{k}, v, y_{1}, \ldots, y_{l}\right\},\left\{i_{1}, \ldots, i_{l}\right\}, b, \#, F_{f}\right),
\end{aligned}
$$

where $I_{N g} \cap I_{N h}=\emptyset$.
We shall construct the cg

$$
\begin{aligned}
& K=\left(I_{N g} \cup I_{N_{h}} \cup I_{N_{s}}, I_{T h},\left\{x_{1}, \ldots, x_{k}, x_{k+1}\right\}\right. \\
&\left.\left\{i_{1}, \ldots, i_{l}\right\}, b, \nexists, F_{g}^{\prime} \cup F_{f} \cup F_{S}\right)
\end{aligned}
$$

which computes the function $f: N_{1}^{k+1} \rightarrow N_{1}^{l}$ obtained by recursion from g and h. Here $I_{N S}$ is the set of supplementary nonterminal smbols, F_{g}^{\prime} is obtained from F_{g} by replacing each symbol i_{j}^{\prime} by $y_{j}, 1 \leqq j \leqq l$ and each occurence of "\#" with a new symbol v and F_{S} is the set of supplementary rules. The sets $I_{N S}$ and F_{S} will be specified in the sequel.

Let us denote $f(\mathbf{n}, p)=\left(q_{1}^{p}, \ldots, q_{k}^{p}\right)$.
The activity of the $\mathrm{cg} K$ starts from the word $x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p}$. We shall exhibit the rules which allow the derivation:

$$
\# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p} \stackrel{\star}{\Rightarrow} \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w x_{k+1}^{p-1}
$$

Namely, for the beginning we shall include in F_{S} the following sets of rules:
(i) $x_{j} x_{k+1} \rightarrow x_{k+1} s_{j} z_{j} t_{j}, 1 \leqq j \leqq k$;
(ii) $\# x_{k+1} \rightarrow \# \sigma$;

(iv) $z_{j} s_{h} \rightarrow s_{h} z_{j}, 1 \leqq j, h \leqq k, j \leqq k$;
(v) $\sigma s_{j} \rightarrow s_{j} \sigma, 1 \leqq j \leqq k$;
(vi) $s_{k} \sigma z_{1} \rightarrow s_{k} v \theta z_{1}$;
(vii) $\theta z_{j} \rightarrow z_{j} \theta, 1 \leqq j \leqq k$;
(viii) $z_{k} \theta t_{1} \rightarrow z_{k} \tau t_{1}$;
(ix) $\tau t_{j} \rightarrow t_{j} \tau, 1 \leqq j \leqq k$;
(x) $t_{k} \tau x_{k+1} \rightarrow t_{k} w x_{k+1}$.

Indicating by subscripts the rules which were used we have the derivation:

$$
\begin{aligned}
\# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p} & \stackrel{(\mathrm{i})}{\stackrel{\star}{\Rightarrow}} \\
\underset{(\mathrm{ii})}{\Rightarrow} & \# x_{k+1}\left(s_{1} z_{1} t_{1}\right)^{n_{1}} \ldots\left(s_{k} z_{k} t_{k}\right)^{n_{k}} x_{k+1}^{p-1} \\
\underset{\text { (iii) }}{\Rightarrow} & \# \sigma\left(s_{1} z_{1} t_{1}\right)^{n_{1}} \ldots\left(s_{k} z_{k} t_{k}\right)^{n_{1}} \ldots\left(s_{k} z_{k}\right)^{n_{k}} x_{k+1}^{p-1} \\
& \underset{\text { (iv) }}{\Rightarrow}
\end{aligned} \# t_{k}^{n_{1}} \ldots s_{1}^{n_{k}} \ldots s_{k+1}^{n_{k}} z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} x_{k+1 .}^{p-1} .
$$

Before moving σ it is compulsory to arrange s_{j}, z_{j}, t_{j} in the manner which was indicated, in order to eliminate σ. This derivation can be continued as follows:

$$
\begin{aligned}
& \# \sigma s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} l_{1}^{n_{1}} \ldots t_{k}^{n_{k}} z_{k+1}^{p-1} \\
& \stackrel{\star}{\stackrel{\star}{\Rightarrow}} \quad \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} \sigma z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} t_{1}^{n_{1}} \ldots l_{k}^{n_{k}} x_{k+1}^{p-1} \\
& \underset{\text { (vi) }}{\Rightarrow} \quad \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v \theta z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} x_{k+1}^{p-1} \\
& \underset{\text { (vii) }}{\stackrel{\star}{\Rightarrow}} \quad \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} \theta t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} x_{k+1}^{p-1}
\end{aligned}
$$

vol. $12, \mathrm{n}^{\circ} 1,1978$

$$
\begin{array}{ll}
\underset{(\mathrm{viii})}{\Rightarrow} & \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} \tau t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} x_{k+1}^{p-1} \\
\stackrel{\star}{\underset{(\mathrm{ix})}{\Rightarrow}} & \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} \tau x_{k+1}^{p-1} \\
\underset{(\mathrm{x})}{\Rightarrow} & \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v z_{1}^{n_{1}} \ldots z_{k}^{n_{k}} t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w x_{k+1}^{p-1} \\
\stackrel{\star}{\underset{\mathbf{F}_{g}^{\prime}}{\star}} & \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v y_{1}^{q_{1}} \ldots y_{k}^{q_{k}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w x_{k+1}^{p-1} .
\end{array}
$$

Hence, we put in evidence the derivation

$$
\# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} x_{k+1}^{p} \stackrel{\star}{\Rightarrow} \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v y_{1}^{q_{1}^{\prime}} \ldots y_{k}^{q_{k}^{\prime}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w x_{k+1}^{p-1}
$$

Now, our aim is to construct a derivation

$$
\begin{aligned}
& \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j} y_{1}^{q_{1}^{j}} \ldots y_{l}^{q_{1}^{j}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j} x_{k+1}^{p-j} \\
& \stackrel{\star}{\Rightarrow} \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j+1} y_{1}^{q_{i}^{j+1}} \ldots y_{l}^{q^{j+1}} b \ldots t_{1 .}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j+1} x_{k+1}^{p-(j+1)} \\
& 1 \leqq j \leqq p-1 .
\end{aligned}
$$

Since in K_{h} have the derivation

$$
\# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j} y_{1}^{q_{i}^{j}} \ldots y_{l}^{q^{j}} \stackrel{\star}{\Rightarrow} \# i_{1}^{q_{1}^{j+1}} \ldots i_{l}^{q_{i}^{j+1}} b^{d_{j}}
$$

it follows that in K it is possible to write

$$
\begin{aligned}
& \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j} y_{1}^{q^{j}} \ldots y_{l}^{q_{1}^{j}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j} x_{k+1}^{p-j} \\
& \stackrel{\star}{\Rightarrow} \quad \# i_{1}^{q_{1}^{j^{+1}}} \ldots i_{l}^{q_{l}^{i^{+1}}} b \ldots{ }^{+d_{j}} t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j} x_{k+1}^{p-j}
\end{aligned}
$$

where $d_{j}=\mathbf{M}_{h}^{K_{h}}\left(\mathbf{n}, p, \mathbf{q}^{j}\right), \mathbf{q}^{j}=\left(q_{1}^{j}, \ldots, q_{l}^{j}\right)$.
At this stage we shall consider the rules:
(xi) $w x_{k+1} \rightarrow w \alpha u w$;
(xii) $w \alpha \rightarrow \alpha u w$;
(xiii) $t_{j} \alpha \rightarrow \alpha u_{j} v_{j}, 1 \leqq j \leqq k$;
(xiv) $b \alpha \rightarrow \alpha b$;
(xv) $i_{c} \alpha \rightarrow \alpha y_{c}, 1 \leqq c \leqq l$;
(xvi) $\# \alpha \rightarrow \# \xi$;
(xvii) $\left\{\begin{array}{l}t_{j} u_{h} \rightarrow u_{h} t_{j}, 1 \leqq j \leqq h \leqq k ; \\ b u_{h} \rightarrow u_{h} b ; \\ y_{c} u_{h} \rightarrow u_{h} y_{c}, 1 \leqq c \leqq l ;\end{array}\right.$
and $1 \leqq h<k$.

$$
\begin{aligned}
& \text { (xviii) }\left\{\begin{array}{l}
t_{j} u \rightarrow u t_{j}, 1 \leqq h \leqq k ; \\
b u \rightarrow u b ; \\
i_{c} u \rightarrow u i_{c}, 1 \leqq c \leqq l ;
\end{array}\right. \\
& \text { (xix) }\left\{\begin{array}{l}
\xi u_{h} \rightarrow s_{h} \xi, 1 \leqq h \leqq k ; \\
\xi u \rightarrow v \xi ;
\end{array}\right. \\
& \text { (xx) } v \xi y_{1} \rightarrow v \eta y_{1} ; \\
& \text { (xxi) } \eta y_{c} \rightarrow y_{c} \eta, 1 \leqq c \leqq l ; \\
& \text { (xxii) } y_{l} \eta b \rightarrow y_{l} b b ;
\end{aligned}
$$

Using the rules introduced here we have the continuation:

$$
\begin{aligned}
& \# i_{1}^{q_{1}^{j+1}} \ldots i_{l}^{q_{1}^{j+1}} \dot{b} \ldots l_{k}^{n_{k}} w^{j} x_{k+1}^{p-j} \\
& \underset{(\mathrm{xi})}{\Rightarrow} \quad \# i_{1}^{q_{1}^{j+1}} \ldots i_{l}^{q_{1}^{j+1}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j} \alpha u w x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xii})}{\stackrel{\star}{\Rightarrow}} \quad \# i_{1}^{q_{1}^{j+1}} \ldots i_{l}^{q_{i}^{+1}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} \alpha(u w)^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xii})}{\stackrel{\star}{\Rightarrow}} \# i_{1}^{q_{1}^{j+1}} \ldots i_{l}^{q_{i}^{j+1}} b \ldots \alpha\left(u_{1} t_{1}\right)^{n_{1}} \ldots\left(u_{k} t_{k}\right)^{n_{k}}(u w)^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{\text { (xiv) }}{\stackrel{\star}{\Rightarrow}} \# i_{1}^{q^{j+1}} \ldots i_{l}^{q^{j+1}} \alpha b \ldots\left(u_{1} t_{1}\right)^{n_{1}} \ldots\left(u_{k} t_{k}\right)^{n_{k}}(u w)^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xv})}{\star} \# \alpha y_{1}^{q_{1}^{j+1}} \ldots y_{l}^{q_{l}^{j+1}} b \ldots\left(u_{1} t_{1}\right)^{n_{1}} \ldots\left(u_{k} t_{k}\right)^{n_{k}}(u w)^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xvi})}{\Rightarrow} \quad \# \xi y_{1}^{q_{1}^{j_{1}+1}} \ldots y_{l}^{q_{l}^{j+1}} b \ldots\left(u_{1} t_{1}\right)^{n_{1}} \ldots\left(u_{k} t_{k}\right)^{n_{k}}(u w)^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xvii})}{\star} \# \xi u_{1}^{n_{1}} \ldots u_{k}^{n_{k}} u^{j+1} y_{1}^{q_{1}^{j+1}} \ldots y_{l}^{q_{i}^{j+1}} b \ldots l_{1}^{n_{1}} \ldots l_{k}^{n_{k}} w^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xix})}{\stackrel{\star}{\star}} \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j+1} \xi y_{1}^{q_{1}^{j_{1+1}}} \ldots y_{l}^{q_{l}^{j+1}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xx})}{\Rightarrow} \quad \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j+1} \eta y_{1}^{q_{1}^{j+1}} \ldots y_{l}^{q_{l}^{j+1}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xxi})}{\star} \quad s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j+1} y_{1}^{q_{1}^{j+1}} \ldots y_{l}^{q_{l}^{j+1}} \eta b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j+1} x_{k+1}^{p-(j+1)} \\
& \underset{(\mathrm{xxii})}{\Rightarrow} \quad \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j+1} y_{1}^{q_{1}^{j+1}} \ldots y_{l}^{q_{i}^{j+1}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j+1} x_{k+1}^{p-(j+1)} .
\end{aligned}
$$

Thus coupling the derivations we obtain in G the derivation

$$
\# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p} \stackrel{\star}{\Rightarrow} \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{j} y_{1}^{q_{1}^{j}} \ldots y_{l}^{q_{l}^{j}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{j} x_{k+1}^{p-j}
$$

for $1 \leqq j \leqq p-1$.
Taking $j=p-1$ it is possible to obtain in K :

$$
\begin{aligned}
\# & x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p} \\
& \stackrel{\star}{\Rightarrow} \# s_{1}^{n_{1}} \ldots s_{k}^{n_{k}} v^{p-1} y_{1}^{q_{1}^{p_{1}-1}} \ldots y_{l}^{q_{1}^{p-1}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{p-1} x_{k+1} \\
& \stackrel{\star}{\Rightarrow} \# i_{1}^{q_{1}^{p}} \ldots i_{l}^{q^{p}} b \ldots t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} w^{p-1} x_{k+1} .
\end{aligned}
$$

The role of the next group of rules is to eliminate the last supernumerary symbols. Namely, we shall consider the rules:
(xxiii) $w x_{k+1} \rightarrow \delta b$;
(xxiv) $w \delta \rightarrow \delta b$;
(xxv) $t_{j} \delta \rightarrow \delta b, 1 \leqq j \leqq k ;$
(xxvi) $b \delta \rightarrow b b$.

Finally, we have obtained the derivation

$$
\# x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} x_{k+1}^{p} \stackrel{\star}{\Rightarrow} \quad \# i_{1}^{q_{1}^{R}} \ldots i_{l}^{q_{1}^{p}} b \ldots
$$

The buffer size is given by

$$
M_{f}^{K}(\mathbf{n}, p)=M_{g}^{K_{g}}(\mathbf{n})+\sum_{j=1}^{p-1} M_{h}^{K_{h}}\left(\mathbf{n}, p, \mathbf{q}^{j}\right)+2 p+\|\mathbf{n}\|-1
$$

Corollary 4: Let $g: N_{1}^{k} \rightarrow N_{1}^{l}$ and $h: N_{1}^{k+1+t} \rightarrow N_{1}$ be two functions from $L L B S$ where $M_{g}^{K_{g}}(\mathbf{n}) \stackrel{1}{\leqq} c_{g}\|\mathbf{n}\|$ for $\mathbf{n} \in N_{1}^{k} \backslash Q_{g}$ and

$$
M_{h}^{k_{h}}(\mathbf{n}, \mathbf{p}, \mathbf{q}) \leqq c_{h}\|h(\mathbf{n}, p, \mathbf{q})\|
$$

for $(\mathbf{n}, p, \mathbf{q}) \in N_{1}^{k+1+\lambda} Q_{h}$, where Q_{g} and Q_{h} are finite sets. If there exist $\alpha, \beta \in(0,1)$ so that $\|\mathbf{n}\|<\beta\|g(\mathbf{n})\|$ and $\|\mathbf{q}\|<\alpha\|h(\mathbf{n}, p, \mathbf{q})\|$ for all $(\mathbf{n}, p, \mathbf{q}) \in N_{1}^{k} \times N_{1} \times N_{1}^{k} \backslash Q$, where $N_{1}^{k l} \times N_{1} \times h\left(N_{1}^{k}, N_{1}, N_{1}^{l}\right) \cap Q=\emptyset$, then the function f defined by recursion from g and h belongs to LLBS.
R.A.I.R.O. Informatique théorique/Theoretical Computer Science

Proof: Using a similar approach as in corollary 3 we can write

$$
\begin{aligned}
M_{f}^{K}(\mathbf{n}, p) & =M_{g}^{K_{g}}(\mathbf{n})+\sum_{j=1}^{p-1} M_{h}^{K_{h}}\left(\mathbf{n}, p, \mathbf{q}^{j}\right)+2 p+\|\mathbf{n}\|-1 \\
& \leqq c_{g}\|g(\mathbf{n})\|+\sum_{j=1}^{p-1} c_{h}\left\|h\left(\mathbf{n}, p, \mathbf{q}^{j}\right)\right\|+2 p+\|\mathbf{n}\|-1 \\
& \leqq c_{g}\|g(\mathbf{n})\|+\sum_{j=1}^{p-1} c_{h}\left\|\mathbf{q}^{j+1}\right\|+2 p+\|\mathbf{n}\|-1
\end{aligned}
$$

if $\mathbf{n} \notin Q_{g}$ and $\left(\mathbf{n}, p, \mathbf{q}^{j}\right) \notin Q_{h}, 1 \leqq j \leqq p-1$.
Since $\mathbf{q}^{j+1}=h\left(\mathbf{n}, j, \mathbf{q}^{j}\right)$ we have $\left\|\mathbf{q}^{j}\right\|<\alpha\left\|\mathbf{q}^{j+1}\right\|$, hence

$$
\left\|\mathbf{q}^{j}\right\|<\alpha^{p-j}\left\|\mathbf{q}^{p}\right\|
$$

for every $j, 1 \leqq j \leqq p$.
Afterwards, since $\mathbf{q}^{1}=g(\mathbf{n})$ we have also $\|n\|<\beta\left\|\mathbf{q}^{1}\right\|<\beta \alpha^{p-1}\left\|\mathbf{q}^{p}\right\|$.
Putting together these evaluations we obtain

$$
\begin{aligned}
M_{f}^{K}(\mathbf{n}, p) & <c_{g}\left\|\mathbf{q}^{1}\right\|+c_{h}\left\|\mathbf{q}^{p}\right\| \sum_{j=2}^{p} \alpha^{p-j}+2 p+\|\mathbf{n}\|-\mathbf{i} \\
& \leqq c\left\|\mathbf{q}^{p}\right\|\left(\sum_{j=1}^{p} \alpha^{p-j}\right)+2 p+\beta \alpha^{p-1}\left\|\mathbf{q}^{p}\right\|-1 \\
& \leqq c\left\|\mathbf{q}^{p}\right\| \frac{1-\alpha^{p}}{1-\alpha}+2 p+\left\|\mathbf{q}^{p}\right\| \leqq\left\|\mathbf{q}^{p}\right\|\left(\frac{c}{1-\alpha}+1\right)+2 p \\
& =c_{1}\left\|\mathbf{q}^{p}\right\|+2 p
\end{aligned}
$$

where $c=\max \left(c_{g}, c_{h}\right)$ and $c_{1}=[\mathrm{c} /(1-\alpha)]+1$.
Taking into account that

$$
\left\|\mathbf{q}^{p}\right\|>A^{p-1}\left\|\mathbf{q}^{1}\right\|=A^{p-1}\|g(\mathbf{n})\|>A^{p-1} B\|\mathbf{n}\|
$$

where $\mathrm{A}=1 / \alpha>1$ and $B=1 / \beta>1$ it follows that

$$
\left\|\mathbf{q}^{p}\right\|>[1+A(p-1)]\|\mathbf{n}\|>1+A(p-1)>p
$$

Therefore we have

$$
M_{f}^{K}(\mathbf{n}, p) \leqq\left(c_{1}+2\right)\left\|\mathbf{q}^{p}\right\|=\left(c_{1}+2\right)\|f(\mathbf{n}, p)\|
$$

hence f is in LLBS.

IV. SOME ELEMENTARY EXAMPLES

We shall present in the sequel some elementary examples of "basic" functions from $L L B S$ from which we shall construct more complex functions using the closure properties of the $L L B S$ class presented in corollary 1-4.
(i) The function $f: N_{1} \rightarrow N_{1}$ given by $f(n)=a n+c$, where $a \in N_{1}, c \in N$ is in $L L B S$. Indeed, let us take

$$
\begin{aligned}
& K=\left(\left\{x_{1}\right\},\left\{i_{1}, b, \#\right\},\left\{x_{1}\right\},\left\{i_{1}\right\}, b, \#,\right. \\
& \left.\left\{\# x_{1} \rightarrow \# i_{1}^{c} y x_{1}, y x_{1} \rightarrow i_{1}^{a} y, y \rightarrow b\right\}\right)
\end{aligned}
$$

In this grammar there exists the derivation

$$
\# x_{1}^{n} \Rightarrow \# i_{1}^{c} y x_{1}^{n} \Rightarrow \# i_{1}^{c} i_{1}^{a} y x_{1}^{n-1} \stackrel{\star}{\Rightarrow} \# i_{1}^{n a+c} y \Rightarrow \# i_{1}^{n a+c} b
$$

and f is obviously from $L L B S$ since $M_{f}^{K}(n)=1, \forall n \in N_{1}$.
(ii) It is a very well known fact that the language $\left\{i_{1}^{n} \ldots i_{k}^{n} \mid n \geqq 1\right\}$ is context-sensitive. This fact can be recaptured here by proving that the function $h: N_{1} \rightarrow N_{1}^{k}$ given by $h(n)=(\underbrace{(n, n, \ldots, n)}$ is from LLBS .

Let us consider the length-increasing cg :

$$
\begin{aligned}
K=(& \left\{x_{1}\right\},\left\{i_{1}, \ldots, i_{k}, b, \#\right\},\left\{x_{1}\right\},\left\{i_{1}, \ldots, i_{k}\right\}, b, \#, \\
& \left.\left\{x_{1} \rightarrow y_{1} \ldots y_{k}, y_{j} y_{l} \rightarrow y_{l} y_{j}, 1 \leqq l \leqq j \leqq k, y_{j} \rightarrow i_{j}, 1 \leqq j \leqq k\right\}\right)
\end{aligned}
$$

If, in this grammar we have a derivation

$$
\begin{equation*}
\# x_{1}^{n} \stackrel{\star}{\Rightarrow} \quad \# i_{1}^{n_{1}} \ldots i_{k}^{n_{k}} \tag{3}
\end{equation*}
$$

we must have $n_{1}=n_{2}=\ldots=n_{k}$. Indeed, the derivation (3) has necessarily the form:

$$
\# x_{1}^{n} \stackrel{\star}{\Rightarrow} \#\left(y_{1} \ldots y_{k}\right)^{n} \stackrel{\star}{\Rightarrow} \# y_{1}^{n} y_{2}^{n} \ldots y_{k}^{n} \stackrel{\star}{\Rightarrow} \# i_{1}^{n_{1}} \ldots i_{k}^{n_{k}}
$$

and the buffer size is zero.
(iii) The $\operatorname{sum} f_{S}: N_{1}^{2} \rightarrow N_{1}$ given by $f_{S}\left(n_{1}, n_{2}\right)=n_{1}+n_{2}$ belongs to $L L B S$. This function is computed by the length-increasing cg:

$$
K_{S}=\left(\left\{x_{1}, x_{2}\right\},\left\{i_{1}, b, \#\right\},\left\{x_{1}, x_{2}\right\},\left\{i_{1}\right\}, b, \#,\left\{x_{1} \rightarrow i_{1}, x_{2} \rightarrow i_{1}\right\}\right)
$$

since we have the derivation $\# x_{1}^{n_{1}} x_{2}^{n_{2}} \stackrel{\star}{\Rightarrow} \# i_{1}^{n_{1}+n_{2}}$.
(iv) The product $f_{P}: N_{1}^{2} \rightarrow N_{1}$, where $f_{P}\left(n_{1}, n_{2}\right)=n_{1} n_{2}$ is a function from LLBS. To prove this let us consider the cg:

$$
K_{P}=\left(\left\{x_{1}, x_{2}, y, z, v\right\},\left\{i_{1}, b, \#\right\},\left\{x_{1}, x_{2}\right\},\left\{i_{1}\right\},\right.
$$

$$
\begin{gathered}
b, \#,\left\{x_{1} x_{2} \rightarrow i_{1} b, x_{1} x_{1} x_{2} \rightarrow x_{1} v^{2}, x_{1} x_{2} x_{2} \rightarrow v^{2} x_{2},\right. \\
v^{2} x_{2} \rightarrow x_{2} v^{2}, x_{1} x_{2} \rightarrow i_{1} x_{2} x_{1}, x_{1} i_{1} \rightarrow i_{1} x_{1}, \\
\left.\left.x_{2} i_{1} \rightarrow i_{1} x_{2}, x_{1} v^{2} \rightarrow x_{1} y b, x_{1} y \rightarrow y i_{1}, x_{2} y \rightarrow y i_{2}, y \rightarrow i_{1}\right\}\right) .
\end{gathered}
$$

K_{P} computes f_{p} since in this cg it is possible to write:

$$
\begin{aligned}
\# x_{1}^{n_{1}} x_{2}^{n_{2}} & \Rightarrow \# x_{1}^{n_{1}-1} v^{2} x_{2}^{n_{2}-1} \stackrel{\star}{\Rightarrow} \# x_{1}^{n_{1}-1} x_{2}^{n_{2}-1} v^{2} \\
& \stackrel{\star}{\Rightarrow} \# i_{1}^{\left(n_{1}-1\right)\left(n_{2}-1\right)} x_{2}^{\left(n_{2}-1\right)} x_{1}^{\left(n_{1}-1\right)} v^{2} \\
& \Rightarrow \# i_{1}^{\left(n_{1}-1\right)\left(n_{2}-1\right)} x_{2}^{\left(n_{2}-1\right)} x_{1}^{\left(n_{1}-1\right)} y b \\
& \stackrel{\star}{\Rightarrow} \# i_{1}^{\left(n_{1}-1\right)\left(n_{2}-1\right)+\left(n_{1}-1\right)+\left(n_{2}-1\right)+1} b=\# i_{1}^{n_{1} n_{2}} b .
\end{aligned}
$$

We conclude also that $M_{f_{p}}^{K_{p}}\left(n_{1}, n_{2}\right)=1$.
(v) In [3] S. Istrail exhibited a context-sensitive grammar for a language $\mathrm{L}_{P}=\left\{i^{P(n)} \mid n \in N\right\}$, where P is a polynomial having its coefficients in N_{1} proving that L_{P} is a type-1 language.

This result can be retrived in our new approach as follows. Suppose that

$$
\begin{aligned}
P(n) & =a_{0} n^{m}+a_{1} n^{m-1}+\ldots+a_{m-1} n+a_{m} \\
& =\left(\ldots\left(\left(a_{0} n+a_{1}\right) n+a_{2}\right) \ldots\right) n+a_{m} .
\end{aligned}
$$

We shall act by induction on m.
Denoting by $\varphi_{j}: N_{1}^{2} \rightarrow N_{1}$ the function $\varphi_{j}(m, n)=m n+a_{j}, 2 \leqq j \leqq m$. and by $\varphi_{1}: N_{1} \rightarrow N_{1}$ the function $\varphi_{1}(n)=a_{0} n+a_{1}, P(n)$ is given by

$$
P(n)=\varphi_{m}\left(\ldots\left(\varphi_{3}\left(\varphi_{2}\left(\varphi_{1}(n), n\right), n\right), \ldots, n\right)\right)
$$

We have proved at (i) that $\varphi_{1} \in L L B S$, with $M_{\varphi_{1}}^{K}(n)=1, \forall n \in N$ for a suitable cg. Since, for $\mathbf{n}=(m, p)$ we have $\|\mathbf{n}\|=m+p$ the condition $\|\mathbf{n}\| \leqq\|f(\mathbf{n})\|$ considered in theorem 3 becomes $m+n \leqq m n+a_{j}$ this condition is satisfied for all $(m, n) \in N_{1}^{2}$ since $\mathrm{a}_{j} \geqq 1$.

Denoting by $1: N_{1} \rightarrow N_{1}$ the identity map $1(n)=n$, the function $\varphi_{1} \times 1$ belongs to $L L B S$, hence $\varphi_{2} \circ\left(\varphi_{1} \times 1\right) \in L L B S$, where

$$
\varphi_{2} \circ\left(\varphi_{1} \times i\right)(n)=\varphi_{2}\left(\varphi_{1}(n), n\right)=\left(a_{0} n+a_{1}\right) n+a_{2}
$$

Suppose that we have proved that each polynomial with degree less or equal to m is in $L L B S$ and let $H=a_{0} n^{m+1}+a_{1} n^{m}+\ldots+a_{m+1}$ be a polynomial whose degree is $m+1$.

Since $H=\left(a_{0} n^{m}+a_{1} n^{m-1}+\ldots+a_{m}\right) n+a_{m+1}=\varphi_{m+1}(P(n), n)$ it follows immediately that $H \in L L B S$.
(vi) Let us consider now the exponential function $g: N_{1} \rightarrow N_{1}$ given by $g(n)=a^{n}$, where $a>1$. This function is computed by the cg :

$$
\begin{aligned}
& K=\left(\left\{x_{1}, y\right\},\left\{i_{1}, b, \#\right\},\left\{x_{1}\right\},\left\{i_{1}\right\}, b, \#,\right. \\
& \left.\quad\left\{\# x_{1} \rightarrow \# y i_{1}^{a-1}, i_{1} x_{1} \rightarrow x_{1} i_{1}^{a}, y x_{1} \rightarrow y i_{1}^{a-1}, y \rightarrow i_{1}\right\}\right)
\end{aligned}
$$

since it is possible to write

$$
\begin{aligned}
\# x_{1}^{n} & \Rightarrow \# y i_{1}^{a-1} x_{1}^{n-1} \stackrel{\star}{\Rightarrow} \# y x_{1} i_{1}^{a^{2}-a} x_{1}^{n-2} \\
& \Rightarrow \# y i_{1}^{a^{2}-1} x_{1}^{n-2} \\
& \stackrel{\star}{\Rightarrow} \# y x_{1} i_{1}^{a^{3}-3} x_{1}^{n-3} \\
& \Rightarrow \# y i_{1}^{a^{3}-1} x_{1}^{n-4} \Rightarrow \cdots \Rightarrow i_{1}^{a^{n}-1} \Rightarrow \# i_{1}^{a^{n}}
\end{aligned}
$$

The last rule $y \rightarrow i_{1}$, can not be applied until the last step because x_{1} can be eliminated only using the rule $y x_{1} \rightarrow y i_{1}^{a-1}$.

Remark: By a slight modification of the proof of theorem 1 it is possible to prove the following assertion:

If the language $L_{D}=\left\{j_{1}^{n_{1}} \ldots j_{k}^{n_{k}} \mid\left(n_{1}, \ldots, n_{k}\right) \in D\right\}$ is a context-sensitive one (where D is a suitable subset of N_{1}^{k}) and $f: N_{1}^{k} \rightarrow N_{1}^{h}$ is a function from $L L B S$ then the language $\left\{i_{1}^{m_{1}} \ldots i_{h}^{m_{h}} \mid\left(m_{1}, \ldots, m_{h}\right) \in f(D)\right\}$ is again contextsensitive (the proof is left for the reader).

For instance, starting from the fact that the language $\left\{i^{p} \mid p\right.$ is a prime $\}$ is context-sensitive (see [4]) it follows immediately, using the example (vi) that the language $\left\{i^{2} \mid p\right.$ is a prime $\}$ is again context-sensitive a. s.o.

REFERENCES

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addisen-Wesley, 1975.
2. W. S. Brainerd and L. H. Landweber, Theory of Computation, John Wiley \& Sons, New York, 1974.
3. S. Istrail, Elementary Bounded Languages (submitted to Information and Control).
4. A. Salomat, Formal Languages, Academic Press, New York, 1973.

[^0]: (*) Received August 1977; revised October 1977. Note: A preliminary version of this paper was presented at the 6th Conference on Mathematical Foundations of Computer Science (Tatrouska Lomnica, Czechoslovakia, September 1977), but an unexpected delay presented its inclusion in the Proceedings.
 $\left(^{1}\right)$ Department of Mathematics, University of Iaşi, Iaşi, Romania. Research Group of Formal Language and Automata Theory, University of Iaşi.
 R.A.I.R.O. Informatique théorique/Theoretical Computer Science, vol. 12, n° 1, 1978

