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THE SYSTEM OF IDEMPOTENTS OF A REGULAR SEMIGROUP

by Alfred H. CLIFFORD

troupe dl étude d’ALGEBRE
(Marie-Paule MALLIAVIN)
1re année, 1975/76, n° 8, 14 p. 27 mai 1976

K. S. S. NAMBOORIPAD [5], [6] has characterized the system E of idempotents of

idempotents of a regular semigroup S as a "biordered set". His main purpose in

doing this was to generalize to regular semigroups W. D. Munn’s fundamental repre-

sentation of inverse semigroups [4]. However, we shall not be concerned with this

aspect of the theory in the present account.

We may also regard E as a partial groupoid, with the product ef ( e , 
undefined if ef ~ E~ . Such a partial groupoid is called a "regular partial band"
by G. who proposed the interesting problem of characterizing a regular

partial band axiomatically. The author [2], [3J developed the matter further, and

the present talk is an exposition of this work.

In § 1, a (regular) warp is defined as a partial groupoid satisfying certain axioms
and it is shown that ES is a regular warp any rcgular semigroup S. Further

needed properties of warps are given in § 2. Nambooripad’s axioms for a biordered

set are stated in § 3, and it is shown that every regular warp determines a biorde-

red set. In § 4 a method ia given for constructing all regular warps determining a

given biordered set. In § 5 a method is given for completing a regular warp to a

regular partial band. § 6 deals with fundamental regular warps. a In the final § 7, an

example is given of a regular warp which is not a regular partial band.

Let S be a regular semigroup and S = where  is the greatest idempo-

tent-separating congruence on S. Then, ES and E-r are isomorphic as biordered

sets, y but not in general as partial groupoids. Thus, the partial groupoid approach

gives a finer classification of regular semigroups than does the biordered set

approach. In spite of § 7, the method of § 4 shows that the notion of regular warp
is a quite natural one, and the results of § 3 and 5 show that it is an adéquate

approximation to that of regular partial band,

1. Axioms for a warp ; the warp of a semigroup.

By a warp, we mean a partial groupoid E satisfying axioms (Wl)-(W5) below. If
e , f e E , y then " 3 ef " means that the product ef of e and f is defined in

E . Except when emphasis is de si r ed, a statement like " ~ ef and ef = g " will

be abbreviated to " ef = g " . .

Let e, y f , y g be éléments of E such that 3 ef and 3 fg . If either

(ef)g or e(fg) is defined, then so is the other, and they are equal. then

write cfg for thcir common value in E ).
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(W2) ee=e for ail e in E.

(W )j[j[ ef= e ef=f , then 

(W 4) If either

(i) ef=f , eg=g , and 3 (fe)(ge) , 

(ii) fe=f , ge=g , and R (ef)(eg) ,

then y Bfg .

Définition 1.1 - For any pair of éléments e, f of E , we define the sandwich

set §(e , f) of e and f tobe the set of ail g in E such that

(i) ge=g=fg , and

(ii) he=h ==fh(he E) = eh and (hf)(gf) =hf .

(W5) Let ge £(e f) . If ef and (eg)(gf) are both defined, then they are

equal.

A warp E is called regalar, if it satisfies and (R2). The empty set is
denoted by lù .

For every pair of éléments e , y f of E , y $(e, f) ~ [] .

(R2) If g e z(e , f) and 3 (eg)(gf) , then 3 ef .

If a and b are éléments of a semigroup, we write a J- b , if a and b are

inverse to each other, that is, aba = a. and bab = b . If S is a semigroup, Eg
dénotes the set of idempotents of S. E~ becomes a partial groupoid, when we de-

fine the product of two éléments e and f of E to be ef, if ef E and

otherwise undefined.

THEOREM 1.1. - Let S be a semigroup such that Eg f. 0 .

(i) Eg is a warp.

(ii) For e , f in define

Then f)= g2(e , f) s§(e , f) .

(iii) If e , f and ef is a regular element of S , then

f) - f) # D , and (R ) holds the pair (e, f) .

(iv) If S is regular, then Eg is a regular warp.

Proof. - (i) Axioms and (W2) are immédiate. As for (W3)’ if ef = e then

fefe = fee = fe , so 3 fe i similarly if ef = f . To show that Eg satisfies

(W4)’ assume ef = f, eg=g , and à (fe) (ge) . Then
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Since 

fg = fgeg = fgfgeg = fgfg .

Thus, 3 fg. The proof if fe = f , ge = g , and R (ef)(eg), is dual. We defer

the proof of (W5) until we have proved (ii) and (iii).
. (ii) Let e , f , g be éléments of E such that ge = g = fg. Then

g(ef)g = (ge)(fg) = gg = g ,

(ef)g(ef) = e(fge)f = egf .

Hence g i ef if, and oniy if, y egf = showing that $l(e, f) = g2(e , y f) .

Let g e zi(e , y f) , y and let h be an élément of ES satisfying he = h = fh .

Then

(eg)(eh) = egh = egfh = efh = eh ,

(hf)(gf) = hgf = hegf = hef = hf .

Hence g ~§(e , f) y so f)~ É3(~ , f) .

(iii) Since ef is regular, it has an inverse a in S : aefa = a and

efaef = ef . Let h = fae. Then hh = f(aefa)e = fae = h , so h E Clearly

he = h = fh . Since ehf = efaef = ef , it follows that h e $l(e , f) , so

f) ~D.

To show that $( e , $1 (e , f) , let g ~§(e , f) . From.he=h=fh and

g e £(e y f), and the définition of §(e , 9 f), we conclude that (eg)(eh) = eh .

Usingthisand ehf=ef y wehave

egf = egef = = ef .

Hence ge $l(e , y f) .

To show that (R2) holds for the pair (e, f) , let g ~ $(e , f) , and assume

3 (eg)(g=) , i. e., egfe Since g(e, f) = $1 (e , f) , egf=ef , andhence

ef e E .
Having coneluded the proof of (ii) and (iii), we return to the proof of (W5)’ Let

e , f ~ ES and g E $(e , f) . Assume that B ef and : (eg)(gf) . But then

ef ~ E , and, in particuiar, ef is regular. By (iii) , g E $l(e , f) , and so
(eg)(gf) = egf = ef. This concludes the proof of (i), and (iv) is immédiate from

(iii).

2. Some properties of %ipr s.
Throughout this section, E dénotes a warp, and the letters e , f , g , y h , i , j

dénote arbitrary éléments of E. Since the axioms for a warp are ail left-right

self-dual, the dual of any true proposition is also true, and in général will not be

stated. The dual of proposition n will be called proposition n* . Except in co-

rollary 2.8y we use oniy axioms (W1)-(W4)’
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PROPOSITION 2.1. - ef= f 

Proof. - The hypotheses imply that ef , fg , p and (ef)g are all defined. By

1 )9 e(fg) = (ef)g= fg .

define the relations wr and on E as follows

Furthermore, we define (u = oF n y (R=oFn (03C9r)-1, and f = 03C9l n (u) )" .
We let uf(e) == { f ~ E : f03C9r e} , and similarly for 03C9l(e) and a)(e) .

By proposition 2.1 y (jD and 03C9l are quasi-orders on E (reflexive, transitive
relations) y and thus R and E are équivalence relations. It is immédiate from

(2.1) that

In particular, 03C9 is anti-symmetric, hence a partial order on E . ’Vhen E - ES ’
? and S are just Green’s relations restricted to E,, and w is the usual par-

t~)

tial order : on ES . Denoting by Re the R-class containing e , y and defining
r 

e .

1 y then  is the usual partial order on R-classes.

The sandwich set 3(e , f) of e and f is the set of ail g in n 

such that eh eg and hf (D gf for every h (e) (f) . The follow-
ing is an immédiate conséquence.

PROPOSITION 2.2. - If g e f) , then 

3(e , f) = (h E n oF(f): eh ? eg and hf E gf) .

A subset F of a partial groupoid E is called a partial subgroupoid of E if

e , f ~ F and R ef imply ef ~ F . By a subwarp of a warp E y we mean a partial

subgroupoid F of E such that if e , f e F then y 3(e , y f) , where
f) dénotes the sandwich set of e and f relative to F. Then (W5) holds

for F y and- since hold for any partial subgroupoid of a warp, it follows

that a subwarp of a warp is also a warp.

PROPOSITION 2.3 . - For any e in E , uie) is a subwarp of E .

Proof. - If f , y g E w(e) and B fg , y then e(fg) = fg = (fg)e by proposition

2. 1, so fg e de) . Since

i t follows that

PROPOSITION 2.4. - e and 
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Proof. - By (2.l), fe = e ; and by (;,Y~ ) , 3 ef . Aiso, 8 e ( fe ) . By (W~),
(ef)e = e(fe) = ee = e . Since e(ef) = ef by proposition 2.1, we conclude that

ef  e . That ef w f follows from proposition 2.1.

PROPOSITION 2. 5. - If e wr f and Rge , gf then, ge uf gf . Hence e R f

and Bge , gf imply ge Ôl gf .

Proof. - By (2.l), fe = e . By (W1)’ (gf)e = g(fe) = ge . By proposition 2.1,

(gf)(ge) = (gf)[(gf)eJ = (gf)e = ge , that is ge uf gf .

PROPOSITION 2.6. -Let f, g e Then :il fg if, and only if, :a (fe)(ge) ,
and if they both exist, (fe)(ge) = (fg)e . a

Proof. - Assume first that :il fg . By (W~), fg = f(eg) = (fe)g . By proposition

2.1, e(fg) == fg , so 3 by (W3)’ By (W~), (fg)e == == 

Conversely, if :il (fe)(ge) then 3 fg by (1:14)’
By an E-square we mean an array (~ ~) of éléments of E such that e ~ f ,

g  h , e f g , and ff h .

PROPOSITION 2.7. - Let (e g f h) be an E-sg.uare. If any one of the statements

eh =f , fg=e , he = g , gf=h is true, then they are all t:me, and the

E-square is a rectangular band. 
’

Proof. - Of course, all horizontal and vertical products ( ef = f , ge = g , etc.)

hold by définition of R and f, . By cyclical symmetry, it suffices to show that

eh = f impies fg = e . But e(hg) = eg = e and eh = f imply, by that

fg= (eh)g=e(hg) =e .

n J’(f) rec-

tangular band.

o. - :il eg and £i gf by (W ), and gf R g E eg by proposition 2.1 and its

dual. From (ge)f= gf and Bef , we have g(ef) = (ge)f= gf . From g 03C9 e ,

3 gf , ef and proposition(2.5# have gf uf ef , and so :il (ef)(gf) .

Since f(gf) = gf, (ef)(gf) = e[f(gf)] = e(gf). Since B eg, we may write this

egf . From gf and B eg, e(gf), we have from proposition 2.5 that eg R egf ;

sa (g is an E-square. By 

and the square is a rectangular band, by proposition 2.7.

COROLLARY 2.9. - A regular warp can be described as a partial groupoid satisfying

(R2~ If g E g(e , f) , and one of ef and (eg)(gf) exists, so does the other,

and they are equal.
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Proof. - Clearly (R2) implies (W5) and (R2). Conversely, (R2) is a consequence of

(W5)’ (R2~9 and proposition 2.7.

Foreach f in E we define Tr(f): -) E and ~(f) : - E by

(2.3) = xf for all x E = fx for all x E 

By proposition 2.1, is a projection of onto w(f) .

If e R f] , we define Tr(e , f)[T~(e , y f)] to be the restriction of

] to w(e) . Thus

If E and E’ are warps, a bijection e: E è E’ is called an isomorphism if,

for all e, f in E, B ef if, and only if, 3 in which case

= 

PROPOSITION 2.10.

(i) If eRf and Î’ G g , then g) = g) ,

(ii) e) = Ee ’ the identity transformation of w(e) ,

(iii) f) is an isomorphism of w(e) onto w(f) , with inverse e).

Proof.

(i) For every x in Ae) , (xf)g=x(fg) =xg , by 

(ii) Evident,

(iii) That f) is a bijection of w(e) onto w(f) , with inverse

e) , is immédiate from (i) and (ii). Let x, y E ~e) . e ui f implies

x , y E By proposition 2.6, B xy if, and only if, 3 (xf)(yf) , in which

case they are equal.

We call an E-square (e g f h) T-commutative, if the diagram

commutes. This notion is easily seen to be independent of which corner 
we begin in.

As stated, it is équivalent to requiring that

PROPOSITION 2.11. -If .an E-square is a rectangular band, it is T-commutative.

Assume (e f h) is a rectangular band, and let x. 03C9(e) . Then x 03C9r f ,

and xf e by proposition 2.4. Likewise xf 03C9l f 03C9l h , and h(xf) Ei 03C9(h) . From

f(xf) = xf we have
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3. The biordered set determined b a 

. We begin with Namborripad’s definition [5] of a biordered set, making, however,

slight changes in notation.

Let E be a set, and let 03C9r and 03C9l be quasi-orders on E . Define

For each e on E, define = (fe E : f a) ej , and similarly for 03C9l and

w . For each e in E , let and be partial transformations of E ,

and let T= (~(e) : e~ E) (~(e): e~ E) . The system ( E , T )

is called a biordered set, if axioms (Bl)-(B5) below are satisfied, together with
their duals. By the dual of a statement P involving T ) we nean

the statement p* obtained from P by interchanging uf and and and

T(e) , for each e in E.

( Bi ) For ail e , f in E , f and f 03C9l e  e = f .

(B2) For ail e in E, is an idempotent mapping (= projection) 
onto w(e) , suc h that

Before stating the remaining axioms, we define the basic partial binary opération on

E as follows. For e , f in E , the product ef is defined if, and only if, e

and f are related by w and then

We proceed to show that this définition is single-valued. From (B2) we see that

induces the identity transformation on its image ~e) , so = f for

all f in w(e) . In particular, = e ; and dually, el(e) = e . Hence all

four parts of (1.2) agrée that ee = e .

Assume now that e # f , and that the pair (e, f) belongs to two or more of the

relations J , ~ , , . By and the assumption e # f , the

conjunctions 03C9r and é are impossible. Hence ex ac t ly one of the

following must 

As remarked above, e w f implies = e , and the first two cases in (3.2)

give the same value, namely ef = e . Dually, f w e gives fe = f .

Assume e ? f , and let g = By (B~), g E w(f) and aiso e . From

g ú{ e and e (R f we have g A f . But, then f 03C9r g , and g 03C9l f , 80 g=f by
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(B 1 ~. Hence the first and third cases of (3.2) give the consistent result ef = f .

Dually, for e f f , 9 we find that the second and fourth cases of (l.2) give ef = e.

It is readily seen that the quasi-orders wr and ~ and the partial transfor-

mations Tr(e) and T~(e) can be expressed in terms of the basic product (3.2) as

follows ?

In stating the remaining axioms, basic products will be used instead ci thé

T-mappings, but the relations 03C9r and 03C9l will be retained. Moreover, we shall

it into its ~ ~22 ~ ’ ~ ~23 ~ ’ and 

for the other axioms. The letters e, f , g dénote arbitrary elements of E.

The sandwich set §(e , f) of a pair od éléments e, f of E is defined to be

the set of all g in uf(e) n such that eh 03C9r eg and hf w gf for ail h

in tN (e) n à(f) .

(B) e 03C9r f and 

(B21) fe E w(e) for ail f in uf(e) , and ge = g for ail g in 

( B22) f, g E and f g fe u" ge .

(B23) f E =i fe R f .

(B31) g wr f uf e~ gf = (ge)f .

(B32) f, ge J(e) and f é g ’7~ = 

(B41) 3(e, f) 7" 0 (the empty set), for ail e, f in E.

(B42) e, f E 3(e , f)g = 3(eg , fg) .

We omit the final axiom (B5) since NAMBOORIPAD has subsequently found that it is a

conséquence of the other axioms.

THEOREM 3.1. - Let E be a regular warp. Define wr and 03C9l by (2.l), and

and each f in E, by (2.3). Then ( E , uf , T ) is a

biordered set.

proof (with one omission). - is immédiate from (2.l). (B21)’ ~~22~ ’ and (B23)
follow from propositions 2.1, (2.5)*, and 2.4, respectively. (B31) follows from
axioms (l’11) and (W3)’ For g wr f J’ e implies ef = f and eg = g , so :il ge anc

gf = g(ef) = (ge)f . (B ) follows from proposition 2.6. (B41) is the same as (Rl).
we omit the rather long proof of (B42)’ see ([3J proposition 2.10).

We call ( E , uf , T ) the biordered set determined by the regular warp E



8-09

4. Construction o~ all re lar war s determinin a ’ven biordered set.

Mojt of the important concep ts introduced for warps in § 2 are really biordered

set concepts : the quasi-orders 03C9r and 03C9l , the partial translations and

T~(f) , ~ and the sandwich sets $(e, ~.~’ ) . The same holds for the restricted transla-
tions f ) and T (e y f) , both denoted by e(e ~ f ) in [6~ which play an
important role in Nambooripad’s construction. Proposition 2.10 and its dual hold for

them ; the proof of part (i) is immediate from axiom (B ). Consequently, the notion
of a -commutative E-square is also biordered set-theoretical.

We saw in fi 3 that every regular warp détermines a biordered set. To every biorde-
re d set, there corresponds at least one regular warp (as we shall see), but in gene-
ral more than one. For example, consider a completely simple semigroup S . The

biordered set E~~ is simply a rectangular array, with ? and the

basic products are all the horizontal and vertical products. Every ES-square is
r-commutative. Regarding ES as a regular warp, the number of further products
which exist can vary between the two extrêmes :

1° all of them, when, for example, y S is a rectangular band,

2° none of them, when, for example, S = :m.( G ; I , A ; X ) , where X = (x03BBi) ,
and G is the free group on the symbols x. , (A E i E 1) .

In the présent section, we begin with a biordered set E, and give a method for

describing all possible (regular) warps E( ~ ) which détermine E . Clearly the

partial binary opération (. ) must include the basic products ( 3.2) .

B Y a E-square we mean one of the form ( e f f) , where e ? f and

e , 9 f E 03C9l(g) . Column-singular is defined dually, and singular means either row- or
column-singular. An E-square (: f ) f is called row-degenerate, (e f e f) is column-

degenerate, and degenerate means either kind.

A set CL of -commutative E-square is called effective if it has the following
three properties.

If (e g f h) ~ a then (X where x = h(xf) = 
(Note (2.6))

(Q~) CL contains ail singular and all degenerate E-squares. 
.

The partial binary opération (.) on a biordered set E corresponding to an

effective set Cf. of T-commutative E-squares is defined as follows. Let e , f ~ lbl,

If, for some g in f) an1 some x in E , y ( gf) E G y then we define
eg x

e . f = x . The uniqueness of e . f (if it exists) follows from proposition 2.2.

THEOREM 4.1. - Let E be a biordered set, and let CL be an effective set of
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T-commutative E-squares. Under thé partial binary opération (.) corresponding to

03B1 , E(.) becomes a regular warp determining thé biordered set E , and CL consists

of those E-squares which are 2 x 2 rectangular bands in E(.) .

Conversely, if E(.) is any reguair warp determining E , thon’thé set ’3. of ail

E-squares which are 2x 2 rectangular bands in E(.) is an effective set, and (’)

coincides with thé partial binary opération (.) in E corresponding to 0 .

Proof of converse. - Let E(o) be a regular warp determining E , and write ab

for a " b . Let CL be thé set of ail E-squares which are 2x2 rectangular

bands.

To show (~), let (~ ~) e d and (~ ~) ~ d. ° 
’

Then, by (W~), ej = e(ih) = (ei)h = eh = f , and (~ ~) e CL by proposition 2.7.

Thé second part of (Q.) is proved dually.
To let (~ ~ e CL and x e ju(e) . ° ~(g) n J(f) . By 

sition 2.8, (x gx xf gxf) e a. From (gx)e= and eh =f , we have

(gx)f = (gx)(eh) = = (gx)h = T ,

so / x xfB e M~ ~gx ?~ ~’
Toshow(Q), let e (Rf and e , f e e(gf) = (eg)f = ef = f , so

(e ge f gf) ~ 03B1 . ° for ail

degenerate E-squares.

Let e , f= E , and let g e§(e , f) . If 3 ef , then, by proposition 2.8 and

(R’) in 2.9, (g eg gf ef) ~ 03B1 , and hence ef = e . ° f . ° if

H e . f , (g eg gf e . f) g e (e , f) , by 

Then e . f= (eg)(gf) =ef , by (R~).
For a proof of thé direct part of thé theorem, see ([3] P. 17-26).

By an IG-semigroup, we mean a semigroup which is generated by its idempotents.

Let E be a regular warp. Let be thé free semigroup on thé set E . If

a , b ~ , write a - b , if we can pass from a to b by a finite séquence of

elementary transitions of thé following two kinds.

I. Replace two adjacent terms e , f in a word by thé single term ef , if it

exists, or thé reverse.

II. Insert an élément of §(e , f) between two adjacent terms e , f in a word,

or thé reverse.

Then - is a congruence on and we define B(E) = S~/- . It can be shown
that thé natural mapping of E into B(E) is injective, and we shall regard E as



a subset of B(E) .

If E and E’ are biordered sets, a bijection 6 : E --4 E’ is called an iso-

mor p hism if it préserves W and T (in the obvious sensé) in both direc-
tions. In terms of basic products, this is équivalent to, for e , f in E y ef

exists if and only if (e9)(fe) exists, and then (e9)(fe) = If E and E’

are warps, a mapping 6 : E 2014-~ Et is called a homomorphism if the existence of

ef in E implies that of in E’ , and then = 

THEOREM 5.1.

1° B(E) is a regular IG-semigroup with = E as sets, y and product in

EB(E) extends that in E.

2° If S is any regular semigroup, and 8 is a bijective homomorphism and

biorder isomorphism of E onto then there is a unique semigroup homomorphism

é : B(E) 2014) S extending 9 .

3° is the smallest partial regular band on the set E extending the

partial binary opération on the warp E .

We omit the proof, b~t remark that 3° is immediate from 2°, taking 6 to be the

inclusion of E in some regular semigroup 3 , identifying E with E~ . If
e , y f ~ g are elements of E such that ef = g in B(E) , then

so that ef = g in ES . By theorem 5.1, we have a method for extending the partial
product in a regular warp E in a minimal fashion to make it a partial regular band

(namely, calculate ) .

An alternative construction of B(E) has been given by NAMBOORIPAD in a paper not

yet published.

6. Fundamental regular war .

A regular semigroup S is called fundamental if the identity is the only congruen-

ce on S contained in Green’s relation ~ . A regular warp E is called fundamental

if the converse of proposition 2.11 holds : every T-commutative E-square is a

rectangular band. It can be shown that a partial groupoid E is isomorphic with the

warp ES of some fundamental regular semigroup S if y and only if, y it is a funda-

mental regular warp ([2J theorem 6.7).

If S is a regular semigroup, p a congruence on S contained and

S = S/p , then the mapping e 2014) e p is a biorder isomorphism of the biordered set

Ec. onto the biordered set E, . It is also a bijective homomorphism of the warp ES
onto the warp ES . But it need not be an isomorphism. It may happen that ES ,
ef ~ ES , but (ep)(fp) E E-- . For example, let S be completely simple, and take

p 
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Let E be a biordered set, and let S be the set of ail -commutative E-squares

(§4). It is easy to show that 5 is effective. follows from transitivity of

(R and E , and a standard commutative diagram argument. For (Q2)’ the T-commutati-

vity of (X xf) follows from the observation that if x w f , then y xf)
gx x

is the restriction of f) to and dually. As for (Q3)’ the -commu-

tativity of (e where e ? f ann e, f E 03C9l(g) , is équivalent to

By (W1)’ both sides are found to reduce to (gx)f.

Let dénote the binary opération on E corresponding to S . From proposition

2.11 or theorem 4.1, we see that is an extension of every warp opération on E

that corresponds to the given biorder structure on E ; that is, E(~) is the

greatest (regular) warp determining E. Of all the warps determining E, is

the only one that is fundamental. Since no enlargement of (£F) can take place on

passing from to E /~ (§ 5), it follows that is a regular partial

band.

7. A regular warp which is no t a regular partial band.

Let E = i E A) be an l x A rectangular band, with products de-

fined by

The biordered ui , T ) determined by E can be described as follows

The set E itself is an I x A E-array. The basic products are either horizontal

eix e. = e. ) or vertical (e.. ej03BB = e.l) . Endowed with the basic partial bina-
ry opération, E is a regular warp which is isomorphic with the warp of idempotents

E of the Rees matrix semigroup S = M( G ; I , ii ; P ) , where G is the free

groupon X = and P= i3 definedby 

Every E-square is T-commutative, and there are no non-degenerate singular

E-squares. A set 03B1 of E-squares is effective if, and only if, it contains ail

degenerate E-squares and satisfies (Q ). (Q2) is trivially satisfied.

Now let, I = A = (1, 2, 3, 9 4) . Let 03B1 consist of all degenerate E-squares and

the following :
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No two of them have a row or a column in common, so (Qi) is vacuously satisfied, and
so d is an effective set of ( T-commutative) E-squares.

be the partial binary opération on E corresponding to and let

B~E ~ ~~ be the universal regular IG-semigroup of E~ -~~ . By proposition 2.8, each

member of 03B1 is a 2 x 2 rectangular band in Calculating in B(E), we

have

But 
f e 

11 14 ~ 0 , so e * e is undefined. Hence thé bijection ~: é E(*) ~ E

is not an isomorphism, and we conclude from theorem C, that E(~) cannot be embedded

in a regular semigroup ; i. e., E~ ~~ is not a regular partial band in the sensé of

In the following diagram one sees the five non-degenerate members of and one

sees also thé missing square e11 e41 e14 e44)
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