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SUR LA RECHERCIE DES p-EXTENSIONS NON RAMIFIEES DE Q(up)

par Kenneth A. RIBET

English Summar:

Kummer's criterion states, that an odd prime p is irregular if, and only if,
p divides (the numerator of), at least one Bernouilli number Bk , where k ran-
ges over the even integers between 2 and p - 1 . The irregularity means that h
is divisible by p , where hp is the class number of the field _g(pp) of p-th
roots of unity. Alternately, p is irregular when _Q(pp) has an unramifield abe-

lian p-extension.

Let C% be the group of idezl classes of ‘g(up) , and let C be the group
CL/(CE)p , which for convenience, we write addit;vely. Then, C is an g&rvector
space which is non-zero precisely when p is irregular. The Galois group
Gal(@f@) acts on C through its quotient Gal(g(pp)/g) = o , and on the other hand,
all characters of o with values in Ep are obtained, as the power of the funda-

mental character :
— ~ Py
x : Gal(Q/Q) - & > E

which arises from the action of 4 on “p . We may then write :

- '\/i
C = 4 moa(p-1) CK)
with

¢(x*) = {ceC; ovec=x(e)e forall o ean}.

Actually, though, it is more convenient to rewrite this

o
¢=0C @ £¢kmod(p—1),k even Ck) !

where

C+ C(Xl) 9

— ,,r‘—

=<4 nod(p-1),i even
and

i—k)

Ck = C(x

when k is even. If we then put

c” =f3imod(p-1),i even c(x") ,
the equation C = ¢t ® ¢” summarises the decomposition of C into its "plus" and
"minus" eigenspaces under the action of the complex conjugafion in 4 . It is
known, that the non-vanishing of ot implies that of ¢~ , so that p is irregu-

lar if, and only if, (at least) one Ck is non-zero. Hence Kummer's criterion may
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be restated as follows ¢ An odd prime p divides at least one Bk ( x even 3

2<k<p~-1)if, and only if, at least, one C, is non-zero.

Furthermore, the following result is well known in the theory of cyclotomic fields

(it is a corollary of the Stickelberger theorem) :

THEOREM . - Eﬁ Ck #0 for a given k , then plBk (the same k ).
This suggests the possibility of proving the following converse,
CONVERSE. - If p|B_, then C_ # 0 .

To prove it, one performs the following result.

Construction. - Suppose pin . Then, there exists a finite field F D_Ep and a

continuous representation
P Gal(g/Q) —-» cs(2 , F)
with the following properties :
(1) 7 is unramified at all primes £ # p .

(ii) P is reductible (as an F-representation) in such a way that p may be

(o
0 xk~1)

(iii) P has an image whose order is divisible by bp ,

written matrieially in the form

(iv) The image in G4(2 ,-E) of any decomposition group for p has order prime
to p .

The construction gives the required result, because of functorial properties of
the Artin symbol and the matrix conjugaison formula
-1

(a b) {1 X) (a b __( 1 ad-lx,
0 d 0 1 0 d) 0 1

John COATES has remarked that the three properties (i), (ii), (iii) together im-
ply property (iv) under the assumption ¢t =0 « This assumption, equivalent to the

statement that p is "properly irregular", implies as well the above converse.

Further, if ¢t =0 , then all non-zero Ck have g%—dimension 1.

The aim of the seminar was to suggest a proof of the converse by means of modular
forms. Here, we give a quick sketch of the basic idea of the proof, which will

appear else where.

The first key was suggested by SERRE [3]., Namely, if pIBk , there exists a cusp
form f = Zn;d a, " of weight k on Szzﬂg) which is a normslized eigenform for
all Hecke operators T(n) , and which resembles an Eisenstein series in the follo-
wing sense : there exists a prime ideal @|p of the field K =-Q(an , n31) such

that for eachprime 4 # p the number a, is a @-integer satisfying :
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a, =1+ Zk_l mod @ .

A construction of Deligne associates to f a ®-adic representation :
pp * ¢a1(Q/Q) --» Gu(2 , Kp)

with K@ the completion of K at ¢ . The congruence for the a, (plus an argu-
ment in linear algebra) shows, that after a change of basis,

may be factored :
Gal(Y/Q) —» ca(2 , 0p) '

Pr

(with Op the integer ring of Kp ) so, that the reduction :
Gal(Q/Q) -3 Ge(2, Qp) — (2, F)

of Pe mod ® has the properties (i), (ii), (iii). Unfortunately, it seems impossi-
ble to prove (iv), because little is known about the properties at p of the repre-
sentation Pp o

Therefore, we do something different. SERRE has remarked, that mod p representa-
tions obtained from forms of weight k may often be seen on the Jacobian J atta-
ched to cusp forms of weight 2 on fb(p) « This induces us to construct such a form
with a congruence property like that above (the construction may be done by essen-
tially bare-handed techniques). Given such a form, we obtain a representation 'E
which again satisfies (i) , (ii), and (iii), but which has the following additional
property (deduced from results of DELIGNE and RAPOPORT [1]) : locally at p , over
the real cyclotomic field :@(pp)+ , P is the representation attached to a finite
flat commutative group scheme, killed by p , over the integer ring of a p-adic
field whose absolute ramification index is less than p - 1 . However, such group-
schemes have been studied by RAYNAUD [ 2]. Using his results, we deduce that proper-

ty (iv) for the new p is satisfied as well.
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