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ASYMPTOTICAL ESTIMATION
OF SOME CHARACTERISTICS

OF FINITE GRAPHS

by PHAN €)INH DIÊU (*)

Abstract. — Are given the asymptotical estimations of some characteristics of finite graphs.
It is shown that, when n -*> oo, for almost of all graphs ofn nodes every inside stable set contains
at most [2 log n + 1] nodes, every outside stable set contains at least n — [2 log n + 1] nodes,
every minimal cycle passes at most [2 log n + 1 ] nodes, and the chroma tic number is greater than
n/[2 log n + 1 ] . It is proved also that when n —• oo for almost of all graphs of n nodes the number
of inside stable sets (cliques, outside stable sets, minimal cycles) is of degree «ï l o9n .

1. INTRODUCTION

As has been well-known, a large class of combinatorial problems, in parti-
cular in the graph theory as well as the problems of finding a maximal inside
stable set or a minimal outside stable set, or determining the chromatic number
of a graph, etc, was known to be solvable only by very complicated algorithms.
In the point of view of computational complexity theory, the presently known
algorithms solving these problems require often the exponentional time,
i. e., the computational time grows as an exponentional function of the length
of the input. In Karp's work [2] and furtĥ er papers of other authors a lot of
problems in graph theory was shown to be solvable in polynomial time by
nondeterministic Turing machines (i. e., to belong to the class NP\ but
if any of them is solvable in polynomial time by a deterministic machine,
then so do all problems in the class NP. The problems of deciding whether a
graph has an inside stable set of a given cardinality, or whether the chromatic
number of a given graph is less than a given number, etc. belong to this class NP.
The TVP-completeness of these problems strengthens the conjecture that they
are not solvable in polynomial time by deterministic machines.

In the relation with this problem of the computational complexity theory
in this paper we shall consider the asymptotical estimation of some characte-
ristics of graphs, that is, the inside and outside stable numbers, the chromatic
number, and also the numbers of inside and outside stable sets of a graph, etc.

Some necessary définitions and notations are given in the section 2. In the
section 3 it will be shown that when n -• oo for almost of all graphs of « nodes,
every inside stable set contains at most [2 log n + 1 ] nodes, every outside

I1) Institute of Mathematics. Hanoï. Vietnam and IRIA, France.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science, vol. 11, n° 2, 1977







160 PHAN 421NH DIEU

distinct graphs with the node set A. they are denoted by G1. G2, . . . , Gp.
The A:-element subsets of X are denoted by E1, E2 Eq.

LEMMA 1 : MÇn>fc = C* . 2"c*.

Proof : For every graph Gt(i = 1, . . . , /?) we dénote by Ik(Gt) the number
of Ar-node inside stable sets of Gf, and for any set £,(/ = 1, . . . , q) we denode
by dk {Ej) t r ie number of such graphs Gt that £,. is a A>node inside stable set
of G,. It is obvious that

t h(Gd = t dk(Ej).

We now calculate the right side of this équation. Let given a subset Ej.
If a graph Gt has £,. as an inside stable subset, then in Gt there are no arcs
joining two nodes of Ej. Let W dénote the set of all possible arcs joining two
nodes in X excluding the arcs joining two nodes of Ej. It is easy to see that the
cardinality of W is \W\ = Cl — Cl. Each graph Gt having E. as an inside
stable set corresponds to some subset of W. Therefore the number of such
graphs Gt that Ej is an inside stable set is equal to

dk(Ej) = 2C*-C2K

Hence,

Therefore we have :

Q.E.D.

LEMMA 2 : Let n be a function from the graphs of n nodes into natural num~
bers, and let n(n) be the mean value ofn* i.e. :

Then the fraction of graphs Gifor which n (Gt) > n (n). z is less thon, 1/z.

Proof : Let A dénote the number of graphs G( such that

n(Gi)>n(n).z. (1)

Then we have

± U £ n(G,) + £ «(G,)) > -AH(n)z.
P \n(Gi)>n(ri).z n(Gi)>n(n).z J P
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ESTIMATION OF CHARACTERISTICS OF FINITE GRAPHS 161

Hence, A/p < 1/z, i. e., the fraction of graphs having the property (1) is less
than 1/z. Q.E.D.

From the lemmas 1 and 3 we obtain the following theorem, which gives
us an asymptotical estimation of the inside stable number of finite graphs :

THEOREM 1 : Let h = [2 log n + 1]. When n -> oo for almost of all graphs G
of n nodes, every inside stable set of G contains at most h nodes, therefore,
a (G) ^ h.

Proof : By the lemma 1 we have Th+1(n) = C j + 1 .2~c~h'+l. It is obvious
that \jh -• 0 as n -• oo. From the lemma 3 we deduce that when n -• oo for
almost of all graphs G of « nodes (or with the node set X = { xl9 x2, . • -, xn })
we have

i. e.,
L J + l

we»***" r < l k * t
This means that when n -> oo for almost of all graphs G of n nodes there are
no inside stable sets of h + 1 nodes. Since every inside stable set of more
h + 1 nodes must contain (h + l)-node inside stable sets, we can conclude
also that as n -• oo there are no inside stable sets of h + 1 or more nodes for
almost of all graphs of n nodes. Q.E.D.

COROLLARY 1 : Let h = [2 log n + 1]. When n -» oo for almost of all
graphs Gofn nodes, every outside stable set of G contains at least n — h nodes,
therefore, (3(G) ^ n - h.

Proof : For each graph Gh '\ïEj is an ins'de stable set of Gt then Ej = X — Ej
is an outside stable set of Gt. Hence, for any graph Gt the number of (n — k)-
node outside stable sets is equal to that of /c-node inside stable sets. Thereby
from the theorem 1 the corollary follows immediatly.

COROLLARY 2 : When n -• oo for almost of all graphs Gofn nodes, the chro-
matic number y(G) satisfies the estimation :

y{G)>n/[2logn + 1].

Proof: This follows from the theorem 1 and the following inequality
(see [1]) :

<x(G). Y(G) ^ n.

COROLLARY 3 : When n —• oo for almost of all grophs G of n nodes, every
clique o f G contains at most h = [2 log n + 1] nodes.
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164 PHAiN 4}1NH DIEU

Proof : Let X = { xx, . . . , xn }. We consider the set S of all ordered pairs
(El9 E2) of A:-element subsets of X. For each graph Gt(i = 1, 2, . . .,p = 2e")
with the node set X we dénote by ek(Gt) the number of such pairs (El9 E2)
that both E1 and E2 are fc-node inside stable sets of Gt. On the other hand, for
each pair (El9 E2)e ê we dénote by fk (Ex, E2) the number of such graphs Gt

that Et and is2 are inside stable sets of Gt. It is obvious that

iek(Gt)= X fk{E»E2). (1)
i=l (£i,£2)e8

Note that if the graph Gt has m /:-node inside stable sets then ek(Gt) = m2,
and the number of such graphs Gt is equal to Pnk(m). Therefore we have

where q
Hence

= (

we obtain

Pz

T

ek(GÙ

q
V 2

L m

n = 0

q= z
m = 0

m2

1 _

Pn

' n i=l

(2)

We now calculate the right side of (1). Let (Ex, E2) be a pair of ^-element
subsets of ^ such that \E1 n E2\ = j . We dénote by W the set of all possible
arcs joining two any nodes in X excluding the arcs joining two nodes of Ex

or two nodes of E2. There are totally Cl - 2Ck + C) such arcs. Each graph Gt

having Ex and E2 as two its inside stable sets corresponds to some subset
of W. Therefore we have

(note that Cl = C\ = 0). For each y'(0 ^ y ^ k) there are Cj
nC

k
nZ

jjCk
nZ{ pairs

(E1, E2) e S such that 1^ n E2\ = y. Note that the cardinality of ê is
q2 = (C*)2. Therefore we have

I fk(El9 E2) =

«-H (3)
J = 2

(where we have used the equality C-JCjlj = C^Q).
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By virtue of (1), (2) and (3) we obtain

rik k

Therefore,

Q.E.D.

LEMMA 5 : Let nbea natural number such that n ^ 12 log n. For any k ^ log n
we have

Proof : In order to estimate D^n k we put for every / (2 < j < k) :

aj = CiCk
nZi(2cf - 1).

For any / < k we have

flj+i _ ( fc- ; ) 2 2C^> - 1

flj ( ; + l ) ( n - 2 k + j + l ) - 2cf - l '

If / ^ 2 we have
jCj + i _ 1 OJ

1 1 ^ i
On the other hand, if j ^ k we have

4 ( * - y ) 2 « S 5 . 2 * - ' .

Hence if 2 < / < k we have

aj+l ^2(k -j)2.2j
 = 5 4(fc - ;)2 . 2J 5 2*

a,. ^ 3(n -2k) " 6 " 5(n - 2/c) ^ 6 ' n - 2k'

Therefore, it follows that when k < log n for any./(2 ^ ./ Â:) we have

1 , Le, aj+l ^ ay

(since « ^ 12 log n we have 5/z ^ 6(« - 2 log n)). Thus,

max ay- = a2 = C2C*I2(2C ' - 1) = CjfC*:*.

vol. l l , n ° 2 , 1977
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and we obtain

DL

PHAN «INH

Ck

DIÊU

kc\c\r_\
c*

We have

kn-l k.kjk- l ) ( n - k) ... (n - 2fc + 3 ) . fcl fc3(fc - l ) 2 fc^
~ 2 ( \ ) ( k + l ) ( k 2 ) \ < 2 ( 1 ) < 2"2n(n - 1) . . . (w -

Therefore we obtain finally :

2n(n - 1) < „2"

n2

Q.E.D.

LEMMA 6 : Lef k = [log «]. PF/ẑ n n -• oo /or almost of all graph G of n nodes,
the number Ik (G) of k-node inside stable sets satisfies the following estimation :

Proof : By using the Tchebychev's inequality in the probability theory we
have for any t > 0 :

k3 k3 Ck

where P(A) is the probability of the event ^4. Taking t = —M£Bfk = ^

we have

f2
0.

Therefore, if k = [log n] then as « -> oo for almost of all graph G with the
node set X we have

M G ) - -
fc3 C»

n '2Qï
(^n k is the stochastic variable taking the value Ik (G) for each given graph G
with the same probability 2~c" ).

Q.E.D.
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THEOREM 3 : When n^cofor almost of ail graphs G with the node
set X = { xx, x2, . . . , xn } (/. e., of n nodes), the number I(G) of all inside
stable sets satisfies the estimation :

-logn-loglogn-l T/^\ - l o g n + log log n + 2
z < 1(O) < n2

Proof : 1) Put k = [log n\. When n is enough large we have C* ^ (n/kf,
because (n — k + i)/i > n/k for / ^ k. Hence

( \ / \logn-l

2 C ^

Therefore, from the lemma 6 we deduce that as n -• oo for almost of all
graphs G of « nodes we have

1 -

n*
-logn-loglog«-l

Obviously that I(G) > Ik{G), and thus the first inequality of the theorem
is proved.

2) In order to find an upper bound of I(G) for almost of all graphs G of
n nodes we may use the second inequality in the lemma 6. But it is better to
estimate immediatly the values of Tk(n). By the lemma 1 we have

/,(«) = Ct. 2-c*.

Therefore, for any k < n :

ïfc+i(tt) n ~ k

Jk{n) 2k(k

If k ^ log n - 1 we have

Ik(n) ^ n. log n log n

U k > log « - 1 we have

W " ) C 2 ( n - l o g n + l ) . 2
7k(n) n . l o g n logn*

vol. l l , n ° 2 , 1977



168 PHAN *>INH DIEU

By putting h = [log «] we have

( l o g « ) * - * ƒ » , i f k < K

Let us dénote I(n) the mean value of the number of inside stable sets I(G)
taken for all graphs G of n nodes. Then, when n is enough large we have

' » = i Z I(Gt)= t Tk(n)
2 n i = 1 k = 1

< I Th(n).{lognrk+ Z ' >
k < h k^h

^ 7fc(/ï).(w
IllaIüö'1 + 2).

On the other hand, since log n — 1 < h ^ log « we have

„fi wlog n
/-h < IL. < I! _ w l o g n - l

w / ! 2losn ~

(logw - l)(logw - 2)

Hence,

Therefore,

7(n)<

^ —logn + loglogn+1

2n2

By the lemma 2 the fraction of graphs G of « nodes for which

T{n). n/2
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is less than 2//i. Thus, when n -> oc for almost of ail graphs G of n nodes we
have

Q.E.D.

Let G = (X, £) be a graph. An inside stable set B ^ X is called maximal,
if it is not contained in any other inside stable set of G. Let us dénote IM(G)
the number of maximal inside stable sets of G, and IMk(G) the number of
A:-node maximal inside stable sets of G. We have the following asymptotical
estimation for IM(G) :

THEOREM 4 : When n -• oo for almost o f ail graphs G ofn nodes, the number
of maximal inside stable sets satisfies the estimation :

J ^ l o g » + loglog n+ 2

Proof : Since the number of maximal inside stable sets of a graph is not
greater than that of inside stable sets of it, the second inequality for the upper
bound follows immediatly from the theorem 3. In order to estimate the lower
bound we put k = [log n~\ and h = [2 log n + 1]. By the theorem 1 as
n -• oo every inside stable set of G does not contain more than h nodes for
almost of ail graphs G of n nodes. Every maximal inside stable set having not
more h nodes contains at most C£ /c-node inside stable sets, and on the other
hand, every A:-node inside stable set must be contained in some maximal inside
stable set. Therefore, as n —• oo for almost of ail graphs G of n nodes, the
number of maximal inside stable sets is not less than \\Ck

h times of the number
of /c-node inside stable sets, i. e.,

As in the proof of the theorem 3, as n -> oo for almost of all graphs G of
n nodes we have

On the other hand,

Ck
h

Thus, as n -• oo for almost of all graphs G of « nodes we have

vol. 11, n°2, 1977
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REMARK : We can find an asymptotical estimation for IM(G) by starting
from the estimation of IMk(n\ the mean value of the number of fc-node
maximal inside stable sets of the graphs of n nodes. By a computation as well
as in the case of Ik(n\ we can obtain :

ÎMk(n) =jryC
k
n.2

cî-*(2k - If-*.

But by the method used above, this formula does not give us the better esti-
mation than that obtained in the theorem 4.

We note that for any graph G, the number of (minimal) outside stable sets
is equal to that of (maximal) inside stable sets, and the number of (maximal)
cliques of a graph G = (X, E) is equal to that of (maximal) inside stable sets
of the graph G = (X, E). Therefore, from the theorems 3 and 4 we obtain the
following corollaries :

COROLLARY 5 : When n -» oo for almost of ail graphs G ofn nodes, the num-
ber O (G) of outside stable sets and the number Om (G) of minimal outside stable
sets satisfy the estimations :

— log n — log log n — 1 s\//~<\ -~ log n + log log n+2

n2 < O(ü) < n1 ,

Om(G) < n i "

COROLLARY 6 : When n —> oo for almost of ail graphs G ofn nodes, the num-
ber K{G) of cliques and the number KM {G) of maximal cliques satisfy the
estimations :

- logn-loglogn-l vir>\ ^ ^log M + loglog n+2

n2 < ^ ( ( J ) < n2 ,

i ^ l o g n + log log „ + 2

6. ASYMPTOTICAL ESTIMATION OF THE NUMBER
OF MINIMAL CYCLES OF A GRAPH

In order to estimate the number C(G) of minimal cycles of a graph G, first
of ail we calculate the dispersion D^n k of the stochastic variable C,n k which
takes the value m with the probability rn k(m\ i. e., the probability of the fact
that a graph of n nodes has m &-node minimal cycles.

LEMMA 7 : D^k < (MÇn>k)
2 . - 1 £ ClC*Z{(7F} - 1).

k

; j=2

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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Proof : Let X = { xx, .vn J. As well as in the proof of the lemma 4
we consider the set g of ail ordered pairs (Ex, E2) of *>element subsets of X.
For each graph Gt (i = 1,2, . . . , /?) with the node set X we dénote by ek(G£)
the number of such pairs (Ex E2) that Gt has two minimal cycles passing the
nodes of Ex and E2 respectively. And for each pair (E1, E2 ) e S we dénote
by fk (E1, E2) the number of such graphs Gt that Ex and E2 are two its minimal
cycles. It is obvious that

»=1 (£i,£2)efi

Similarly as has been proved in the lemma 4 for the case of Mt£k we can
show also that

M^k J^k(Gd = ^ I
2 " 2C»(£1,£2)gg

Let ( ^ , E2) G ̂  and 1^ n £ 2 | = /. We dénote by FF the set of all possible
arcs joining two any nodes in X excluding the arcs joining two nodes of Ex

or two nodes of E2. We have \W\ = C2
n - 2C\ + C). Let Gt = {X, At) be a

graph with the node set X such that Ex and E2 are two its minimal cycles. The
set of arcs At can be divided into At = Aix u Ai2, where Ah ^ W and ^ I 2

is the set of arcs in Gf joining two nodes of Ex or of E2. It is obvious that there
are totally 2'^' possible choices for Ah. As from E1 (or ̂ 2 ) one can form k \/2k
distinct A:-node cycles, there are at most (k\/2k)2 possible choices for Ai2

(there are exactly (k \/2k)2 possible choices for Ai2 when \EX u E2\ < 1). Thus
we have

Note that \g\ = q2 = (Ck
n )

2, and for each /(0 < ./ ^ Â:)thereare Cj
nC

k
nZ

jjCk
nZ

j
k

pairs {E^.E^eê such that l^! n E2\ = j . Therefore we obtain

CjCk~jCk~j(—l 2~2C^+Cj?

" "-•/ "- fc\2/c/

i2 cic^c+zii-2

vol. l l , n ° 2 , 1977



172 PHAN ^>INH DIEU

Hence,

JK..U < mn,k)
2 . ^ i cic^iv?! -1).

Q.E.D.

By the same reasoning used in the proofs of the lemmas 5 and 6 we can prove
that when n is enough large, for any k ^ log n we have

and also the following lemma :

LEMMA 8 : Let k = [log «]. When n —• oo for almost of all graphs G of
n nodes, the number Ck(G) ofk-node minimal cycles satisfies the inequality :

2/c 2C*V n) 2/c2

THEOREM 5 : When n —• oo /ôr almost of ail graphs G of n nodes, the num-
ber C(G) of ail minimal cycles satisfies the estimation :

-logw--loglogn-l r>tr<\ ^ -log n + log logn + 2
n2 2 < C(G) < n2

Proof : 1) Put k = [log «]. By the lemma 8 when n -> oo for almost of all
graphs G of « nodes we have

n t

As has been shown in the proof of the theorem 3 we have

_C£ A _k^\ iiofl»-ioBiogn-| A log3 n

2 e * V

On the other hand we have

k / f \ k k 1 1

fcj > 22 - 2 > k2 :

Therefore, as n -• oo for almost of ail graphs C of n nodes we have

C(G) > „ l " » -

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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2),By the lemma 3 we have

C,(») = C * . 2 C ^ .

Therefore, for any h < n :

Ch+1(n) = h(n - h)

Ch(n) 2»(h + 1)

If 3 < h ^ log n — 1 we have

Ö+i(") > h 2 ( n - l o g n
Ch(n) " h + 1 n

If log « ^ h < n we have

Ö+iM < ft (w - log n)
Ch{n) ^ h + 1 n

By putting k = [log «] we have for any h (3 ^ h ^ «) :

Cfc(»)<Ct(»)<C!S.2^.M < > - " . * >

1 — log n + log log n + 1

logn

Let us dénote C(n) the mean value of the number of minimal cycles C(G)
taken for all graphs G of n nodes. Then we have :

(n)=^f C{GÙ= t Ch(n)
2 n i = l h=l

logn
— logn + loglogn+2

By virtue of the lemma 2 we deduce that the fraction of graphs G of « nodes
for which C(G) > C(n). log n is less than l/log n. Thus, when n -> oo for
almost of all graphs G of n nodes we have :

^>/^\ 7^/ \ i -logn + loglogn + 2

C(G) < C(n) Aogn < nz

Q.E.D.
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7. CONCLUSION

As has been proved above, the number of inside (outside) stable sets of a

graph of n nodes is of degree n^ °9n for almost of ail such graphs as « -• oo.
Thereby it follows that every algorithm listing ail inside (outside) stable sets

of a graph must work at least in n2l09"-time. The problem of deciding if a
given graph has an inside stable set of a given cardinality is shown to be
A^P-complete (see [2]). If one has to find ail inside stable sets of k — 1 nodes
before deciding whether the graph has an inside stable set of k nodes, then
every algorithm solving the mentionned above problem must work at least

iri n2lo9"-time, i. e., it cannot work in polynomial time. These fact leads us to
the following conjectures :

1 ) Each TVT-complete problem cannot be solvable in polynomial time by a
deterministic machine. Every algorithm solving such a problem requires at
least rfIog "-time for some positive constant a (where n is the length of the input
of the given problem).

2) Each TVP-complete problem can be solvable in «log6"-time by a determi-
nistic machine, at least for almost of all inputs of it, where b is a suitable
constant. Note that the function nlogb" is quite lower than the exponentional
function 2" as n -> oo.
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