Groupe D'ÉTUDE D'ALGÈBRE

Alfred H. Clifford
 The system of idempotents of a regular semigroup

Groupe d'étude d'algèbre, tome 1 (1975-1976), exp. no 8 , p. 1-14
http://www.numdam.org/item?id=GEA_1975-1976__1__A8_0
(Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.
L'accès aux archives de la collection « Groupe d'étude d'algèbre » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE SYSTEI OF IDEMPOTENTS OF A REGULAR SEMIGROUP
by Alfred H. CLIFFORD
K. S. S. NAliBOORIPAD [5], [6] has characterized the system E_{S} of idempotents of idempotents of a regular semigroup S as a "biordered set". His main purpose in doing this was to generalize to regular semigroups W. D. Munn's fundamental representation of inverse semigroups [4]. However, we shall not be concerned with this aspect of the theory in the present account.

We may also regard E_{S} as a partial groupoid, with the product ef (e,f $\in E_{S}$) undefined if ef $\& \mathrm{E}_{\mathrm{S}}$. Such a partial groupoid is called a "regular partial band" by G. BAIRD [1], who proposed the interesting problem of characterizing a regular partial band axiomatically. The author [2], [3] developed the matter further, and the present talk is an exposition of this work.

In § 1, a (regular) warp is defined as a partial groupoid satisfying certain axioms and it is shown that E_{S} is a regular warp for any rogular semigroup is . Further needed properties of warps are given in § 2. Nambooripad's axioms for a biordered set are stated in § 3, and it is shown that every regular warp determines a biordered set. In § 4 a method is given for constructing all regular warps determining a given biordered set. In $\S 5$ a method is given for completing a regular warp to a regular partial band. § 6 deals with fundamental regular warps. In the final § 7, an example is given of a regular warp which is not a regular partial band.

Let S be a regular semigroup and $\bar{S}=S / \mu$, where μ is the greatest idempo-tent-separating congruence on S. Then, E_{S} and $E_{\bar{S}}$ are isomorphic as biordered sets, but not in general as partial groupoids. Thus, the partial groupoid approach gives a finer classification of regular semigroups than does the biordered set approach. In spite of $\S 7$, the method of $\S 4$ shows that the notion of regular warp is a quite natural one, and the results of $\S 3$ and 5 show that it is an adequate approximation to that of regular partiel band.

1. Axioms for a warp : the warp of a semigroup.

By a warp, we mean a partial groupoid E satisfying axioms $\left(W_{1}\right)-\left(W_{5}\right)$ below. If $e, f \in E$, then " \exists ef " means that the product ef of e and f is defined in E. Except when emphasis is desired, a statement like " l ef and $\mathrm{ef}=\mathrm{g}$ " will be abbreviated to "ef=g" .
$\left(W_{1}\right)$ Let e, f, g be elements of E such that \exists ef and $\exists \mathrm{fg}$. If either (ef)g on e(fg) is defined, then so is the other, and they are equal. (We then write efg for thcir common value in E).
$\left(W_{2}\right)$ ee $=e$ for all e in E.
$\left(W_{3}\right)$ If ef $=e$ or $e f=f$, then 日 fe.
$\left(W_{4}\right)$ If either
(i) ef $=f, \quad e g=g$, and \exists (fe) (ge), or
(ii) $f e=f$, ge $=g$, and $\exists(e f)(e g)$,
then, $\exists f g$.
Definition 1.1 - For any pair of elementis e, f of E, we define the sandwich set $S(e, f)$ of e and f to be the set of all g in E such that
(i) ge $=g=f g$, and
(ii) $h e=h=f h(h \in E) \Rightarrow(e g)(e h)=e h \quad$ and $\quad(h f)(g f)=h f$.
$\left(W_{5}\right)$ Let $g \in \&(e, f)$. If ef and $(e g)(g f)$ are both defined, then they are equal.

A warp E is called regular, if it satisfies $\left(R_{1}\right)$ and $\left(R_{2}\right)$. The empty set is denoted by
$\left(R_{1}\right)$ For every pair of elements e, f of $E, s(e, f) \neq \square$.
$\left(R_{2}\right)$ If $g \in S(e, f)$ and $B(e g)(g f)$, then B ef.
If a and b are elements of a semigroup, we write $a \perp b$, if a and b are inverse to each other, that is, $a b a=a$ and $b a b=b$. If S is a semigroup, E_{S} denotes the set of idempotents of S. E_{S} becomes a partial groupoid, when we define the product of two elements e and f of E to be ef, if ef $\in E_{S}$, and otherwise undefined.

THEOREN 1.1. - Let S be a semigroup such that $\mathrm{E}_{\mathrm{S}} \neq \square$.
(i) E_{S} is a warp.
(ii) For e, f in E_{S}, define

$$
\begin{aligned}
& S_{1}(e, f)=\left\{g \in E_{S}: g e=g=f g \text { and } e g f=e f\right\} \\
& S_{2}(e, f)=\left\{g \in E_{S}: g e=g=f g \text { and } g \perp e f\right\}
\end{aligned}
$$

Then $S_{1}(e, f)=S_{2}(e, f) \subseteq S^{(e, f)}$.
(iii) If $e, f \in E_{S}$, and ef is a regular element of S, then $\mathscr{S}(e, f)=S_{1}(e, f) \neq \square$, and $\left(R_{2}\right)$ holds the pair (e, f).
(iv) If S is regular, then E_{S} is a regular warp.

Proof. - (i) Axioms $\left(W_{1}\right)$ and $\left(W_{2}\right)$ are immediate. As for $\left(W_{3}\right)$, if ef $=e$ then fefe $=f e e=f e$, so fe fe similarly if $e f=f$. To show that E_{S} satisfies $\left(W_{4}\right)$, assume $\mathrm{ef}=\mathrm{f}, \quad \mathrm{eg}=\mathrm{g}$, and B (fe)(ge). Then

$$
f g e=f e g e=(f e g e)(f e g e)=\text { fgfge } .
$$

Since geg $=\mathrm{gg}=\mathrm{g}$,

$$
f g=f g e g=f g f g e g=f g f g
$$

Thus, $\quad \mathrm{fg}$. The proof if $f e=f$, $g e=g$, and \exists (ef) (eg), is dual. We defer the proof of (W_{5}) until we have proved (ii) and (iii).
(ii) Let e, f, g be elements of E such that ge $=g=f g$. Then

$$
\begin{aligned}
& g(e f) g=(g e)(f g)=g g=g, \\
& (e f) g(e f)=e(f g e) f=e g f .
\end{aligned}
$$

Hence $g \perp$ ef if, and only if, egf $=$ ef , showing that $s_{1}(e, f)=\mathscr{S}_{2}(e, f)$. Let $g \in S_{1}(e, f)$, and let h be an element of E_{S} satisfying $h e=h=f h$. T hen

$$
\begin{aligned}
& (\mathrm{eg})(\mathrm{eh})=\mathrm{egh}=\mathrm{egfh}=\mathrm{efh}=\mathrm{eh}, \\
& (\mathrm{hf})(\mathrm{gf})=\mathrm{hgf}=\mathrm{hegf}=\mathrm{hef}=\mathrm{hf} .
\end{aligned}
$$

Hence $g \in \mathcal{S}(e, f)$, so $\mathcal{S}_{1}(e, f) \subseteq \mathbb{S}(e, f)$.
(iii) Since ef is regular, it has an inverse a in S : aefa $=a$ and efaef $=$ ef . Let $h=f a e$. Then $h h=f($ aefa $) e=f a e=h$, so $h \in E_{S}$. Clearly he $=h=\mathrm{fh}$. Since ehf $=$ efaef $=$ ef, it follows that $h \in \mathscr{E}_{1}(e, f)$, so $S_{1}(\mathrm{e}, \mathrm{f}) \neq \square$.
To show that $S(e, f) \subseteq S_{1}(e, f)$, let $g \in S(e, f)$. From. he $=h=f h$ and $g \in S(e, f)$, and the definition of $S(e, f)$, we conclude that (eg) (eh) $=$ eh. Using this and ehf $=$ ef, we have

$$
\text { egf }=\text { eggef }=\text { egehf }=\text { ef }
$$

Hence $g \in \mathscr{S}_{1}(e, f)$.
To show that $\left(R_{2}\right)$ holds for the pair (e,f), let $g \in \mathscr{S}(e, f)$, and assume B (eg) (gf), i.e., egf $\in E_{S}$. Since $\mathcal{S}(e, f)=\mathscr{s}_{1}(e, f)$, egf $=$ ef, and hence ef $\in E_{S}$.

Having concluded the proof of (ii) and (iii), we return to the proof of (W_{5}). Let $e, f \in E_{S}$ and $g \in S(e, f)$. Assume that \exists ef and \exists (eg) (gf). But then ef $\in \mathbb{E}_{S}$, and, in particular, ef is regular. By (iii), $g \in S_{1}(e, f)$, and so $(\mathrm{eg})(\mathrm{gf})=$ egf $=$ ef. This concludes the proof of (i), and (iv) is immediate from (iii).

2. Some properties of warps.

Throughout this section, E denotes a warp, and the letters e, f,g,h,i,j denote arbitrary elements of E. Since the axioms for a warp are all left-right self-dual, the dual of any true proposition is also true, and in general will not be stated. The dual of proposition n will be called proposition n^{*}. Except in corollary 2.8 , we use only axioms $\left(W_{1}\right)-\left(W_{4}\right)$.

PROPOSIIION 2.1. - ef $=f$ and $B f g \Longrightarrow e(f g)=f g$.
Proof. - The hypotheses imply that ef , $f_{\mathscr{E}}$, and (ef)g are all defined. By $\left(W_{1}\right), \quad e(f g)=(e f) g=f g$.

We define the relations ω^{r} and $\omega^{\mathcal{L}}$ on E as follows

$$
e \omega^{r} f \Longleftrightarrow f e=e,
$$

$$
\begin{equation*}
\mathrm{e} \omega^{2} \mathrm{f} \Longleftrightarrow \mathrm{ef}=\mathrm{e} . \tag{2.1}
\end{equation*}
$$

Furthermore, we define $\omega=\omega^{r} \cap \omega^{\ell}, R=\omega^{r} \cap\left(\omega^{r}\right)^{-1}$, and $\mathfrak{L}=\omega^{\ell} \cap\left(\omega^{\ell}\right)^{-1}$. We let $\omega^{r}(e)=\left\{f \in \mathbb{E}: f \omega^{r} e\right\}$, and similarly for $\omega^{\ell}(e)$ and $\omega(e)$.

By proposition 2.1, ω^{r} and ω^{ℓ} are quasi-orders on E (reflexive, transitive relations), and thus R and \mathcal{L} are equivalence relations. It is immediate from (2.1) that

$$
\begin{equation*}
e \omega^{r} f \text { and } f \omega^{\ell} e \Longrightarrow e=f . \tag{2.2}
\end{equation*}
$$

In particular, ω is anti--symmetric, hence a partial order on E. Then $E=E_{S}$, R and \mathfrak{L} are just Green's relations restricted to E_{S}, and ω is the usual partial order \leqslant on E_{S}. Denoting by R_{e} the R-class containing e, and defining $R_{e} \leqslant R_{f} \Longleftrightarrow e w^{r} f$, then \leqslant is the usual partial order on R-classes.

The sandwich set $S(e, f)$ of e and f is the set of all g in $\omega^{\ell}(e) \cap \omega^{r}(f)$ such that eh ω^{r} eg and hf ω^{2} gf for every h in $\omega^{L}(e) \cap \omega^{r}(f)$. The following is an immediate consequence.

PROPOSITION 2.2. - If $g \in s(e, f)$, then

$$
\mathscr{S}(e, f)=\left\{h \in \omega^{2}(e) \cap \omega^{r}(f): \text { eh } \mathbb{R} \text { eg and } h f \mathfrak{E} g f\right\} .
$$

A subset F of a partial groupoid E is called a partial subgroupoid of E if $e, f \in F$ and \exists ef imply ef $\in F$. By a subwarp of a warp E, we mean a partial subgroupoid F of E such that if $e, f \in F$ then $\mathcal{S}_{F}(e, f) \subseteq s(e, f)$, where $\mathcal{S}_{\mathrm{F}}(\mathrm{e}, \mathrm{f})$ denotes the sandwich set of e and f relative to F . Then (W_{5}) holds for F, and since $\left(W_{1}\right)-\left(W_{4}\right)$ hold for any partial subgroupoid of a warp, it follows that a subwerp of a warp is also a warp.

PROPOSITION 2.3. - For any e in $E, \omega(e)$ is a subwarp of E.
Proof. - If $f, g \in \omega(e)$ and Bg, then $e(f g)=f g=(f g) e$ by proposition 2.1, so $\mathrm{fg} \in w(e)$. Since

$$
\omega^{\ell}(f) \cap \omega^{r}(f) \subseteq \omega^{\ell}(i) \cap \omega^{r}(i)=\omega(i),
$$

it follows that

$$
\mathscr{S}_{\omega(e)}(f, g)=S(f, g)
$$

PROPOSITION 2.4. - e $\omega^{r} f \Longrightarrow$ ef $R e$ and ef ωf.

Proof. - By (2.1), fe $=\mathrm{e}$; and by $\left(\mathrm{W}_{3}\right)$, B ef.Also, B e $(\mathrm{fe}) \cdot \mathrm{By}\left(\mathrm{W}_{1}\right)$, $(e f) e=e(f e)=e e=e$. Since $e(e f)=e f$ by proposition 2.1, we conclude that ef $\mathbb{R} e$. That ef ωf follows from proposition 2.1.

PROPOSITIOIN 2.5. - If e $\omega^{r} f$ and ${ }^{i}$ ge, gf, then, ge ω^{r} gf. Hence e $R f$ and \exists ge , gf imply ge R gf .

Proof. - By (2.1), fe $=\mathrm{e}$. By $\left(W_{1}\right),(\mathrm{gf}) \mathrm{e}=\mathrm{g}(\mathrm{fe})=\mathrm{ge}$. By proposition 2.1, $(g f)(g e)=(g f)[(g f) e]=(g f) e=g e$, that is ge $\omega^{r} g f$.

PROPOSITION 2.6. - Let $f, g \in \omega^{r}(e)$. Then $\exists f g$ if, and only if, \exists (fe)(ge), and if they both exist, (fe)(ge) $=(f g) \mathrm{e}$.

Proof. - Assume first that $\exists \mathrm{fg}$. By $\left(\mathrm{N}_{1}\right), \mathrm{f}_{\mathrm{g}}=\mathrm{f}(\mathrm{eg})=(\mathrm{fe}) \mathrm{g}$. By proposition 2.1, e(fg) $=f g$, so $\exists(f g) e$ by $\left(W_{3}\right) . B y\left(W_{1}\right),(f g) e=[(f e) g] e=(f e)(g e)$.

Conversely, if \exists (fe) (ge) then $\exists \mathrm{fg}$ by $\left(\mathrm{F}_{4}\right)$.
By an E-square we mean an array $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ of elements of E such that $e R f$, $g R h, \in \mathcal{L}$, and $f \mathscr{L}$.

PROPOSITION 2.7. - Let $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ be an E-square. If any one of the statements $e h=f, f g=e, h e=g, g f=h$ is true, then they are all true, and the
E-square is a rectangular band.
Proof. - Of course, all horizontal and vertical products (ef $=f$, ge $=g$, etc.) hold by definition of R and \mathcal{E}. By cyclical symmetry, it suffices to show that $e h=f$ imples $f g=e$. But $e(h g)=e g=e$ and $e h=f$ imply, by $\left(g_{1}\right)$, that $f_{g}=(e h) g=e(h g)=e$.

PROPOSTTION 2.8. - If $g \in \omega^{\hat{H}}(e) \cap \omega^{r}(f)$ and \exists ef , then ($\left.\begin{array}{ll}g & g f \\ e g & \text { egf }\end{array}\right)$ is a rectangular band.

Proof. - \exists eg and Egf by $\left(W_{3}\right)$, and $g f R g \mathfrak{L}$ eg by proposition 2.1 and its dual. From (ge)f $=$ gf and \exists ef, we have $g(e f)=(g e) f=g f$. From $g \omega^{2} e$, B gf , ef and proposition (2.5) we have gf ω^{2} ef, and so B (ef) (gf).

Since $f(g f)=g f,(e f)(g f)=e[f(g f)]=e(g f)$. Since \exists eg, we may write this egf. From $g R$ gf and \quad eg, $e(g f)$, we have from proposition 2.5 that eg R egf ; dually, gh \mathcal{L} egf, so ($\left.\begin{array}{ll}g & g f \\ \text { eg } & \text { egf }\end{array}\right)$ is an E-square. $\operatorname{By}\left(W_{1}\right)$,

$$
g(e g f)=(g e)(g f)=g(g f)=g f,
$$

and the square is a rectangular band, by proposition 2.7.
COROLLARY 2.9. - A regular warp can be described as a partial groupoid satisfying axioms $\left(W_{1}\right)-\left(W_{4}\right),\left(R_{1}\right)$ and ($\left.R_{2}^{\prime}\right)$.
$\left(R_{2}^{1}\right)$. If $g \in S(e, f)$, and one of ef and $(e g)(g f)$ exists, so does the other, and they are equal.

Proof. - Clearly $\left(R_{2}^{1}\right)$ implies $\left(W_{5}\right)$ and $\left(R_{2}\right)$. Conversely, $\left(R_{2}^{1}\right)$ is a consequence of $\left(W_{5}\right),\left(R_{2}\right)$, and proposition 2.7 .

For each f in E we define $\tau^{r}(f): \omega^{r}(f) \rightarrow E$ and $\tau^{\ell}(f): \omega^{2}(f) \rightarrow E$ by (2.3) $\operatorname{Xr}^{r}(f)=x f$ for all $x \in \omega^{r}(f), \quad X T^{\ell}(f)=$ fx for all $x \in \omega^{\ell}(f)$. By proposition 2.1, $\tau^{r}(f)\left[\tau^{\mu}(f)\right]$ is a projection of $\omega^{r}(f)\left[\omega^{\ell}(f)\right]$ onto $\omega(f)$. If $e R f[e \mathbb{R} f]$, we define $T^{r}(e, f)\left[T^{\&}(e, f)\right]$ to be the restriction of $\tau^{r}(f)\left[T^{\ell}(f)\right]$ to $\omega(e)$. Thus

$$
\left\{\begin{array}{l}
x T^{r}(e, f)=x f \text { for all } x \in w(e), \text { where } e \mathbb{R} f \tag{2.4}\\
x \tau^{2}(e, f)=f x \text { for all } x \in w(e), \text { where } e \mathscr{L} f
\end{array}\right.
$$

If E and E^{\prime} are warps, a bijection $\theta: E \rightarrow E^{\prime}$ is called an isomorphism if, for all e, f in E, \exists ef if, and only if, \exists ($e \varphi)(f \varphi)$, in which case $(e \varphi)(f \varphi)=(e f) \varphi$.

PROPOSITION 2.10.
(i) If $e R f$ and $f R g$, then $T^{r}(e, f) T^{r}(f, g)=\tau^{r}(e, g)$,
(ii) $\tau^{r}(e, e)=\varepsilon_{e}$, the identity transformation of: $\omega(e)$,
(iii) $\tau^{r}(e, f)$ is an isomorphism of $\omega(e)$ onto $\omega(f)$, with inverse $T^{r}(f, e)$. Proof.
(i) For every x in $w(e),(x f) g=x(f g)=x g$, by $\left(W_{1}\right)$,
(ii) Evident,
(iii) That $\tau^{r}(e, f)$ is a bijection of $\omega(e)$ onto $\omega(f)$, with inverse $\tau^{r}(f, e)$, is immediate from (i) and (ii). Let $x, y \in \omega(e)$ e e $\omega^{r} f$ implies $x, y \in w^{r}(f)$. By proposition 2.6, $\exists \mathrm{xy}$ if, and only if, $\exists(x f)(y f)$, in which case they are equal.

We call an E-square $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \tau$-commutative, if the diagram
commutes. This notion is easily seen to be independent of which corner we begin in. As stated, it is equivalent to requiring that

$$
\begin{equation*}
h(x f)=(g x) h, \text { for all } x \in \omega(e) \tag{2.6}
\end{equation*}
$$

PROPOSITION 2.11. - If an E-square is a rectangular band, it is T-commutative. Proof. - Assume $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ is a rectangular band, and let $x \omega w(e)$. Then $x \omega^{r} f$, and $x f \in \omega(f)$ by proposition 2.4. Likewise $x f \omega^{2} f \omega^{4} h$, and $h(x f) \in \omega(h)$. From $f(x f)=x f$ we have

$$
h(x f)=(g f)(x f)=g[f(x f)]=g(x f)=(g x) f=(g x)(e h)=[(g x) e] h=(g x) h .
$$

3. The biordered set determined by a regular warp.

We begin with Nambooripad's definition [5] of a biordered set, making, however, slight changes in notation.

Let E be a set, and let ω^{r} and ω^{ℓ} be quasi-orders on E. Define

$$
\begin{equation*}
R=\omega^{r} \cap\left(\omega^{r}\right)^{-1}, E=\omega^{b} \cap\left(\omega^{b}\right)^{-1}, \quad \omega=\omega^{r} \cap \omega^{\ell} . \tag{3.1}
\end{equation*}
$$

For each e on E, define $\omega^{r}(e)=\left\{f \in E: f \omega^{r} e\right\}$, and similarly for ω^{2} and ω. Por each e in E, let $\tau^{r}(e)$ and $\tau^{2}(e)$ be partial transformations of E, and let $\tau=\left\{T^{r}(e): e \in E\right\} \quad\left\{\tau^{2}(e): e \in E\right\}$. The $\operatorname{system}\left(E, \omega^{r}, \omega^{2}, T\right)$ is called a biordered set, if axioms $\left(B_{1}\right)-\left(B_{5}\right)$ below are satisfied, together with their duals. By the dual of a statement P involving ($E, \omega^{r}, \omega^{2}, \tau$) we mean the statement P^{*} obtained from P by interchanging ω^{r} and ω^{d}, and $\tau^{r}(e)$ and $\tau^{\ell}(e)$, for each e in E.
$\left(B_{1}\right)$ For all e, f in $E, e w^{r} f$ and $f \omega^{\ell} e \Longrightarrow e=f$.
$\left(B_{2}\right)$ For all e in $E, \tau^{r}(e)$ is an idempotent mapping (= projection) of $\omega^{r}(e)$ onto $\omega(e)$, such that
(a)

$$
f, g \in \tau^{r}(e) \text { and } f \omega^{2} g \Longrightarrow f \tau^{r}(e) \omega^{2} g \tau^{r}(e)
$$

(b)

$$
f \in \tau^{r}(e) \Longrightarrow f \tau^{r}(e) R f .
$$

Before stating the remaining axioms, we define the basic partial binary operation on E as follows. For e, f in E, the product $e f$ is defined if, and only if, e and f are related by ω^{r} or ω^{b}, and then

$$
e f=\left\{\begin{array}{cc}
e \tau^{r}(f) & \text { if } e w^{r} f, \tag{3.2}\\
e & \text { if } e w^{2} f, \\
f & \text { if } f w^{r} e, \\
f \tau^{2}(e) & \text { if } f w^{2} e
\end{array}\right.
$$

We proceed to show that this definition is single-valued. From (B_{2}) we see that $\tau^{r}(e)$ induces the identity transformation on its image $\omega(e)$, so $f \tau^{r}(e)=f$ for all f in $\omega(e)$. In particular, $e \tau^{r}(e)=e$; and dually, $e \tau^{\ell}(e)=e$. Hence all four parts of (1.2) agree that $e e=e$.

Assume now that $e \neq f$, and that the pair (e,f) belongs to two or more of the relations $\omega^{r}, \omega^{k},\left(\omega^{r}\right)^{-1},\left(\omega^{\ell}\right)^{-1}, B y\left(B_{1}\right)$ and the assumption $e \neq f$, the conjunctions $\omega^{r} \cap\left(\omega^{\ell}\right)^{-1}$ and $\omega^{\ell} \cap\left(\omega^{r}\right)^{-1}$ are impossible. Hence exactly one of the following must hold : e $\omega \mathrm{f}, \mathrm{f} \omega \mathrm{e}, \mathrm{e} \mathcal{R} \mathrm{f}, \mathrm{e} \mathrm{E} f$. As remarked above, e ωf implies $e \tau^{r}(f)=e$, and the first two cases in (3.2) give the same value, namely ef =e . Dually, $f w e$ gives fe $=f$. Assume e $R f$, and let $g=e \tau^{r}(f)$. By $\left(B_{2}\right), g \in \omega(f)$ and also $g R e$. From $g R e$ and e Rf we have $g R f$. But, then $f \omega^{r} g$, and $g \omega^{2} f$, so $g=f$ by
$\left(B_{1}\right)$. Hence the first and third cases of (3.2) give the consistent result ef $=f$. Dually, for $e \mathscr{f}$, we find that the second and fourth cases of (1.2) give ef =e.

It is readily seen that the quasi-orders ω^{r} and ω^{ℓ}, and the partial transformations $\tau^{r}(e)$ and $\tau^{\lambda}(e)$ can be expressed in terms of the basic product (3.2) as follows :

$$
\begin{gather*}
e w^{r} f \Leftrightarrow f e=e, \\
e \omega^{\mathcal{L}} f \Leftrightarrow e f=e, \tag{3.3}\\
e \tau^{r}(f)=\text { ef for all e in } \omega^{r}(f), \\
e T^{\ell}(f)=f e \text { for all e in } \omega^{\ell}(f) . \tag{3.4}
\end{gather*}
$$

In stating the remaining axioms, basic products will be used instead of the τ-mappings, but the relations ω^{r} and w^{d} will be retained. Poreover, we shall repeat $\left(B_{2}\right)$, breaking it into its substatements $\left(B_{21}\right),\left(B_{22}\right),\left(B_{23}\right)$, and similarly for the other axioms. The letters e, f, g denote arbitrary elements E .

The sandwich set $\mathcal{S}(e, f)$ of a pair od elements e, f of E is defined to be the set of all g in $\omega^{\mathcal{L}}(\mathrm{e}) \cap \omega^{r}(f)$ such that $e h \omega^{r}$ eg and $h f \omega^{2}$ gf for all h in $\omega^{\ell}(e) \cap \omega^{r}(f)$.

$$
\begin{aligned}
& \left(B_{1}\right) \quad e \omega^{r} f \text { and } f \omega^{\ell} e \Rightarrow e=f \text {. } \\
& \left(B_{21}\right) \text { fe } \in \omega(e) \text { for all } f \text { in } \omega^{r}(e) \text {, and ge }=g \text { for all } g \text { in } \omega(e) \text {. } \\
& \left(B_{22}\right) f, g \in \omega^{r}(e) \text { and } f \omega^{\mathcal{L}} g \Rightarrow f e \omega^{\ell} g e . \\
& \left(B_{23}\right) \quad f \in \omega^{r}(e) \Rightarrow f e R f . \\
& \left(B_{31}\right) g \omega^{r} f \omega^{r} e \Rightarrow g f=(g e) f . \\
& \left(B_{32}\right) f, g \in \omega^{r}(e) \text { and } f \omega^{2} g \Longrightarrow(g e)(f e)=(g f) e . \\
& \left(B_{41}\right) s(e, f) \neq \square \text { (the empty set), for all } e, f \text { in } E \text {. } \\
& \left(B_{42}\right) \quad e, f \in \omega^{r}(g) \Longrightarrow S(e, f) g=S(e g, f g) .
\end{aligned}
$$

We omit the final axiom $\left(B_{5}\right)$ since NAMBOORIPAD has subsequently found that it is a consequence of the other axioms.
THEOREN 3.1. - Let E be a regular warp. Define ω^{r} and ω^{ℓ} by (2.1), and $\tau^{r}(f)$ and $\tau^{\ell}(f)$, for each f in E, by (2.3). Then ($\left.E, \omega^{r}, \omega^{\ell}, \tau\right)$ is a biordered set.

Proof (with one omission). - $\left(B_{1}\right)$ is immediate from (2.1). ($\left.B_{21}\right),\left(B_{22}\right)$, and $\left(B_{23}\right)$ follow from propositions 2.1, (2.5) ${ }^{*}$, and 2.4, respectively. (B_{31}) follows from axioms $\left(W_{1}\right)$ and $\left(W_{3}\right)$. For $g \omega^{r} f \omega^{r} e$ implies $e f=f$ and $e g=g$, so g ge and $g f=g(e f)=(g e) f^{3} \cdot\left(B_{32}\right)$ follows from proposition 2.6. ($\left.B_{41}\right)$ is the same as $\left(R_{1}\right)$. we omit the rather long proof of $\left(B_{42}\right)$, see ($[3]$ proposition 2.10).

We call $\left(\mathbb{E}, \omega^{r}, \omega^{2}, \tau\right)$ the biordered set determined by the regular warp E

4. Construction of all regular warps determining a given biordered set.

Mo,st of the important concepts introduced for warps in § 2 are really biordered set concepts : the quasi-orders ω^{r} and ω^{ℓ}, the partial translations $\tau^{r}(f)$ and $\tau^{\ell}(f)$, and the sandwich sets $\delta(e, f)$. The same holds for the restricted translations $\tau^{r}(e, f)$ and $\tau^{2}(e, f)$, both denoted by $\varepsilon(e, f)$ in [6], which play an important role in Nambooripad's construction. Proposition 2.10 and its dual hold for them ; the proof of part (i) is immediate from axiom (B_{31}). Consequently, the notion of a T-commutative E--square is also biordered set-theoretical.

We saw in § 3 that every regular warp determines a biordered set. To every biordered set, there corresponds at least one regular warp (as we shall see), but in general more than one. For example, consider a completely simple semigroup S. The biordered set E_{S} is simply a rectangular array, with $w^{r}=R$ and $\omega^{\mathcal{L}}=\dot{L}$, and the basic products are all the horizontal and vertical products. Every E_{S}-square is r-commutative. Regarding E_{S} as a regular warp, the number of further products which exist can vary between the two extrenes :
1° all of them, when, for example, S is a rectangular band,
2° none of them, when, for example, $S=M(G ; I, \Lambda ; X)$, where $X=\left(x_{\lambda_{\mathbf{i}}}\right)$, and G is the free group on the symbols $x_{\lambda i}(\Lambda \in \Lambda, i \in I)$.

In the present section, we begin with a biordered set E, and give a method for describing all possible (regular) warps $\mathbb{E}($.$) which determine E$. Clearly the partial binary operation (.) must include the basic products (3.2).
 e, $f \in \omega^{\mathcal{L}}(\mathrm{g})$. Column-singular is defined dually, and singular means either row- or column-singular. An E-square ($\left.\begin{array}{cc}e & f \\ e & f\end{array}\right)$ is called row-degenerate, $\left(\begin{array}{ll}e & e \\ f & f\end{array}\right)$ is columndegenerate, and degencrate means either kind.

A set \mathcal{Q} of τ-commutative E-square is called effective if it has the following three properties.
$\left(Q_{1}\left\{\begin{array}{ll}\text { If }\end{array}\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in \mathcal{Q}\right.\right.$ and $\left(\begin{array}{ll}g & h \\ i & j\end{array}\right) \in \mathcal{Q}$, then $\left(\begin{array}{ll}e & f \\ i & j\end{array}\right) \in \mathcal{Q}$.
$\left(Q_{2}\right)$ If $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in \mathcal{Q}$ and $x \in \omega(e)$, then $\left(\begin{array}{ll}x & x f \\ g x & x\end{array}\right) \in \mathcal{Q}$, where $\bar{x}=h(x f)=(g x) h$. (Note (2.6))
$\left(a_{3}\right) a$ contains all singular and all degenerate E-squares.
The partial binary operation (.) on a biordered set E corresponding to an effective set α of τ-commutative E-squares is defined as follows. Let $e, f \in E$. If, for some g in $S(e, f)$ and some x in $E,\left(\begin{array}{cc}g & g f \\ e g & x\end{array}\right) \in \mathcal{Q}$, then we define e. $f=x$. The uniqueness of $e . f$ (if it exists) follows from proposition 2.2.

THEOREM 4.1. - Let E be a biordered set, and let \mathcal{A} be an effective set of

T-commutative E-squares. Under the partial binary operation (.) corresponding to $\mathcal{A}, \mathbb{A}($.$) becomes a regular warp determining the biordered set E$, and \mathcal{A} consists of those E-squares which are 2×2 rectangular bands in $E($.$) .$

Conversely, if $E($.$) is any regualr warp determining E$, thon'the set \mathcal{A} of all E-squares which are 2×2 rectangular bands in $E($.$) is an effective set, and (0)$ coincides with the partial binary operation (.) in E corresponding to \mathfrak{A}.

Proof of converse. - Let $E(0)$ be a regular warp determining E, and write $a b$ for $a \circ b$. Let \mathcal{Q} be the set of all E-squares which are 2×2 rectangular bands.

To show $\left(Q_{1}\right)$, let $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in \mathcal{Q}$ and $\left(\begin{array}{ll}g & h \\ i & j\end{array}\right) \in \mathcal{A}$.
Then, by $\left(W_{1}\right)$, ej $=e(i h)=(e i) h=e h=f$, and $\left(\begin{array}{ll}e & f \\ i & j\end{array}\right) \in \mathcal{N}$ by proposition 2.7. The second part of $\left(Q_{1}\right)$ is proved dually.

To show $\left(Q_{2}\right)$, let $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in \mathcal{A}$ and $x \in \omega(e)$. Then $x \in \omega^{\ell}(g) \cap \omega^{r}(f)$. By proposition 2.8, $\left(\begin{array}{cc}x & x f \\ g x & g x f\end{array}\right) \in \mathcal{Q}$. From $(g x) e=g x$, and $e h=f$, we have

$$
(g x) f=(g x)(e h x)=[(g x) e] h=(g x) h=\bar{x},
$$

so $\left(\begin{array}{cc}x & x f \\ g x & \bar{x}\end{array}\right) \in \mathcal{Q}$.
To show (Q), let e Rf and e, $f \in \omega^{2}(g)$. Then $e(g f)=(e g) f=e f=f$, so $\left(\begin{array}{cl}e & f \\ g e & g f\end{array}\right) \in \mathcal{A}$. Dually for column-singular E-squares. Trivially, \mathcal{A} contains all degenerate E-squares.

Let $e, f \in E$, and let $g \in \mathcal{E}(e, f)$. If B ef, then, by proposition 2.8 and $\left(R_{2}^{\prime}\right)$ in corollary 2.9, ($\left.\begin{array}{cc}g & g f \\ e g & e f\end{array}\right) \in \mathcal{Q}$, and hence $e f=e$. f. Conversely, if He.f, then ($\left.\begin{array}{cc}g & g f \\ e g & e\end{array}\right)$ for some $g \in(e, f)$, by definition of (.) . Then e. $f=(e g)^{e g}(g f)=e f$, by $\left(R_{2}^{\prime}\right)$.

For a proof of the direct part of the theorem, see ([3]p. 17-26).

5. The universal regular IG-semigroup on a regular warp.

By an IG-semigroup, we mean a semigroup which is generated by its idempotents.
Let E be a regular warp. Let \mathscr{F}_{E} be the free semigroup on the set E. If $a, b \in \mathscr{F}_{E}$, write $a \sim b$, if we can pass from a to b by a finite sequence of elementary transitions of the following two kinds.
I. Replace two adjacent terms e, f in a word by the single term ef, if it exists, or the reverse.
II. Insert an element of $s(e, f)$ between two adjacent terms e, f in a word, or the reverse.

Then \sim is a congruence on \mathscr{F}_{E}, and we define $B(E)=\mathscr{F}_{E} / \sim$. It can be shown that the natural mapping of E into $B(E)$ is injective, and we shall regard E as
a subset of $B(E)$.
If E and E^{\prime} are biordered sets, a bijection $\theta: E \rightarrow E^{1}$ is called an isomorphism if it preserves ω^{r}, ω^{2}, and T (in the obvious sense) in both directions. In terms of basic products, this is equivalent to, for e, f in E, ef exists if and only if $(e \theta)(f \theta)$ exists, and then $(e \theta)(f \theta)=(e f) \theta$. If E and E^{1} are warps, a mapping $\theta: E \rightarrow E^{\prime}$ is called a homomorphism if the existence of ef in E implies that of $(e \theta)(f \theta)$ in E^{\prime}, and then $(e \theta)(f \theta)=(e f) \theta$.

THEORENi 5.1.
$10 B(E)$ is a regular IG-semigroup with $E_{B(E)}=E$ as sets, and product in $E_{B(E)}$ extends that in E.
2° If \mathfrak{s} is any regular semigroup, and θ is a bijective homomorphism and biorder isomorphism of E onto E_{S}, then there is a unique semigroup homomorphism $\tilde{\theta}: B(E) \rightarrow S$ extending θ.
$3^{\circ} \quad E_{B}(E) \frac{i s \text { the smallest partial regular band on the set }}{} E$ extending the partial binary operation on the warp E.

We omit the proof, byt remark that 3° is immediate from 2°, taking θ to be the inclusion of E in some regular semigroup S, identifying E with E_{S}. If e, f, g are elements of E such that $e f=g$ in $B(E)$, then

$$
e f=(e \tilde{\theta})(f \tilde{\theta})=(e f) \tilde{\theta}=g \tilde{\theta}=g \text { in } S
$$

so that ef $=g$ in E_{S}. By theorem 5.1, we have a method for extending the partial product in a regular warp E in a minimal fashion to make it a partial regular band (namely, calculate $E_{B(E)}$).

An alternative construction of $B(E)$ has been given by NAFIBOORTPAD in a paper not yet published.

6. Fundamental regular warp.

A regular semigroup S is called fundamental if the identity is the only congruence on S contained in Green's relation H. A regular warp E is called fundamental if the converse of proposition 2.11 holds : every τ-commutative E-square is a rectangular band. It can be shown that a partial groupoid E is isomorphic with the warp E_{S} of some fundamental regular semigroup S if, and only if, it is a fundamental regular warp ([2] theorem 6.7).

If S is a regular semigroup, ρ a congruence on S contained in \mathcal{H}, and $\bar{S}=S / \rho$, then the mapping $e \longmapsto e \rho$ is a biorder isomorphism of the biordered set E_{S} onto the biordered set $E_{\bar{S}}$. It is also a bijective homomorphism of the warp E_{S} onto the warp $E_{\bar{S}}$. But it need not be an isomorphism. It may happen that $e, f \in E_{S}$, ef $\notin \mathrm{E}_{\mathrm{S}}$, but $(\mathrm{e} \mathrm{\rho})(f \rho) \in \mathrm{E}_{\bar{S}}$. For example, let S be completely simple, and take $\rho=H$ 。

Let E be a biordered set, and let \mathscr{F} be the set of all T-commutative E-squares (§4). It is easy to show that g is effective. (Q_{1}) follows from transitivity of R and \mathcal{L}, and a standard commutative diagram argument. For (Q_{2}), the τ-commutativity of $\left(\begin{array}{cc}x & \frac{x f}{\mathrm{~g} x}\end{array}\right)$ follows from the observation that if $x w e \mathbb{R} f$, then $\tau^{r}(x, x f)$ is the restriction of $\tau^{r}(e, f)$ to $\omega(x)$, and dually. As for $\left(Q_{3}\right)$, the $T-c o m m u-$ tativity of ($\left.\begin{array}{cc}e & f \\ g e & g f\end{array}\right)$, where e $R f$ and $e, f \in w^{2}(g)$, is equivalent to

$$
(g f)(x f)=((g e) x)(g f) \text { for all } x \in \omega(e) \text {. }
$$

By $\left(W_{1}\right)$, both sides are found to reduce to (gx)f.
Let (*) denote the binary operation on E corresponding to \mathscr{F}. From proposition 2.11 or theorem 4.1 , we see that $(*)$ is an extension of every warp operation on E that corresponds to the given biorder structure on E; that is, $E(*)$ is the greatest (regular) warp determining E. Of all the warps determining $E, E(*)$ is the only one that is fundamental. Since no enlargement of (\%) can take place on passing from $E(*)$ to $E_{B}(E)(\S 5)$, it follows that $E(*)$ is a regular partial band.

7. A regular warp which is not a regular partial band.

Let $E=\left\{e_{i \lambda} ; i \in I, \lambda \in \Lambda\right\}$ be an $I \times \Lambda$ rectangular band, with products defined by

$$
e_{i \lambda} \cdot e_{j \mu}=e_{i \mu}(a l l \quad i, j \text { in } I ; \lambda, \mu \text { in } \Lambda)
$$

The biordered set (E, $\left.\omega^{r}, \omega^{2}, \tau\right)$ determined by E can be described as follows

$$
\begin{aligned}
& e_{i \lambda} \omega^{r} e_{j \mu} \Longleftrightarrow i=j \quad\left(\text { so } \omega^{r}=R\right), \\
& e_{i \lambda} \omega^{\ell} e_{j \mu} \Longleftrightarrow \lambda=\mu \quad\left(\text { so } \omega^{n}=\Omega\right), \\
& e_{i \lambda} T^{r}\left(e_{i \mu}\right)=e_{i \mu}, \\
& e_{i \lambda} T^{2}\left(e_{j \lambda}\right)=e_{j \lambda}, \\
& \mathscr{E}\left(e_{i \lambda}, e_{j \mu}\right)=\left\{e_{j \lambda}\right\} .
\end{aligned}
$$

The set E itself is an $I \times \Lambda$ E-array. The basic products are either horizontal $\left(e_{i \lambda} e_{i \mu}=e_{i \mu}\right)$ or vertical $\left(e_{i \lambda} e_{j \lambda}=e_{i \lambda}\right)$. Endowed with the basic partial binary operation, E is a regular warp which is isomorphic with the warp of idempotents E_{S} of the Rees matrix semigroup $\mathrm{S}=\mathrm{hl}_{0}(\mathrm{G} ; \mathrm{I}, \Lambda ; P)$, where G is the free group on $X=\left\{x_{\lambda i} ; i \in I, \lambda \in \Lambda\right\}$, and $P=\left(P_{\lambda i}\right)$ is defined by $P_{\lambda_{i}}=x_{\lambda_{i}}$.

Every E-square is τ-commutative, and there are no non-degenerate singular E-squares. A set a of E-squares is effective if, and only if, it contains all degenerate E-squares and satisfies $\left(Q_{1}\right) .\left(Q_{2}\right)$ is trivially satisfied.

Now let, $I=\Lambda=\{1,2,3,4\}$. Let α consist of all degenerate E-squares and the following :

$$
\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right),\left(\begin{array}{ll}
e_{22} & e_{23} \\
e_{32} & e_{33}
\end{array}\right),\left(\begin{array}{ll}
e_{33} & e_{34} \\
e_{43} & e_{44}
\end{array}\right),\left(\begin{array}{ll}
e_{12} & e_{14} \\
e_{32} & e_{34}
\end{array}\right),\left(\begin{array}{ll}
e_{21} & e_{23} \\
e_{41} & e_{43}
\end{array}\right) .
$$

No two of ther have a row or a column in common, so $\left(Q_{1}\right)$ is vacuously satisfied, and so \mathcal{Q} is an effective set of (T-commutative) E-squares.

Let (*) be the partial binary operation on E corresponding to \mathcal{A}, and let $B(E)(\circ)$ be the universal regular IG-semigroup of $E(*)$. By proposition 2.8, each member of \mathcal{A} is a 2×2 rectangular band in $E(*)$. Calculating in $B(E)$, we have

$$
\begin{aligned}
& e_{14} \cdot e_{41}=e_{14} \cdot e_{34} \cdot e_{43}{ }^{\circ} e_{41} \text { since } e_{14} \mathfrak{L} e_{34}, e_{43} R e_{41} \text {, } \\
& =e_{14} \cdot e_{33}{ }^{\circ} e_{41} \quad \text { since } e_{34} * e_{43}=e_{33} \text {, } \\
& =e_{14} \cdot e_{32} \cdot e_{23} \cdot e_{41} \text { since } e_{32} * e_{23}=e_{33} \text {, } \\
& =e_{12}{ }^{\circ} e_{21} \quad \text { since } e_{14} * e_{32}=e_{12} \\
& \text { and } e_{23} * e_{41}=e_{21} \text {, } \\
& =e_{11} \quad \text { since } e_{12} * e_{21}=e_{11} \text {. }
\end{aligned}
$$

But $\left(\begin{array}{ll}e_{11} & e_{14} \\ e_{41} & e_{44}\end{array}\right) \& \alpha$, so $e_{14} * e_{41}$ is undefined. Hence the bije \bullet tion $i: E(*) \rightarrow E_{B}$ is not an isomorphism, and we conclude from theorem C, that $E(*)$ cannot be embedded in a regular semigroup ; i. e., $E(*)$ is not a regular partial band in the sense of Baird [1].

In the following diagram one sees the five non-degenerate members of α, and one sees aiso the mis̀sing square $\left(\begin{array}{ll}e_{11} & e_{14} \\ e_{41} & e_{44}\end{array}\right)$

REPERENCES

[1] BAIRD (G. R.). - On semigroups and uniform partial bands, Semigroup Forum, t. 4, 1972, p. 185-188.
[2] CLIFFORD (A. H.). - The fundamental representation of a regular semigroup, jemigroup Forum, t. 10, 1975, p. 84-92.
[3] CLIFFORD (A. H.). - The partial groupoid of idempotents of a regular semigroup, Semigroup Forum, t. 10, 1975, p. 262-268.
[4] MUNN (W. D.). - Fundamental inverse semigroups, Quert. J. Ilath., Oxford 2nd series, t. 21, 1970, p. 157-170.
[5] NAMBOORIPAD (K. S.S.). - Structure of regular semigroups, Dissertation, University of Kerata, Trivandrum (India), 1973.
[6] NAMBOORTPAD (K.S.S.). - Structure of regular seaigroups, I : Fundamental regular semigroups, Semigroup Forum, t. 9, 1975, p. 354-363.

Alfred H. CLIFFORD
Dept of Mathematics
Tulane University
NEW ORLEANS', La 70118
(Etats Unis)

